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Abstract— This paper shows how: i) (strongly) positive real;
ii) (asymptotically stable) dissipative (strictly-input) passive;
and iii) (Lm

2 -stable strictly) positive; continuous time system def-
initions are equivalent for linear time invariant (LTI) systems.
In parallel this paper shows how: i) (strictly) positive real; ii)
(asymptotically stable) dissipative (strictly-input) passive; and
iii) (lm2 -stable strictly) positive; discrete time system definitions
are equivalent for LTI systems. A frequency test is derived to
determine if a single input single output LTI system is strictly
output passive. Finally, the necessary conditions to synthesize
a system which is both passive and stable but neither strictly-
input passive nor strictly-output passive are presented.

I. INTRODUCTION

In our recent research we have pursued constructive

techniques based on passivity theory in order to design

networked-control systems which can tolerate time delay and

data loss [1]. As a result we have had to ’rediscover’ and

clarify key relationships between: i) (strongly) positive or

passive systems [2], [3] which are characterized by a time-

based input-output relationship; ii) (asymptotically stable)

dissipative-(strictly-input) passive systems which relate a

time-based input-output supply function to a state-based

storage function [4]–[6]; and iii) (strongly / strictly) positive-

real systems which are characterized by a frequency-based

input-output relationships [7]–[11]. For the continuous time

case we have discovered that these relationships “are all

derivable from the same principles and are part of the same

scientific discipline” [12]. Interestingly, since this realization

it is not clear that such connections have been fully exploited

although [13] has recently provided an excellent exposi-

tion in presenting such connections. We were particularly

interested in the fact that Parseval’s Theorem was used to

connect continuous and discrete time positive real systems

to passive systems in [13]. Since positive real systems can

have (simple) poles on the imaginary axis they may not have

a bounded impulse response (a sufficient condition for the

Fourier Transform to exist). Therefore, we chose to make

these connections without relying on this step. In Section II-

A we recall input-output passive (positive) system results

which demonstrate how Parseval’s relationship can be used

to relate stable passive systems using the Fourier Transform.

Next in Section II-B we review dissipative systems theory

which allows one to relate a positive definite storage function

to an input-output supply function through computationally

simple LMI tests. Next in Section II-C we recall LMI tests

for positive real systems. These positive real results relied on

relating elegant minimal state realizations to a given transfer-

function matrix description for continuous-time systems [7]

and the bilinear-transform for discrete-time systems [8].

Finally Section III clearly connects these three fields while

presenting an interesting method to create a passive system

which is stable but neither strictly output passive, nor strictly

input passive.

II. KEY RESULTS FOR PASSIVE, DISSIPATIVE, AND

POSITIVE REAL SYSTEMS

A. Passive (Positive) Systems

Passive systems can be thought of as systems which

only store or release energy which was provided to the

system. Passive systems have been analyzed by studying

their input output relationships. In particular the definitions

used to describe positive and strongly positive systems [2] are

essentially equivalent to the definitions used for passive and

strictly-input passive systems in which the available storage

β = 0 [3, Definition 6.4.1]. Let T be the set of time of

interest in which T = R
+ for continuous time signals and

T = Z
+ for discrete time signals. Let V be a linear space

R
n and denote by the space H of all functions u : T → V

which satisfy the following:

‖u‖2
2 =

∫ ∞

0

uT(t)u(t)dt < ∞,

for continuous time systems (Lm
2 ), and

‖u‖2
2 =

∞
∑

i=0

uT(i)u(i) < ∞,

for discrete time systems (lm2 ).
Similarly we will denote by He as the extended space

of functions as u : T → V by introducing the truncation

operator:

xT (t) =

{

x(t), t < T,

0, t ≥ T
xT (i) =

{

x(i), i < T,

0, i ≥ T

for continuous time and discrete time respectively. The

extended space He satisfies the following:

‖uT ‖2
2 =

∫ T

0

uT(t)u(t)dt < ∞; ∀T ∈ T (1)

for continuous time systems (Lm
2e), and

‖uT ‖2
2 =

T−1
∑

i=0

uT(i)u(i) < ∞; ∀T ∈ T
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for discrete time systems (lm2e). The inner product over the

interval [0, T ] for continuous time is denoted as follows:

〈y, u〉T =

∫ T

0

yT(t)u(t)dt

similarly the inner product over the discrete time interval

{0, 1, . . . , T − 1} is denoted as follows:

〈y, u〉T =
T−1
∑

i=0

yT(i)u(i).

For simplicity of discussion we note the following equiva-

lence for our inner-product space:

〈(Hu)T , uT 〉 = 〈(Hu)T , u〉 = 〈Hu, uT 〉 = 〈Hu, u〉T .

