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Abstract— It is well known that a negative feedback in-
terconnection of passive systems is passive. However, the ex-
tension of this fundamental property to the case of negative
feedback interconnection of dissipative systems, which is a
more general case, remains largely unaddressed. In this paper,
we demonstrate that a negative feedback interconnection of
dissipative systems, under appropriate assumptions, could be
passive or just L2 stable; we further propose a way to relax
these assumptions. The case when there are time delays in
communication is then addressed, and it is shown that under
appropriate assumptions, the closed-loop system is passive or
L2 stable for non-increasing time delays; moreover, passivity
and L2 stability can be retained by inserting time-varying gains
in the communication path provided a bound on the maximum
rate of change of delay is known.

I. INTRODUCTION

In this paper, we study passivity and L2 stability of a
feedback interconnection of two dissipative systems when
there are time-varying delays in the loop. It is well known
that a feedback interconnection of two passive systems is still
passive [1]-[2],[14]. Based on this fundamental result, many
constructive control designs have appeared in the literature,
see [3]-[4]. Some preliminary results which extend these
basic passivity/dissipativity results to network control have
been reported in [5]-[12].

In the recent work of Chopra [10]-[11], passivity results
for interconnected passive and output strictly passive sys-
tems when there are time-varying communication delays are
presented. These preliminary results provide a good way to
retain passivity properties of the feedback interconnection in
the presence of time-varying delays, by inserting properly
designed gains in the communication path. Furthermore,
they have shown that if the passive systems are transformed
by using the the scattering representation [15], and if the
scattering variables are transmitted as the new outputs, then
the feedback interconnection is passive independently of the
constant time delays. In the latest paper of Hirche, Matiakis
and Bussa [12], the feedback interconnection of IF-OFP
(input feed-forward and output feedback passive) systems
is further studied, and a “rotation”transformation to retain
the passivity results for the closed-loop in the presence of
constant time delays is proposed; they have also shown that
the scattering transformation is actually a special case of
the “rotation”transformation, and the key point behind this
kind of transformation is to rotate the conic representation
of system’s input and output space and use the “small-
gain”theorem as a fundamental design guide.
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In the present paper, we study the feedback intercon-
nection of dissipative systems, which is a more general
case compared with the work in [10],[11],[12]. We use a
characterization of the supply rate of dissipative systems in
terms of system’s passivity indices. With this characterization
of supply rate, we are able to treat a more general case of
dissipative systems because it includes both passive and non-
passive systems, both L2 stable and not L2 stable systems.
The “IF-OFP”systems studied in [12] is also a special case
of our dissipative systems studied here. The reason for using
passivity indices to characterize dissipative systems is be-
cause passivity indices not only measure the excess/shortage
of passivity of the system[16]-[17], they also contain the
stability information of the dissipative systems. Based on
these, we demonstrate that the feedback interconnection of
two dissipative systems, with non-increasing time delays is
either passive or L2 stable if the systems’ passivity indices
satisfy certain conditions. In the general case, when the time
delay may be increasing or decreasing, the passivity and L2
stability of the feedback interconnection can no longer be
guaranteed. However, if the maximum rate of the change of
delay is known, by inserting properly designed gains into
the communication path, passivity and L2 stability of the
closed-loop can still be achieved.

The outline of this paper is as follows. We briefly introduce
some background material on passivity and passivity indices
in Section II, which is followed by our main lemmas in
Section III; we present our main theorems which are related
to network control in section IV and finally, the conclusion
is provided in Section V.

