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Abstract.  

 

In this paper, discrete-time Model-Based Networked Control Systems (MB-NCS) are studied. A lifting 

process is applied to the original MB-NCS configuration resulting in a Linear Time-Invariant (LTI) 

system. Necessary and sufficient conditions are given for the asymptotic stability of the system with 

instantaneous feedback in terms of h, the periodic update constant, and in terms of h and τ for the 

intermittent feedback case, where τ is the time interval in which the loop remains closed. The lifting 

process is also applied to a more general MB-NCS configuration in which the controller is connected to 

the actuator and plant by means of the digital communication network resulting in a multirate system; 

now, the controller is updated every nT time units while the plant is updated every mT time units, 

similarly, necessary and sufficient conditions for asymptotic stability are given in terms of the parameters 

n and m. 
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I. Introduction. 

 

 

In recent years, control networks have been replacing traditional point-to-point wired systems. In 

networked control systems, the different elements, plants, controllers, sensors, and actuators are 

connected through a digital communication network with limited bandwidth. The new challenges 

that this implementation has brought are well documented [2, 11, 18, 21]. Perhaps the most 

relevant is the limitation on bandwidth; many researchers have studied different problems related 

to bandwidth restrictions such the state estimation problem under limited network capacity [24] 

or the minimum bit rate required to stabilize a Network Control System (NCS), [5, 19]. Other 

authors have focused on reducing network communication maintaining the system stable or 

keeping some level of performance. Georgiev and Tilbury [10] use the packet structure more 

efficiently, that is, reduction on communication is obtained by sending packets of information 

using all data bits available (excluding overhead). For the sequence of sensor data received, the 

controller needs to find a control sequence instead of a single control value. Otanez et. al. [20] 

use deadbands at each node to record the last value sent to the network and compares that value 

to the current one, taking a decision on sending the current information or not; the node does not 

send the new data if it is within the deadband. Stability and performance are studied for this 

implementation and an optimal deadband is found through simulations according to the network 

usage and the Integral of Absolute Value Error (IAE). Walsh, et. al. [23] introduced a network 

control protocol Try-Once-Discard (TOD) to allocate network resources to the different nodes in 

a Networked Control System; all of them may access the network at any time assuming each 

access occurs before the Maximum Allowable Transfer Time (MATI). 

 

A type of NCS called Model Based Networked Control Systems (MB-NCS) aims to reduce 

communication over the network by incorporating an explicit model of the system to be 

controlled. The state of this model is used for control when no feedback is available (open loop). 

When the loop is closed, the state of the model is updated with new information, namely, the 
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state of the real system. The MB-NCS framework is able to reduce network communication; 

consequently, the network is available for other uses, reducing time delays and bandwidth 

limitations.  

 

Pioneering work in MB-NCS by Montestruque and Antsaklis [16, 17] provided necessary and 

sufficient conditions for stability for the case when the update intervals are constant; the output 

feedback and network delay case were also studied. In an extension, the same authors [18] also 

presented results when the update intervals are time-varying and follow different probabilistic 

distributions. In a related work Estrada, et. al. [6] introduced MB-NCS to intermittent feedback 

control resulting in improved performance and longer permissible update intervals. Recently, the 

intermittent control concept has been successfully applied to control systems [8, 9, 13, 23]. 

Ronco, et. al. introduced intermittent control in the context of Model Predictive Control to take 

account of the open-loop inter-sample behavior of an underlying continuous time system. 

Gawthrop and Wang [8, 9] extended the previous work by using basis function generator for the 

input signal for the unconstrained optimization problem and by substituting a clock trigger by an 

event trigger respectively. Li et. al. [13] discussed the application of intermittent control for the 

stabilization of a class of nonlinear systems.  

 

In all the mentioned work on MB-NCS it is assumed that the network exists only between the 

sensor and the controller node while the controller is connected directly to the actuator and plant,  

that is the input generated by the controller is available to the plant at all times without delays or 

losses. 

 

In this paper we will revisit the traditional configuration for MB-NCS and then we will study the 

case when a communication network exists on both sides of the control loop; lifting techniques 

are going to be applied to the analysis of the resulting multi-rate system.  

 

 



   

4 
 

II. Discrete-time and continuous-time lifting. 

 

 

The lifting process has the purpose of extending the input and output spaces properly in order to 

obtain a Linear Time Invariant (LTI) system description for sampled-data, multi-rate, or linear 

time-varying periodic systems. This section provides a brief discussion on lifting based on [3]. 

These mathematical tools will be later used in the analysis of discrete-time MB-NCS. 

 

A. Lifting discrete-time signals and systems. 

 

Let us first consider a discrete-time signal v(k) that is referred to the sub-period h/n of the 

underlying clock with base period h, and n is some positive integer. This means that v(0) occurs 

at time t=0, v(1) at t=h/n, v(2) at t=2h/n, etc. 