The symbol, H denotes a relation on He, and if u is a given

element of He, then the symbol Hu denotes an image of u

under H [2]. Furthermore Hu(t) and Hu(i) denote the value

of Hu at continuous time t discrete time i respectively.

Definition 1: A dynamic system H : He → He is Lm
2

stable if u ∈ Lm
2 =⇒ Hu ∈ Lm

2 .

Remark 1: A proper LTI system described by the square

transfer function matrix H(s) ∈ R
m×m(s) is Lm

2 stable

if and only if all poles have negative real parts [14, The-

orem 9.5 p.488] (uniform BIBO stability) combined with

[15, Theorem 6.4.45 p.301]. Therefore a system H(s) with

a corresponding minimal realization Σ
△
= {A, B, C, D}

described by (2) and (3) is asymptotically stable.

ẋ = Ax(t) + Bu(t), x ∈ R
n (2)

y(t) = Cx(t) + Du(t) (3)

H(s) = C(sI − A)−1B + D

Definition 2: A dynamic system H : He → He is lm2
stable if u ∈ lm2 =⇒ Hu ∈ lm2 .

Remark 2: An LTI system described by the square transfer

function matrix H(z) ∈ R
m×m(z) is lm2 stable if and

only if all poles are inside the unit circle of the complex

plain [14, Theorem 10.17 p.508] (uniform BIBO stability)

combined with [15, Theorem 6.7.12 p.366]. Therefore a

system H(z) with a corresponding minimal realization Σz
△
=

{A, B, C, D} described by (4) and (5) is asymptotically

stable.

x(k + 1) = Ax(k) + Bu(k), x ∈ R
n (4)

y(k) = Cx(k) + Du(k) (5)

H(z) = C(zI − A)−1B + D

Definition 3: Let H : He → He. We say that H is

i) passive if ∃β ≥ 0 s.t.

〈Hu, u〉T ≥ −β, ∀u ∈ He, ∀T ∈ T

ii) strictly-input passive if ∃δ > 0 and ∃β ≥ 0 s.t.

〈Hu, u〉T ≥ δ‖uT ‖2
2 − β, ∀u ∈ He, ∀T ∈ T

iii) strictly-output passive if ∃ǫ > 0 and ∃β ≥ 0 s.t.

〈Hu, u〉T ≥ ǫ‖(Hu)T ‖2
2 − β, ∀u ∈ He, ∀T ∈ T (6)

iv) non-expansive if ∃γ̂ > 0 and ∃β̂ s.t.

‖(Hu)T ‖2
2 ≤ β̂ + γ̂2‖uT ‖2

2, ∀u ∈ He, ∀T ∈ T
In [3] strictly-input passive was referred to as strictly passive.

Furthermore the definition for (strictly) positive given in [2]

is equivalent to the definition for (strictly-input) passive with

β = 0 for the continuous time case. We also note that [5]

chose to define passive systems for the case with β = 0.

However, we will follow the definition given in [3] and only

consider a system as (strictly) positive using (Definition 3-

ii) Definition 3-i with β = 0 and T = ∞. NB, strictly-

positive or strictly-input-passive systems are not equivalent

to the strictly-positive-real systems whose definitions will

be recalled later in the text. Strictly-positive-real systems

implicitly require all poles to be strictly in the left-half-

plane. For example, H(s) = 1
s

+ a, in which 0 < a < ∞ is

obviously strictly-positive and obviously not strictly-positive-

real in which there does not exists a finite positive ǫ such

that H(s− ǫ) is analytic for all Re[s] > 0 (the first condition

required in order for H(s − ǫ) to be positive-real).

Remark 3: If H is linear then β can be set equal to zero

without loss of generality in regards to passivity. If H is

causal then (strictly) positive and (strictly-input) passive are

equivalent (assuming Hu(0) = 0) [3, p.174, p.200].

A non-expansive system H is equivalent to any system which

has finite Lm
2 (lm2 ) gain in which there exists constants γ and

β s.t. 0 < γ < γ̂ and satisfy

‖(Hu)T ‖2 ≤ γ‖uT ‖2 + β, ∀u ∈ He, ∀T ∈ T .

Furthermore a non-expansive system implies Lm
2 (lm2 ) sta-

bility [16, p.4] ( [1, Remark 1]).

Theorem 1: [3, p.174-p.175] Assume that H is a linear

time invariant system which has a minimal realization Σ (Σz)

that is asymptotically stable:

(i) then for the continuous time case:

(a) H is passive iff H(jω)+HT(−jω) ≥ 0, ∀ω ∈ R.

(b) H is strictly-input passive iff

H(jω) + HT(−jω) ≥ δI, ∀ω ∈ R. (7)

(ii) and for the discrete time case:

(a) H is passive iff H(ejθ) + HT(e−jθ) ≥ 0, ∀θ ∈
[0, 2π].