II. BACKGROUND

Passivity provides us with a useful tool for the analysis of
linear/nonlinear systems, which relates nicely to Lyapunov
and L2 stability [2]. Passivity indices, which are defined in
terms of excess or shortage of passivity[16]-[17], have been
introduced in order to extend the passivity-based stability
conditions to the more general cases for both passive and
non-passive systems[4]. Most of the discussion presented in
this section is related to passivity and passivity indices which
lay the foundation of the results developed in this paper. To
set the background and notation for what follows, we need
to introduce some basic concepts of passivity and passivity
indices. Consider the following nonlinear system:

H :
⎧⎪⎨⎪⎩ ẋ = f (x,u)

y = h(x,u)
(1)

where x ∈ X ⊂ Rn, u ∈ U ⊂ Rm and y ∈ Y ⊂ Rm are the state,
input and output variables respectively; X, U and Y are state,
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input and output spaces, respectively. The representation
x(t)= φ(t, t0, x0,u) is used to denote the state at time t reached
from the initial state x0 at t0.

Definition 1 (Supply Rate [13]). The supply rate ω(t) =
ω(u(t),y(t)) is a real valued function defined on U ×Y, such

that for any u(t) ∈ U and x0 ∈ X and y(t) = h(φ(t, t0, x0,u)),
ω(t) satisfies ∫ t1

t0

|ω(τ)|dτ <∞ (2)

Definition 2 (Dissipative System [13]). System H with

supply rate ω(t) is said to be dissipative if there exists a

nonnegative real function V(x) : X→ R+, called the storage

function, such that, for all t1 ≥ t0 ≥ 0, x0 ∈ X and u ∈ U,

V(x1)−V(x0) ≤
∫ t1

t0

ω(τ)dτ (3)

where x1 = φ(t1, t0, x0,u) and R+ is a set of nonnegative real

numbers.
The above definition states that a system is dissipative

if the increase in its energy (storage function) during the
interval (t0, t1) is no greater than the energy supplied (via
the supply rate ω(u(t),y(t))) to it. If the storage function is
C1, then we can write (3) as

dV(x(t))
dt

≤ ω(u(t),y(t)) (4)

Definition 3 (Passive System [3]). A system is said to be

passive if it is dissipative with respect to the following supply

rate:

ω(u(t),y(t)) = uT (t)y(t) (5)

and the storage function V(x) satisfies V(0) = 0.
We can see from the definition that a passive system is a

special case of dissipative systems.

Definition 4 (Excess/Shortage of Passivity [4]). Let H :
u(t) �→ y(t). System H is said to be:

• Input Feed-forward Passive (IFP) if it is dissipative with

respect to supply rate ω(u(t),y(t))= uT (t)y(t)−νuT (t)u(t)
for some ν ∈ R, denoted as IFP(ν).

• Output Feedback Passive (OFP) if it is dissipative

with respect to the supply rate ω(u(t),y(t)) = uT (t)y(t)−
ρyT (t)y(t) for some ρ ∈ R, denoted as OFP(ρ).

ν and ρ are defined as Input Feed-forward Passivity (IFP)

index and Output Feedback Passivity (OFP) index, respec-
tively. A positive ν or ρ means that the system has an excess
of passivity. In this case, the system is said to be strictly
input passive (ν > 0) or strictly output passive(ρ > 0).
Clearly, if a system is IFP(ν) or OFP(ρ), then it is also
IFP(ν− ε), or OFP(ρ− ε) ∀ε > 0. Moreover, if the system
has simultaneous IFP and OFP indices, then the system is
dissipative with respect to the supply rate given by:

ω(u(t),y(t)) = (1+ρν)uT (t)y(t)− νuT (t)u(t)−ρyT (t)y(t) (6)

which is in a more general form. We can see that if ρ ≥ 0
and ν ≥ 0, then the dissipative system is passive; it is strictly
output passive if ρ > 0 and ν≥ 0 and it is strictly input passive
if ν > 0 and ρ ≥ 0; for the other cases, the system is only
dissipative but not passive. In this paper, we assume that the
supply rates for all the dissipative systems considered have
the form in (6), with static passivity indices ρ and ν.

III. MAIN LEMMAS

Before we present our main theorems, we first introduce
the following lemmas.

Lemma 1 . Let a dynamical system satisfy the dissipative

inequality given by

V̇(x) ≤ (1+ρν)uT (t)y(t)− νuT (t)u(t)−ρyT (t)y(t) (7)

where u(t),y(t) ∈Rm, ρ and ν are the IFP and OFP passivity

indices, and V(x) is the storage function of the system. Then

if ρ > 0 and |ν| <∞, the system is L2 stable.