The lifted signal v  is defined as follows: 

If { }(0), (1), (2) ,...v v v v= then 

(0) ( )
(1) ( 1)

, ,...
: :

( 1) (2 1)

v v n
v v n

v

v n v n

     
     +    =          − −                                                          (II.1)

 

 

The dimension of the lifted signal ( )v k is n times the dimension of the original signal v(k) and is 
regarded to the base period i.e. ( )v k  occurs at time t=kh. 

The lifting operator L is defined to be the map v v→ . The inverse operator 1L−  exists and is 
defined as follows: 
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If  

1 1

2 2

(0) (1)
(0) (1)

, ,...
: :

(0) (1)n n

ψ ψ
ψ ψ

ψ

ψ ψ

    
    

    =                                                                        (II.2)

 

 

and 1v L ψ−=  

then { }1 2 1 2(0), (0),...., (0) , (1), (1),...., (1),...n nv ψ ψ ψ ψ ψ ψ= . 

A relevant feature about lifting is that it preserves inner products and norms. Let us see this for 

the case of 2l - norms: 

2

2

( , )

( , )

m

nm

v l
v l

+

+

∈

∈

 

 

 

2

2
(0) (0) (1) (1) ....T Tv v v v v= + +                                               (II.3.a) 

 

2

2
(0) (0) (1) (1) ....T Tv v v v v= + +  

(0) (0) ( ) ( )
: : : : ....

( 1) ( 1) (2 1) (2 1)

T Tv v v n v n

v n v n v n v n

       
       = + +       
       − − − −            (II.3.b)

 

 
2

2

(0) (0) (1) (1) ....T Tv v v v

v

= + +

=
 

 

Now, let us consider a discrete-time Finite Dimensional Linear Time Invariant (FDLTI) system 

dG  with underlying period h/n. Lifting the input and output signals so that the lifted signals 

correspond to the base period h results in the lifted system: 1
d dG LG L−= . 
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Assuming the state space representation of the original system dG  is known and given by: 

( 1) ( ) ( )
( ) ( ) ( )

x k Ax k Bu k
y k Cx k Du k

+ = +
= +                                                       (II.4)

 

 

Then the state space representation for the lifted system dG  is given by: 

1 2

1 2 3

(( 1) ) ( ) ... ( )

0 ... 0
... 0

( ) ( ) ( )
: :

...

n n n

n n n

x k h A x kh A B A B B u kh

C D
CA CB D

y kh x kh u kh

CA CA B CA B D

− −

− − −

 + = +  
   
   
   = +
   
   
                          (II.5)

 

 

 

B. Lifting continuous-time signals and systems. 

 

Although continuous-time lifting is not going to be used in this paper, it is interesting to see the 

specific characteristics of the resulting lifted system. 

Let us start with a signal u(t) in the extended space 2 ( )el  , i.e.  

0

( ) ( ) 0
T

Tu u d Tτ τ τ    < ∞           ∀ >∫
                                             (II.6)

 

 

Define the sampling intervals: 

...,[ ,0),[0, ),[ , 2 ),...h h h h−  

And denote ku  the piece of u in the thk   sampling interval [ , ( 1) )kh k h+ , 0 t h≤ < . 
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Then each ku  exists in the space: 2 ([0, ), )n:= l h K , which is an infinite-dimensional Hilbert 

space with inner product and norm: 

0

, ( ) ( )
h

Tv w v w dτ τ τ= ∫
                                                            (II.7)

 

1/2

0

( ) ( )
h

Tv v v dτ τ τ
 

=   
 
∫  

 

Let the discrete-time signal  

1

0

1

2

:

:

u
u

u
u
u

−

 
 
 
 

=  
 
 
 
                                                                                 (II.8)

 

 

be the lifted signal. Note that it exists in the space ( , )l  K , where each  ku exists in K. 

In a similar way to the discrete-time case, it can be shown that the continuous lifting operator L 

that maps u u→ preserves inner products and norms. Assume that continuous lifting is applied 

to the input and output of a continuous-time FDLTI (input, output, and state evolve in finite-

dimensional Euclidean spaces with dimension ε  in general) system G with state space 

representation: 

( ) ( ) ( )
( ) ( ) ( )

x t Ax t Bu t
y t Cx t Du t

= +
= +



                                                          (II.9)
 

 

The resulting lifted system 1G LG L−= has a state space representation given by 
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( 1) ( ) ( )
( ) ( ) ( )
k A k Bu k

y k C k Du k
ξ ξ

ξ
+ = +
= +                                                     (II.10)

 

 

Where the operators , , ,A B C D are determined by: 

( )

0

( )

0

: ,

: , ( )

: , ( )( )

: ( )( ) ( ) ( )

hA

h
h A

tA

t
t A

A Ax e x

B Bu e Bu d

C Cx t Ce x

D Du t Du t Ce Bu d

τ

τ

ε ε

ε τ τ

ε

τ τ

−

−

→ =

→ =

→ =

→ = +

∫

∫

K

K

K K
             (II.11)

 

 

As it can be seen, the continuous-time lifted system is a system whose input and output are 

infinite-dimensional while the dimension of the state remains the same; the lifted system is 

represented not by matrices but by operators. In general, lifting results in a LTI system, and the 

available tools and results for LTI systems are applicable to the lifted system as well. 