(b) H is strictly-input passive iff

H(ejθ) + HT(e−jθ) ≥ δI, ∀θ ∈ [0, 2π]. (8)

Remark 4: The theorem stated was left as exercises for

the reader to solve in [3, p.174-p.175]. The assumption that

the system is a minimal realization and is asymptotically

stable is based on the assumption that the impulse response

of H is in Lm
1 for continuous time or lm1 for discrete time [3,

p.83] and [15, p.353,p.297,p.301]. These assumptions allow

one to use Parseval’s Theorem in order to show that

2π〈u, y〉T =

∫ ∞

−∞

UT

T (−jω)H(jω)UT (jω)dω

2π〈y, u〉T =

∫ ∞

−∞

UT

T (−jω)HT(−jω)UT (jω)dω.
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Since 2〈y, u〉T = (〈y, u〉T + 〈u, y〉T ) then

4π〈y, u〉T =

∫ ∞

−∞

UT(−jω)
(

H(jω) + HT(−jω)
)

U(jω)dω

can be used to prove Theorem 1.

Theorem 2: Given a single-input single-output LTI

strictly-output passive system with transfer function

H(s) (H(z)), real impulse response h(t) (h(k)), and

corresponding frequency response:

H(jω) = Re{H(jω)} + jIm{H(jω)} (9)

in which Re{H(jω)} = Re{H(−jω)} for the real part of the

frequency response and Im{H(jω)} = −Im{H(−jω)} for

the imaginary part of the frequency response. The constant

ǫ for (6) satisfies:

0 < ǫ ≤ inf
ω∈[0,∞)

Re{H(jω)}
Re{H(jω)}2 + Im{H(jω)}2

(10)

for the continuous time case. Similarly

H(ejω) = Re{H(ejω)} + jIm{H(ejω)} (11)

in which Re{H(ejω)} = Re{H(e−jω)} in which 0 ≤
ω ≤ π for the real part of the frequency response and

Im{H(ejω)} = −Im{H(e−jω)} for the imaginary part of

the frequency response. The constant ǫ for (6) satisfies:

0 < ǫ ≤ min
ω∈[0,π]

Re{H(ejω)}
Re{H(ejω)}2 + Im{H(ejω)}2

(12)

for the discrete time case.

Proof: Since a strictly-output passive system has a finite

integrable (summable) impulse response (ie.
∫ ∞

0
h2(t)dt <

∞ (
∑∞

i=0 h2[i] < ∞)) then (6) can be written as:

∫ ∞

−∞

H(jω)|U(jω)|2dω ≥ ǫ

∫ ∞

−∞

|H(jω)|2|U(jω)|2dω

(13)

for the continuous time case or
∫ π

−π

H(ejω)|U(ejω)|2dω ≥ ǫ

∫ π

−π

|H(ejω)|2|U(ejω)|2dω

(14)

for the discrete time case. (13) can be written in the following

simplified form:
∫ ∞

−∞

Re{H(jω)}|U(jω)|2dω ≥

ǫ

∫ ∞

−∞

(Re{H(jω)}2 + Im{H(jω)}2)|U(jω)|2dω (15)

in which (10) clearly satisfies (15). Similarly (14) can be

written in the following simplified form:
∫ π

−π

Re{H(ejω)}|U(ejω)|2dω ≥

ǫ

∫ π

−π

(Re{H(ejω)}2 + Im{H(ejω)}2)|U(ejω)|2dω (16)

in which (12) clearly satisfies (16).

B. Dissipative Systems

Dissipative systems are concerned with relating β to an

appropriate storage function s(u(t), y(t)) based on the inter-

nal states x ∈ R
n of the systems ((2),(3)) or ((4),(5)) such

that β(x) : R
n → R

+. The discussion can be generalized

for non-linear systems, however for simplicity we will focus

on the linear time invariant cases.

Definition 4: A state space system Σ is dissipative with

respect to the supply rate s(u, y) if there exists a matrix

P = PT > 0, such that for all x ∈ R
n, all t2 ≥ t1, and all

input functions u

xT(t2)Px(t2) ≤ xT(t1)Px(t1)+

∫ t2

t1

s(u(t), y(t))dt, holds.

(17)

By dividing both sides of (17) by t2− t1 and letting t2 → t1
it follows that ∀t ≥ 0

˙xT(t)Px(t) ≤ s(u(t), y(t))

ẋT(t)Px(t) + xT(t)P ẋ(t) ≤ s(u(t), y(t))

xT(t)[ATP + PA]x(t) + 2xT(t)PBu(t) ≤ s(u(t), y(t))(18)

therefore (18) can be used as an alternative definition for a

dissipative system.