Proof.

V̇(x) ≤ (1+ρν)uT (t)y(t)− νuT (t)u(t)−ρyT (t)y(t)

≤ |1+ρν|‖u(t)‖2‖y(t)‖2+ |ν|‖u(t)‖22−ρ‖y(t)‖22
(8)

then we have

V̇(x) ≤ − 1
2ρ

(
|1+ρν|‖u(t)‖2−ρ‖y(t)‖2

)2
+

( (1+ρν)2

2ρ
+ |ν|
)
‖u(t)‖22−

ρ

2
‖y(t)‖22

≤ k2

2ρ
‖u(t)‖22−

ρ

2
‖y(t)‖22

(9)

where k2 = (1+ρν)2 +2ρ|ν|. Integrating V̇(x) over [0, τ] and
using V(x) ≥ 0, and taking the square roots, we arrive at

‖yτ‖L2 ≤
k

ρ
‖uτ‖L2 +

√
2V(x(0))
ρ

(10)

which shows that if ρ > 0 and |ν| <∞ the dissipative system
is L2 stable. Here yτ and uτ denote the truncated signal of
y(t) and u(t). �

In view of Lemma 1, the passivity index ρ indicates
whether the dissipative system is L2 stable; but in general,
a L2 stable dissipative system may not be passive because
for passive system, we need both ρ ≥ 0 and ν ≥ 0; for output
strictly passive system where we have ρ > 0, the system is
also L2 stable.

Lemma 2 . If a dynamical system satisfies the dissipative

inequality given by

V̇(x) ≤ uT (t)Ay(t)− yT (t)By(t)−uT (t)Cu(t) (11)

where u(t),y(t) ∈ Rm, A,B and C are m×m matrixes and B

is positive definite, then the system is L2 stable.

Proof. Let a = ‖A‖2 ≥ 0, c = ‖C‖2 ≥ 0 and b = λ(B) > 0.
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Then we have

V̇(x) ≤ a‖u(t)‖2‖y(t)‖2+ c‖u(t)‖22−b‖y(t)‖22
≤ − 1

2b

(
a‖u(t)‖2−b‖y(t)‖2

)2
+

(
a2

2b
+ c
)
‖u(t)‖22−

b

2
‖y(t)‖22

≤ k2

2b
‖u‖22−

b

2
‖y(t)‖22

(12)
where k2 = a2+2bc. Integrating V̇(x) over [0, τ], using V(x)≥
0 and taking the square roots, we arrive at

‖yτ‖L2 ≤
k

b
‖uτ‖L2 +

√
2V(x(0))

b
(13)

which shows the L2 stability of this dissipative system. Here
yτ and uτ denote the truncated signal of y(t) and u(t). �

In view of Lemma 2, if B> 0, then the dissipative system is
L2 stable; moreover, if A> 0, B≥ 0 and C ≥ 0, the dissipative
system is passive because V̇(x) ≤ uT (t)Ay(t).

Lemma 3 . Assume that H is dissipative with the supply rate

given in (6), then H̃ = RT HR with R a nonsingular matrix

as shown in Figure 1, is still a dissipative system. Moreover,

the new system H̃ is L2 stable if and only if the system H

is L2 stable.

Fig. 1: Transformation of Dissipative System

Proof. Since H is dissipative with the supply rate as given
in (6), we have

V̇(x) ≤ (1+ρν)uT (t)y(t)− νuT (t)u(t)−ρyT (t)y(t) (14)

with u(t) = RT ũ(t), and y(t) = R−1ỹ(t), so

˙̃V(x) ≤ (1+ρν)(RT ũ(t))T R−1ỹ(t)− ν(RT ũ(t))T (RT ũ(t))

−ρ(R−1ỹ(t))T (R−1ỹ(t))
(15)

and we get

˙̃V(x)≤ (1+ρν)ũT (t)ỹ(t)−νũT (t)RRT ũ(t)−ρỹT (t)(R−1)T R−1ỹ(t)
(16)

this shows that the new system H̃ is still a dissipative system
with the input ũ and the output ỹ. Moreover, if ρ > 0, then
ρ(R−1)T R−1 is positive definite. Then from Lemma 2 and
Lemma 3, it can been seen that H̃ is L2 stable if and only
if the original system H is L2 stable. �

IV. MAIN THEOREMS

Consider the feedback interconnection as shown in Figure
2, where system H1 and H2 are both dissipative systems with
the supply rate given in (6). We first present our passivity
and L2 stability results of the closed-loop system for the no
time delays case.

Theorem 4.1 . Consider the feedback interconnection as

shown in Figure 2, where system H1 is dissipative with

respect to the supply rate ω1(t) = (1 + ρ1ν1)uT
1 (t)y1(t) −

ν1uT
1 (t)u1(t)−ρ1yT

1 (t)y1(t) and system H2 is dissipative with

respect to the supply rate ω2(t) = (1 + ρ2ν2)uT
2 (t)y2(t) −

ν2uT
2 (t)u2(t)−ρ2yT

2 (t)y2(t). The feedback interconnection is

• Passive from ri(t) to yi(t), for i = 1,2 and passive from

r = [rT
1 (t) rT

2 (t)]T to y = [yT
1 (t) yT

2 (t)]T if

ρ1 ≥ 0, ν1 ≥ 0,
ρ2 ≥ 0, ν2 ≥ 0;

(17)

• L2 stable with input r = [rT
1 (t) rT

2 (t)]T and output y =

[yT
1 (t) yT

2 (t)]T if

ρ1+ ν2 > |12(1+ρ1ν1)− 1
2

(1+ρ2ν2)|

ρ2+ ν1 > |12(1+ρ1ν1)− 1
2

(1+ρ2ν2)| .
(18)

Fig. 2: Feedback Interconnection of Dissipative Systems

Proof. Since H1 and H2 are dissipative with storage
functions V1(x) and V2(x) satisfying

V̇1(x) ≤ (1+ρ1ν1)uT
1 (t)y1(t)− ν1uT

1 (t)u1(t)−ρ1yT
1 (t)y1(t)

V̇2(x) ≤ (1+ρ2ν2)uT
2 (t)y2(t)− ν2uT

2 (t)u2(t)−ρ2yT
2 (t)y2(t)

(19)
then, if ρ1, ν1 ≥ 0 and ρ2, ν2 ≥ 0

V̇1(x) ≤ (1+ρ1ν1)uT
1 (t)y1(t), V̇2(x) ≤ (1+ρ2ν2)uT

2 (t)y2(t)
(20)

or
˙̂V1(x) =

V̇1

1+ρ1ν1
≤ uT

1 (t)y1(t)

˙̂V2(x) =
V̇2

1+ρ2ν2
≤ uT

2 (t)y2(t)
(21)

which shows that the feed-forward path from r1(t) to y1(t)
and the feedback path from r2(t) to y2(t) are both passive.
Since u1(t) = r1(t)− y2(t), u2(t) = r2(t)+ y1(t), we can obtain

˙̂V = ˙̂V1+
˙̂V2 ≤ rT

1 (t)y1(t)+ rT
2 (t)y2(t) (22)

which shows that the closed-loop is passive from input r =

[rT
1 (t) rT

2 (t)]T to output y = [yT
1 (t) yT

2 (t)]T . Moreover, in view
of (19), we obtain

V̇ = V̇1+ V̇2 ≤ rT (t)Ay(t)− yT (t)By(t)− rT (t)Cr(t) (23)

where V(x) is the storage function for the closed-loop and

A =

(
1+ρ1ν1 2ν1
−2ν2 1+ρ2ν2

)
B =

(
b11 b12
b21 b22

)
(24)
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C =

(
ν1 0
0 ν2

)
(25)

with

b11 = ρ1+ ν2, b12 =
1
2

(1+ρ1ν1)− 1
2

(1+ρ2ν2),

b22 = ρ2+ ν1, b21 =
1
2

(1+ρ1ν1)− 1
2

(1+ρ2ν2).