Remark 5: We chose an appropriate storage function

β(x) = xTPx and substitute it into [16, (3.3)] which results

in (17). Since β(x) ∈ C1 we can derive (18) as was shown

for the nonlinear case [13, (5.83)].

We note that since Σ is a minimal realization of H(s)
then from [16, Corollary 3.1.8] we can state the equivalent

definitions for passivity based on P and Σ.

Definition 5: Assume that Σ is a dissipative system with

a storage function s(u(t), y(t)) of the following form:

s(u(t), y(t)) = yT(t)Qy(t) + 2yT(t)Su(t) + uT(t)Ru(t)
(19)

then Σ:

i) is passive iff

Q = R = 0, and S =
1

2
I (20)

ii) is strictly-input passive iff ∃δ > 0 and

Q = 0, R = −δI, and S =
1

2
I (21)

iii) is strictly-output passive iff ∃ǫ > 0 and

Q = −ǫI, R = 0, and S =
1

2
I (22)

iv) is non-expansive iff ∃γ̂ > 0 and

Q = −I, R = γ̂2I, and S = 0 (23)

Remark 6: The reason that these conditions are necessary

and sufficient is that the system Σ is a minimal realization

of H(s) which is controllable and observable and satisfies

either [17, Theorem 1] or [5, Theorem 16] for the LTI case.

From the above discussion the following corollary can be

stated.
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Corollary 1: A necessary and sufficient test for Defini-

tion 5 to hold is that there ∃P = PT > 0 such that the

following LMI is satisfied:
[

ATP + PA − Q̂ PB − Ŝ

(PB − Ŝ)T −R̂

]

≤ 0 , (24)

in which

Q̂ = CTQC (25)

Ŝ = CTS + CTQD (26)

R̂ = DTQD + (DTS + STD) + R. (27)

An analogous discussion can be made for the discrete time

case similar to that given in [6, Appendix C].

Definition 6: A state space system Σz is dissipative with

respect to the supply rate s(u, y) iff there exists a matrix

P = PT > 0, such that for all x ∈ R
n, all l > k ≥ 0, and

all input functions u

xT(l)Px(l) ≤ xT(k)Px(k) +

l−1
∑

i=k

s(u[i], y[i]), holds. (28)

Lemma 1: A state space system Σz is dissipative with

respect to the supply rate s(u, y) iff there exists a matrix

P = PT > 0, such that for all x ∈ R
n, all k ≥ 0, and all

input functions u(k) such that

xT[k + 1]Px[k + 1] − xT[k]Px[k] ≤ s(u[k], y[k])(29)

{Ax[k] + Bu[k]}TP{Ax[k] + Bu[k]}−
xT[k]Px[k] ≤ s(u[k], y[k])

xT[k]{ATPA − P}x[k] + 2xT[k]ATPBu[k]+

uT[k]BTPBu[k] ≤ s(u(k), y(k))(30)

holds.

Proof: (28) =⇒ (29) can be shown be setting l =
k + 1.

(29) =⇒ (28):

Taking (29) we can write

l−1
∑

i=k

(xT[i + 1]Px[i + 1] − xT[i]Px[i]) ≤
l−1
∑

i=k

s(u[i], y[i])

which can then be expressed as

l
∑

i=k+1

xT[i]Px[i] −
l−1
∑

i=k

xT[i]Px[i] ≤
∑l−1

i=k s(u[i], y[i])

xT[l]Px[l] − xT[k]Px[k] ≤ ∑l−1
i=k s(u[i], y[i]).

We note that since Σz is a minimal realization of H(z)
then a similar argument can be made as was done in [16,

Corollary 3.1.8] for the discrete time which allows us to

state the equivalent definitions for passivity based on P and

Σz .

Definition 7: Assume that Σz is a dissipative system with

a storage function s(u[k], y[k]) of the following form:

s(u[k], y[k]) = yT[k]Qy[k] + 2yT[k]Su[k] + uT[k]Ru[k]
(31)

then Σz:

i) is passive iff

Q = R = 0, and S =
1

2
I (32)

ii) is strictly-input passive iff ∃δ > 0 and

Q = 0, R = −δI, and S =
1

2
I (33)

iii) is strictly-output passive iff ∃ǫ > 0 and

Q = −ǫI, R = 0, and S =
1

2
I (34)

iv) is non-expansive iff ∃γ̂ > 0 and

Q = −I, R = γ̂2I, and S = 0 (35)

Therefore the following corollary can be stated.

Corollary 2: [6, Lemma C.4.2] A necessary and suffi-

cient test for Definition 7 to hold is that there ∃P = PT > 0
such that the following LMI is satisfied:

[

ATPA − P − Q̂ ATPB − Ŝ

(ATPB − Ŝ)T −R̂ + BTPB

]

≤ 0 , (36)

in which Q̂, Ŝ, R̂ are given by (25), (26) and (27) respec-

tively.