According to Lemma 3, if the symmetric matrix B > 0, the
closed-loop is L2 stable, thus the sufficient conditions for
the feedback interconnection to be L2 stable with input r

and output y are given by (18). �
As presented by Theorem 4.1, for the no time delays

case, we have shown conditions under which the feedback
interconnection of two dissipative systems will be passive or
L2 stable. Our next theorem shows a way to relax the above
conditions by pre-multiplying and post-multiplying both the
feed-forward and feedback systems with a diagonal matrix.

Theorem 4.2 . Consider the feedback interconnection as

Fig. 3: Feedback Interconnection of Dissipative Systems

shown in Figure 3, where the system H1 is dissipative

with respect to the supply rate ω1(t) = (1+ρ1ν1)uT
1 (t)y1(t)−

ν1uT
1 (t)u1(t)− ρ1yT

1 (t)y1(t) and the system H2 is dissipative

with respect to the supply rate ω2(t) = (1+ρ2ν2)uT
2 (t)y2(t)−

ν2uT
2 (t)u2(t)− ρ2yT

2 (t)y2(t), d1, d2 ∈ R. Then the closed-loop

is

• Passive from input r = [rT
1 (t) rT

2 (t)]T to output ỹ =

[ỹT
1 (t) ỹT

2 (t)]T , if

ρ1 ≥ 0, ν1 ≥ 0,
ρ2 ≥ 0, ν2 ≥ 0;

(26)

• L2 stable with input r and output ỹ, if

ρ1

d2
1

+d2
2ν2 > |

1
2

(1+ρ1ν1)− 1
2

(1+ρ2ν2)|
ρ2

d2
2

+d2
1ν1 > |

1
2

(1+ρ1ν1)− 1
2

(1+ρ2ν2)| .
(27)

Proof. The proof is similar to the proof in Theorem 4.1 by
using Lemma 3. �

Remarks: Theorem 4.2 shows that in the case when the
passivity indices of the feed-forward and feedback systems
do not satisfy the conditions shown in Theorem 4.1, a good

choice of the weights d1 and d2 may enable us to make the
closed-loop system L2 stable.

Next we also consider time-varying delays in the com-
munication network and we derive conditions under which
passivity and L2 stability of the feedback interconnection of
two dissipative systems can be preserved.

Theorem 4.3 . Consider the feedback interconnection as

shown in Figure 4, with H1 and H2 being the same dis-

Fig. 4: Feedback Interconnection of Dissipative Systems

sipative systems as discussed in Theorem 4.1. If the delays

T1(t) and T2(t) are non-increasing, then the closed-loop is

• Passive from r = [rT
1 (t), rT

2 (t)]T to ỹ = [ỹT
1 (t), ỹT

2 (t)]T if

1+ρ1ν1 > 0, ν1 ≥ 0,
ρ1

d2
1

≥ 1
2
|1+ρ1ν1|+ 1

2
|1+ρ2ν2|

1+ρ2ν2 > 0, ν2 ≥ 0,
ρ2

d2
2

≥ 1
2
|1+ρ1ν1|+ 1

2
|1+ρ2ν2| ;

(28)
• L2 stable with input r = [rT

1 (t) rT
2 (t)]T and output ỹ =

[ỹT
1 (t) ỹT

2 (t)]T if

ρ1

d2
1

+d2
2ν2 >

1
2
|1+ρ1ν1|+ 1

2
|1+ρ2ν2|+d2

2 |ν2|
ρ2

d2
2

+d2
1ν1 >

1
2
|1+ρ1ν1|+ 1

2
|1+ρ2ν2|+d2

1 |ν1| .
(29)