C. Positive Real Systems

Positive real systems H(s) have the following properties:

Definition 8: [18, p.51] [9, Definition 1.1] [13, Defini-

tion 5.18] An n×n rational and proper matrix H(s) is termed

positive real (PR) if the following conditions are satisfied:

i) All elements of H(s) are analytic in Re[s] > 0.

ii) H(s) is real for real positive s.

iii) HT(s∗) + H(s) ≥ 0 for Re[s] > 0.

furthermore H(s) is strictly positive real (SPR) if there ∃ǫ >

0 s.t. H(s − ǫ) is positive real. Finally, H(s) is strongly

positive real if H(s) is strictly positive real and D+DT > 0

where D
△
= H(∞).

The test for positive realness can be simplified to a frequency

test as follows:

Theorem 3: [12, Theorem 1] [18, p.216] [13, Theo-

rem 5.11] Let H(s) be a square, real rational transfer

function. H(s) is positive real iff the following conditions

hold:

i) All elements of H(s) are analytic in Re[s] > 0.

ii) HT(−jω) + H(jω) ≥ 0 for ∀ω ∈ R for which jω is

not a pole for any element of H(s).
iii) Any pure imaginary pole jωo of any element of H(s)

is a simple pole, and the associated residue matrix

Ho
△
= lims→jωo

(s − jωo)H(s) is nonnegative definite

Hermitian (i.e. Ho = H∗
o ≥ 0).

A similar test is given for strict positive realness.

Theorem 4: [9, Theorem 2.1] Let H(s) be a n× n, real

rational transfer function and suppose H(s) is not singular.

Then H(s) is strictly positive real iff the following conditions

hold:

i) All elements of H(s) are analytic in Re[s] ≥ 0.

ii) H(jω) + HT(−jω) > 0 for ∀ω ∈ R.
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iii) Either limω→∞[H(jω)+HT(−jω)] = D+DT > 0 or if

D+DT ≥ 0 then limω→∞ ω2[H(jω)+HT(−jω)] > 0.

From Theorem 4 and (7) it is clear that a strongly positive

real system is equivalent to a stable and strictly-input passive

system. Such a connection can also be shown using [10,

Theorem 1] however we will use a simpler proof.

Lemma 2: Let H(s) (with a corresponding minimal re-

alization Σ) be a n × n, real rational transfer function

and suppose H(s) is not singular. Then the following are

equivalent:

i) H(s) is strongly positive real

ii) Σ is asymptotically stable and strictly-input passive s.t.

H(jω) + HT(−jω) ≥ δI, ∀ω ∈ R (37)

Proof: ii =⇒ i:

Since Σ is asymptotically stable then all poles are in the

open left half plane, therefore Theorem 4-i is satisfied. Next

(37) clearly satisfies Theorem 4-ii. Also, (37) implies that

D + DT ≥ δI > 0 which satisfies 4-iii which satisfies the

final condition to be strictly-positive real and also strongly

positive real as noted in Definition 8.

i =⇒ ii:

First we note that Theorem 4-i implies Σ will be asymptot-

ically stable. Next, from Definition 8 there ∃δ1 > 0 s.t.

HT(−j∞) + H(j∞) = DT + D ≥ δ1I > 0

Since δ1 > 0 then there obviously exists a δ2 > 0 s.t.

HT(−jω) + H(jω) ≥ δ2I > 0, ∀ω(−∞,∞).

Therefore (37) is satisfied in which δ = min{δ1, δ2} > 0.

Finally, we recall the Positive Real Lemma.

Lemma 3: [7, Theorem 3] [18, p.218] Let H(s) be an

n×n matrix of real rational functions of a complex variable

s, with H(∞) < ∞. Let Σ be a minimal realization of H(s).
Then H(s) is positive real iff there exists P = PT > 0 s.t.

[

ATP + PA PB − CT

(PB − CT)T −(DT + D)

]

≤ 0 (38)

Lemma 4: [19, Lemma 2.3] Let H(s) be an n×n matrix

of real rational functions of a complex variable s, with

H(∞) < ∞. Let Σ be a minimal realization of H(s). Then

H(s) is strongly positive real iff there exists P = PT > 0
s.t. Σ is asymptotically stable and

[

ATP + PA PB − CT

(PB − CT)T −(DT + D)

]

< 0. (39)

Discrete time positive real systems H(z) have the following

properties:

Definition 9: [8], [20] [21, Definition 2.5] [13, Defini-

tion 13.16] A square matrix H(z) of real rational functions

is a positive real matrix if:

i) all the entries of H(z) are analytic in |z| > 1 and,

ii) Ho = H(z) + HT(z∗) ≥ 0, ∀|z| > 1.

Furthermore H(z) is strictly-positive real if ∃0 < ρ < 1 s.t.

H(ρz) is positive real.

Unlike for the continuous time case there is no need to denote

that H(z) is strongly positive real when H(z) is strictly

positive real and (D + DT) > 0 where D
△
= H(∞). For the

discrete time case (D + DT) > 0 is implied as is noted in

[22, Remark 4]. The test for a positive real system can be

simplified to a frequency test as follows:

Theorem 5: [8, Lemma 2] Let H(z) be a square, real

rational n×n transfer function matrix. H(z) is positive real

iff the following conditions hold:

i) No entry of H(z) has a pole in |z| > 1.

ii) H(ejθ) + HT(e−jθ) ≥ 0, ∀θ ∈ [0, 2π], in which ejθ is

not a pole for any entry of H(z).

iii) If ejθ̂ is a pole of any entry of H(z) it is at most a

simple pole, and the residue matrix Ho
△
= lim

z→ejθ̂ (z−
ejθ̂)G(z) is nonnegative definite.

The test for a strictly-positive real system can be simplified

to a frequency test as follows:

Theorem 6: [21, Theorem 2.2] Let H(z) be a square,

real rational n×n transfer function matrix in which H(z)+
HT(z∗) has rank n almost everywhere in the complex z-

plane. H(z) is strictly-positive real iff the following condi-

tions hold:

i) No entry of H(z) has a pole in |z| ≥ 1.

ii) H(ejθ) + HT(e−jθ) ≥ ǫI > 0, ∀θ ∈ [0, 2π], ∃ǫ > 0.

Remark 7: Comparing Theorem 6 to (8) it is clear that a

discrete strictly-positive real system is equivalent to stable

strictly-input passive discrete-time system.

Lemma 5: Let H(z) (with a corresponding minimal re-

alization Σz) be a square, real rational n × n transfer

function matrix in which H(z)+HT(z∗) has rank n almost

everywhere in the complex z-plane. Then the following are

equivalent:

i) H(z) is strictly positive real

ii) Σz is asymptotically stable and strictly-input passive s.t.

H(ejθ) + HT(e−jθ) ≥ δI, ∀θ ∈ [0, 2π]

Finally, we recall the Positive Real Lemma. and the Strictly

Positive Real Lemmas for the discrete time case.

Lemma 6: [8, Lemma 3] Let H(z) be an n×n matrix of

real rational functions and let Σz be a stable realization of

H(z). Then H(z) is positive real iff there exists P = PT >

0 s.t.
[

ATPA − P ATPB − CT

(ATPB − CT)T −(DT + D) + BTPB

]

≤ 0. (40)

Lemma 7: [22, Corollary 2] [11, Lemma 4.2] Let H(z)
be an n × n matrix of real rational functions and let Σz be

an asymptotically stable realization of H(z). Then H(z) is

strictly-positive real iff there exists P = PT > 0 s.t.

[

ATPA − P ATPB − CT

(ATPB − CT)T −(DT + D) + BTPB

]

< 0. (41)

III. MAIN RESULTS

We now state the main result in regards to passive and

positive real systems.

Lemma 8: Let H(s) be an n × n matrix of real rational

functions of a complex variable s, with H(∞) < ∞. Let

Σ be a minimal realization of H(s). Furthermore we denote
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H(t) as an n×n impulse response matrix of H(s) in which

the output y(t) is computed as follows:

y(t) =

∫ t

0

H(t − τ)u(τ)dτ

Then the following statements are equivalent:

i) H(s) is positive real.

ii) There ∃P = PT > 0 s.t. (38) is satisfied.

iii) With Q = R = 0, S = 1
2I there ∃P = PT > 0 s.t. (24)

is satisfied.

iv)
∫ ∞

0

yT(t)u(t)dt ≥ 0, when y(0) = 0

Proof: i ⇔ ii: Stated in Lemma 3.

iii ⇔ iv: Remark 3 states that iv) is an equivalent test for

passivity and Corollary 1 states that iii) is an equivalent test

for passivity.

iii =⇒ ii: A passive system H(s) is also passive iff kH(s)
is passive for ∀k > 0. Therefore (24) for kH(s) in which

Σ = {A,B, kC, kD} and Q = R = 0, S = 1
2I , Q̂ =

0, Ŝ = k
2CT, R̂ = k

2 (DT + D):
[

ATP + PA PB − k
2CT

(PB − k
2CT)T −k

2 (DT + D)

]

≤ 0 , (42)

which for k = 2 satisfies (38).

ii =⇒ iii:

The converse argument can be made in which a positive real

system H(s) is positive real iff kH(s) is positive real ∀k > 0
in which we choose k = 1

2 .