Proof. According to Lemma 3, the storage function for H̃1
and H̃2 satisfy

˙̃V1(x) ≤ (1+ρ1ν1)ũT
1 (t)ỹ1(t)−d2

1ν1ũT
1 (t)ũ1(t)− ρ1

d2
1

ỹT
1 (t)ỹ1(t)

˙̃V2(x) ≤ (1+ρ2ν2)ũT
2 (t)ỹ2(t)−d2

2ν2ũT
2 (t)ũ2(t)− ρ2

d2
2

ỹT
2 (t)ỹ2(t)

(30)
with ũ1(t)= r1(t)− ỹ2(t−T2(t)) and ũ2(t)= r2(t)+ ỹ1(t−T1(t)),
we can get

˙̃V1+
˙̃V2 ≤ (1+ρ1ν1)rT

1 (t)ỹ1(t)+ (1+ρ2ν2)rT
2 (t)ỹ2(t)

+

(1
2
|1+ρ1ν1|+ 1

2
|1+ρ2ν2| − ρ1

d2
1

+ |d2
2ν2| −d2

2ν2

)
‖ỹ1(t)‖22

+

(1
2
|1+ρ1ν1|+ 1

2
|1+ρ2ν2| − ρ2

d2
2

+ |d2
1ν1| −d2

1ν1

)
‖ỹ2(t)‖22

+ (|d2
1ν1| −d2

1ν1)‖r1(t)‖22+ (|d2
2ν2| −d2

2ν2)‖r2(t)‖22−φ(t) ,
(31)
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with

φ(t) = (
1
2
|1+ρ2ν2|+ |d2

2ν2| −d2
2ν2)
(
‖ỹ1(t)‖22−‖ỹ1(t−T1(t))‖22

)
+ (

1
2
|1+ρ1ν1|+ |d2

1ν1| −d2
1ν1)
(
‖ỹ2(t)‖22−‖ỹ2(t−T2(t))‖22

)
.

(32)
Let α = ( 1

2 |1 + ρ2ν2| + |d2
2ν2| − d2

2ν2) and β = ( 1
2 |1 + ρ1ν1| +

|d2
1ν1| − d2

1ν1), we can see that α ≥ 0 and β ≥ 0; then by
integrating φ(t) we have∫ t

0
φ(τ)dτ = α

(∫ t

t−T1(t)
‖ỹ1(τ)‖22dτ+

∫ t−T1(t)

0
‖ỹ1(τ)‖22dτ

−
∫ t

0
‖ỹ1(τ−T1(τ))‖22dτ

)
+β
(∫ t

t−T2(t)
‖ỹ2(τ)‖22dτ

+

∫ t−T2(t)

0
‖ỹ2(τ)‖22dτ−

∫ t

0
‖ỹ2(τ−T2(τ))‖22dτ

)
.

(33)
Let σ1 = τ−T1(τ) and σ2 = τ−T2(τ), we can get

dτ =
dσ1

1− dT1(τ)
dτ

, dτ =
dσ2

1− dT2(τ)
dτ

. (34)

Then,∫ t

0
φ(τ)dτ = α

∫ t

t−T1(t)
‖ỹ1(τ)‖22dτ+β

∫ t

t−T2(t)
‖ỹ2(τ)‖22dτ

−α
∫ t−T1(t)

0

dT1(τ)
dτ

1− dT1(τ)
dτ

‖ỹ1(σ1)‖22dσ1

−β
∫ t−T2(t)

0

dT2(τ)
dτ

1− dT2(τ)
dτ

‖ỹ2(σ2)‖22dσ2

(35)
Since α ≥ 0 and β ≥ 0, if dT1(t)

dt ≤ 0 and dT2(t)
dt ≤ 0, then∫ t

0 φ(τ)dτ ≥ 0, ∀t, thus φ(t) ≥ 0. Then we can get

˙̃V1+
˙̃V2 ≤ rT Ãỹ− ỹT B̃ỹ− rT C̃r (36)

where

Ã =

(
1+ρ1ν1 0

0 1+ρ2ν2

)
B̃ =

(
b̃11 0
0 b̃22

)
(37)