Remark 8: The key to the proof was connecting the work

of [7], [3] and [5]. In doing so we were able to realize such

a strong connection between positive real systems theory

and dissipative systems theory has also been made in [12,

Theorem 1,3]. Similar connections are discussed in [23, Sec-

tion 2.7.2] and quite recently [13, Theorem 5.] which include

additional references where the Positive Real Lemma has

been discussed as well. Since positive real systems can have

poles on the imaginary axis it is not clear what additional

assumptions were used in the proof of [13, Theorem 5.]

which relied on Parseval’s theorem. This stresses how the

dissipative definition for passivity allows us to make such a

strong connection to positive real systems.

Lemma 9: Let H(s) be an n × n matrix of real rational

functions of a complex variable s, with H(∞) < ∞. Let

Σ be a minimal realization of H(s). Furthermore we denote

H(t) as an n×n impulse response matrix of H(s) in which

the output y(t) is computed as follows:

y(t) =

∫ t

0

H(t − τ)u(τ)dτ

Then the following statements are equivalent:

i) H(s) is strongly positive real.

ii) There ∃P = PT > 0 s.t. (39) is satisfied.

iii) Σ is asymptotically stable, and for Q = 0, R = −δI

,S = 1
2I there ∃P = PT > 0 s.t. (24) is satisfied

(strictly-input passive and non-expansive).

iv) Σ is asymptotically stable, and if y(0) = 0 then
∫ ∞

0

yT(t)u(t) ≥ δ‖u(t)‖2
2

in which δ = inf−∞≤ω≤∞ Re{H(jω)} for the single

input single output case.

Furthermore, iii implies that for Q = −ǫI , R = 0, and S =
1
2I there ∃P = PT > 0 s.t. (24) is also satisfied (strictly-

output passive). Thus if y(0) = 0 then
∫ ∞

0

yT(t)u(t)dt ≥ ǫ‖y(t)‖2
2

Remark 9: In order for the equivalence between strongly

positive real and strictly-input passive to be stated, the

strictly-input passive system must also have finite gain (i.e.

Σ is asymptotically stable). For example the realization for

H(s) = 1 + 1
s
, Σ = {A = 0, B = 1, C = 1, D = 1}, δ = 1

is strictly-input passive but is not asymptotically stable.

However H(s) = s+b
s+a

, Σ = {A = −a,B = (b − a), C =

D = 1}, δ = min{1, b
a
} is both strictly-input passive and

asymptotically stable for all a, b > 0.

Proof: i ⇔ ii: Stated in Lemma 4.

ii ⇔ iv: Stated in Lemma 2.

iii ⇔ iv: Stated in Definition 5.

Remark 10: It is well known that a non expansive system

which is strictly-input passive =⇒ that H is also strictly-

output passive [16, Remark 2.3.5] [13, Proposition 5.2], the

converse however, is not always true (i.e. inf∀ω Re{H(jω)}
is zero for strictly proper (strictly-output passive) systems).

It has been shown for the continuous time case [16, The-

orem 2.2.14] and discrete time case [1, Theorem 1] [6,

Lemma C.2.1-(iii)] that a strictly-output passive system =⇒
non expansive but it remains to be shown if the converse is

true or not true. Indeed, we can show that an infinite number

of continuous-time and discrete-time linear-time invariant

systems do exists which are both passive and non expansive

and are neither strictly-output passive (nor strictly-input

passive).

Theorem 7: Let H : He → He (in which y = Hu, y(0) =
0, and for the case when a state-space-description exists for

H that it is zero-state-observable (y = 0 implies that the state

x = 0) and there exists a positive definite storage function

β(x) > 0, x 6= 0, β(0) = 0) have the following properties:

a) ‖(y)T ‖2 ≤ γ‖(u)T ‖2

b) 〈y, u〉T ≥ −δ‖(u)T ‖2
2

c) There exists a non-zero-normed input u such that

〈y, u〉T = −δ‖(u)T ‖2
2 and ‖(y)T ‖2

2 > δ2‖(u)T ‖2
2 (δ <

γ).

Then the following system H1 in which the output y1 is

computed as follows:

y1 = y + δu (43)

has the following properties:

I. H1 is passive,

II. H1 is non-expansive,

III. H1 is neither strictly-output passive (nor strictly-input

passive).
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Proof: 7-I

Solving for the inner-product between y1 and u we have

〈y1, u〉T = 〈y, u〉T + δ‖(u)T ‖2
2

〈y1, u〉T ≥ (−δ + δ)‖(u)T ‖2
2 ≥ 0.

7-II

Solving for the extended-two-norm for y1 we have

‖(y1)T ‖2
2 = ‖(y + δu)T ‖2

2

‖(y1)T ‖2
2 ≤ ‖(y)T ‖2

2 + δ2‖(u)T ‖2
2

‖(y1)T ‖2
2 ≤ (γ2 + δ2)‖(u)T ‖2

2.