C̃ =

(
ν̂1− |ν̂1| 0

0 ν̂2− |ν̂2|
)

(38)

with

b̃11 = ρ̂1+ ν̂2− |ν̂2| − 1
2
|1+ρ1ν1| − 1

2
|1+ρ2ν2|

b̃22 = ρ̂2+ ν̂1− |ν̂1| − 1
2
|1+ρ1ν1| − 1

2
|1+ρ2ν2|

and with ρ̂1 = ρ1/d
2
1 , ρ̂2 = ρ2/d

2
2, ν̂1 = d2

1ν1, ν̂2 = d2
2ν2. Again,

for the closed-loop system to be passive, we need Ã> 0, B̃≥ 0
and C̃ ≥ 0, which yields the conditions shown in (28) and for
the closed-loop system to be L2 stable, we need B̃> 0 which
yields the conditions shown in (29). �

We have shown that if the time delays in the communica-
tion networks are non-increasing, then under the conditions
of Theorem 4.3, the feedback interconnection of two dissi-
pative systems could be passive or L2 stable. Our next result

shows a way to deal with time-varying delays by inserting
proper gains into the communication network. This is the
same method used in [11], but instead of passive or output
strictly passive systems, we use this method for the network
control of dissipative systems.

Theorem 4.4 . Consider the feedback interconnection of

two dissipative systems H1 and H2 as shown in Figure 5,

where H1 and H2 are the same systems as in Theorem 4.1.

Fig. 5: Feedback Interconnection of Dissipative Systems

Assume that the change rate of the delay is bounded by

T
′
i (t) ∈ [0,1), i = 1,2. If Ki = 1−max{T ′i (t)}, i = 1,2, then the

closed-loop system is

• Passive from r = [rT
1 (t), rT

2 (t)]T to ỹ = [ỹT
1 (t), ỹT

2 (t)]T if

1+ρ1ν1 > 0, ν̂1 ≥ 0, 1+ρ2ν2 > 0, ν̂2 ≥ 0, and

ρ̂1 ≥ 1
2

K2|1+ρ1ν1|+ 1
2
|1+ρ2ν2|+ (1−K1)ν̂2

ρ̂2 ≥ 1
2

K1|1+ρ2ν2|+ 1
2
|1+ρ1ν1|+ (1−K2)ν̂1 ;

(39)

• L2 stable with input r = [rT
1 (t) rT

2 (t)]T and output ỹ =

[ỹT
1 (t) ỹT

2 (t)]T if

ρ̂1 >
1
2

K2|1+ρ1ν1|+ 1
2
|1+ρ2ν2|+ |ν̂2| −K1ν̂2

ρ̂2 >
1
2

K1|1+ρ2ν2|+ 1
2
|1+ρ1ν1|+ |ν̂1| −K2ν̂1 ;

(40)

where ρ̂1 = ρ1/d
2
1 , ρ̂2 = ρ2/d

2
2 and ν̂1 = d2

1ν1, ν̂2 = d2
2ν2.

Proof. In the present set-up, with ũ1(t) = r1(t) − K2ỹ2(t −
T2(t)), ũ2(t) = r2(t)+K1ỹ1(t−T1(t)), we can get

˙̃V1+
˙̃V2 ≤ (1+ρ1ν1)rT

1 (t)ỹ1(t)+ (1+ρ2ν2)rT
2 (t)ỹ2(t)

+

(1
2

K2|1+ρ1ν1|+ 1
2
|1+ρ2ν2| − ρ1

d2
1

+ |d2
2ν2| −K1d2

2ν2

)
‖ỹ1(t)‖22

+

(1
2

K1|1+ρ2ν2|+ 1
2
|1+ρ1ν1| − ρ2

d2
2

+ |d2
1ν1| −K2d2

1ν1

)
‖ỹ2(t)‖22

+ (K2|d2
1ν1| −d2

1ν1)‖r1(t)‖22+ (K1|d2
2ν2| −d2

2ν2)‖r2(t)‖22−φ(t) ,
(41)

ThA5.2

588



with

φ(t) = (
1
2
|1+ρ2ν2|+ |ν̂2| −K1ν̂2)

(
‖ỹ1(t)‖22−K1‖ỹ1(t−T1(t))‖22

)
+ (

1
2
|1+ρ1ν1|+ |ν̂1| −K2ν̂1)

(
‖ỹ2(t)‖22−K2‖ỹ2(t−T2(t))‖22

)
.