7-III

Recalling, from our proof for passivity, and our solution for

the inner-product between y1 and u, and substituting our final

Assumption-c we have:

〈y1, u〉T = (−δ + δ)‖(u)T ‖2
2 = 0.

It is obvious that no constant δ > 0 exists such that

〈y1, u〉T = 0 ≥ δ‖(u)T ‖2
2

since it is assumed that ‖(u)T ‖2
2 > 0, hence H1 is not

strictly-input passive. In a similar manner, noting that the

added restriction holds ‖(y)T ‖2
2 = δ2‖(u)T ‖2

2 for the same

input function u when 〈y, u〉T = −δ‖(u)T ‖2
2, it is obvious

that no constant ǫ > 0 exists such that

〈y1, u〉T = 0 ≥ ǫ‖(y1)T ‖2
2

0 ≥ ǫ
(

‖(y)T ‖2
2 + 2δ〈y, u〉T + δ2‖(u)T ‖2

2

)

0 ≥ ǫ
(

‖(y)T ‖2
2 − δ2‖(u)T ‖2

2

)

holds.

Corollary 3: The following continuous-time-system H(s)

H(s) =
ω2

n

s2 + 2ωns + ω2
n

, 0 < ωn < ∞ (44)

satisfies the assumptions listed in Theorem 7 required of

system H in which δ = 1
8 and an input-sinusoid u(t) =

sin(
√

3ωnt) is a null-inner-product sinusoid such that:

H1(s) =
1

8
+ H(s) =

1

8
+

ω2
n

s2 + 2ωns + ω2
n

, 0 < ωn < ∞

is both passive and non-expansive but neither strictly-output

passive nor strictly-input passive.

We now conclude with main results in regards to discrete

time passive and positive real systems (the proofs follow

along similar lines for the continuous time case).

Lemma 10: Let H(z) be an n× n matrix of real rational

functions of variable z. Let Σz be a minimal realization of

H(z) which is Lyapunov stable. Furthermore we denote H[k]
as an n × n impulse response matrix of H(z) in which the

output y[k] is computed as follows:

y[k] =

k
∑

i=0

H[k − i]u[i]

Then the following statements are equivalent:
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i) H(z) is positive real.

ii) There ∃P = PT > 0 s.t. (40) is satisfied.

iii) With Q = R = 0, S = 1
2I there ∃P = PT > 0 s.t. (36)

is satisfied.

iv) If y[0] = 0 then

∞
∑

i=0

yT(i)u(i) ≥ 0

Lemma 11: Let H(z) be an n× n matrix of real rational

functions of variable z. Let Σz be a minimal realization of

H(z) which is Lyapunov stable. Furthermore we denote H[k]
as an n × n impulse response matrix of H(z) in which the

output y[k] is computed as follows:

y[k] =

k
∑

i=0

H[k − i]u[i]

Then the following statements are equivalent:

i) H(z) is strictly-positive real.

ii) There ∃P = PT > 0 s.t. (41) is satisfied.

iii) Σz is asymptotically stable, and for Q = 0, R = −δI ,

S = 1
2I there ∃P = PT > 0, and∃δ > 0 s.t. (36) is

satisfied.

iv) Σz is asymptotically stable, and if y[0] = 0 then

∞
∑

i=0

yT(i)u(i) ≥ δ‖u(i)‖2
2

IV. CONCLUSIONS

Fig. 2 (Fig. 3) summarize many of the connections be-

tween continuous (discrete) time passive systems and pos-

itive real systems as noted in Section III. We believe the

proofs for the results in Section III are original and unified

(clarified many implicit assumptions in various statements)

which are distributed around in the literature on this topic.

In deriving these proofs we now have greater appreciation

for the observations and results presented in [12], [18] and

[10]. This paper clearly shows how the work of [7], [8]

for positive real systems can be connected to dissipative

systems theory. In addition this shows how strictly positive

systems theory [2], [15] makes it easier to connect strongly
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Fig. 2. Venn Diagram relating continuous LTI systems to positive real

systems.

Fig. 3. Venn Diagram relating discrete LTI systems to positive real systems.

positive real systems to stable strictly input passive systems.

We note how much confusion can arise from statements

such as those given in [24, Definition 1, Lemma 1, and

Lemma 3] which fail to mention the implicit assumption

that the strictly-input passive system is also non-expansive

(or its minimal realization is asymptotically stable). Most

importantly, Theorem 7 (Corollary 3) demonstrate how to

construct an infinite number of (LTI) systems which are finite

gain stable systems and passive but are neither strictly-output

passive nor strictly-input passive.
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