(42)
Let α = ( 1

2 |1+ρ2ν2|+ |ν̂2| −K1ν̂2) and β = ( 1
2 |1+ρ1ν1|+ |ν̂1| −

K2ν̂1); since we choose Ki = 1 − max{T ′i (t)} and T
′
i (t) ∈

[0,1), i = 1,2, we have Ki ∈ (0,1], i = 1,2; thus α ≥ 0 and
β ≥ 0. Again, let σ1 = τ−T1(τ) and σ2 = τ−T2(τ), by using
the change of variables in the same way as shown in the
proof of Theorem 4.3, we can get∫ t

0
φ(τ)dτ ≥ α

∫ t

t−T1(t)
‖ỹ1(τ)‖22dτ+β

∫ t

t−T2(t)
‖ỹ2(τ)‖22dτ

+α

∫ t−T1(t)

0

(
‖ỹ1(σ1)‖22−

K1

1−max{T ′1(τ)} ‖ỹ1(σ1)‖22
)
dσ1

+β

∫ t−T2(t)

0

(
‖ỹ2(σ2)‖22−

K2

1−max{T ′2(τ)} ‖ỹ2(σ2)‖22
)
dσ2

(43)
since Ki = 1−max{T ′i (t)}, i = 1,2, it follows that∫ t

0
φ(τ)dτ ≥ α

∫ t

t−T1(t)
‖ỹ1(τ)‖22dτ+β

∫ t

t−T2(t)
‖ỹ2(τ)‖22dτ ≥ 0

(44)
which implies φ(t) ≥ 0. Then we arrive at

˙̃V1+
˙̃V2 ≤ rT Ãỹ− ỹT B̃ỹ− rT C̃r (45)

where

Ã =

(
1+ρ1ν1 0

0 1+ρ2ν2

)
B̃ =

(
b̃11 0
0 b̃22

)
(46)

and
C̃ =

(
ν̂1−K2|ν̂1| 0

0 ν̂2−K1|ν̂2|
)

(47)

with

b̃11 = ρ̂1+K1ν̂2− |ν̂2| − 1
2

K2|1+ρ1ν1| − 1
2
|1+ρ2ν2|

b̃22 = ρ̂2+K2ν̂1− |ν̂1| − 1
2

K1|1+ρ1ν1| − 1
2
|1+ρ2ν2|.

Again, for the closed-loop system to be passive, we need
Ã > 0, B̃ ≥ 0 and C̃ ≥ 0, which yields the conditions shown
in (39); and for the closed-loop system to be L2 stable, we
need B̃ > 0 which yields the conditions shown in (40). �

V. CONCLUSION

In this paper, we studied passivity and L2 stability of a
negative feedback interconnection of dissipative systems with
and without time delays in communication. We characterized
the supply rate of dissipative systems in terms of passivity
indices, and we have shown that our study of dissipative
systems is a more general case since it characterizes both
passive and non-passive systems and also both L2 and not
L2 stable systems. We derived conditions for the closed-
loop system to be passive or L2 stable under three different
situations i) without considering time delays; ii) with non-

increasing time delays; iii) with increasing time delays where
the maximum change rate of the delay is known. We have
shown that in the general case, when the time delay may
be increasing or decreasing, the passivity and L2 stability of
the feedback interconnection can no longer be guaranteed.
However, if the maximum rate of the change of delay is
known, by inserting properly designed gains into the com-
munication path, passivity and L2 stability can be preserved
in the closed-loop .
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