 

 

III. Lifting discrete-time Model Based Networked Control Systems. 
 

 

A. Instantaneous feedback. 

 

As it was mentioned earlier, MB-NCS make use of an explicit model of the plant which is added 

to the controller node to compute the control input based on the state of the model rather than on 

the plant state. Fig. 1 shows a basic MB-NCS configuration, where the network exists only on 

the sensor-controller side while the controller is connected directly to the actuator and the plant. 



   

9 
 

 

 

Fig. 1. Representation of a Model-Based Networked Control System. 

 

The dynamics of the plant and the model are given respectively by: 

( 1) ( ) ( )
ˆ ˆˆ ˆ( 1) ( ) ( )

x k Ax k Bu k

x k Ax k Bu k

+ = +

+ = +                                                        (III.1)
 

 

where x is the state of the plant, x̂ is the state of the model, and the matrices ˆ ˆ,A B  represent the 

available model of the system matrices A,B. 

The input u is defined for the case of instantaneous feedback as: 

( )
( )

ˆ( )
Kx k k ih

u k
Kx k k ih j

=
=  = +                                                        (III.2)

 

 

For 0,1, 2....i =  and 0 j h< <  (j is also an integer). 

The MB-NCS of Fig. 1 can be seen as linear time-varying system as shown in Fig. 2.a. 
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Fig. 2. Equivalent systems to a MB-NCS. a) Linear time-varying system. b) Lifted system. 

 

The system after applying lifting is represented in Fig. 2.b. The input hmu ∈  and output 

hny ∈  of the lifted system are given by the equations: 

( ) ( )
ˆ( 1) ( 1)

( )
: :

ˆ(( 1) 1) (( 1) 1)

u kh Kx kh
u kh Kx kh

u kh

u k h Kx k h

   
   + +   = =
   
   + − + −   

                                       (III.3.a) 

2

2 31

0 0 ... 0
ˆ 0 ... 0
ˆ( ) ( ) ... 0

: : :
ˆ ... 0h hh

I

A B
y kh A x kh AB B

A B A BA − −−

            = +             

                            (III.3.b) 

 

The dimension of the state is preserved, and the state equation expressed in terms of the lifted 

input is given by: 

1 2(( 1) ) ( ) ... ( )h h hx k h A x kh A B A B B u kh− − + = +                           (III.4) 
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The new controller is of the form: 

0 0 ..
0 0
0 0
:

K
K

K
K

 
 
 =
 
 
 

   

where each zero block has the same dimensions as K. 

Theorem 1. The lifted system is asymptotically stable if only if the eigenvalues of:  

1
1

0

ˆ ˆ( )
h

h h j j

j
A A BK A BK

−
− −

=

+ +∑                                                  (III.5) 

 

lie inside the unit circle. 

Proof: To prove this theorem we first show that the state equation (III.4) is equivalent to the state 

equation that characterizes the autonomous linear time invariant system: 

1
1

0

ˆ ˆ(( 1) ) ( ( ) ) ( )
h

h h j j

j
x k h A A BK A BK x kh

−
− −

=

+ = + +∑                                 (III.6) 

 

and, since the lifted system is a LTI system we simply apply basic results for LTI systems, i.e. a 

system given by x(k+1)=Ax(k) is asymptotically stable if only if the eigenvalues of A lie inside 

the unit circle. 

Equation (III.6) can be obtained by directly substituting (III.3a) in (III.4), and then substituting 

the value of each individual output by its equivalent in terms of the state x(kh), i.e. 

2

ˆ ˆˆ ˆˆ( 1) ( ) ( ) ( ) ( )
ˆ ˆˆ( 2) ( ) ( )

:

x kh Ax kh Bu kh A BK x kh

x kh A BK x kh

+ = + = +

+ = +                                       (III.7) 

 

The resulting equation can simply be expressed as in (III.6). ■ 
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Example 1. Consider the following plant and model: 

1.15 0 1.01
0 0.9 1.1

A B   
= =   

   
 

1.1497 0.0196 1.0109ˆ ˆ
0.0086 0.9272 1.1018

A B   
= =   

   
 

( )1.2225 0.0633K = −  

 

Figure 3 shows the absolute value of the eigenvalues of the test matrix in theorem 1. We can 

implement our controller and model over a network and receive measurements every h tics and 

remain stable as long as that h produces eigenvalues of equation (III.5) with absolute value less 

than one. 

 

Fig. 3. Absolute value of the eigenvalues of (III.5), showing the values of h for which the system remains stable. 
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a) 

 

b) 
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c) 

Fig. 4. Response of the plant for different values of h around the critical value for stability. 

 

 

B. Intermittent feedback. 

 

The input u of the MB-NCS of Fig. 1 with intermittent feedback is defined as 

1

( )
( )

ˆ( )
l l l

l l l

Kx k h k h
u k

Kx k h k h
τ

τ +

≤ ≤ +
=  + < <                                        (III.8)

 

 

In this work we consider intermittent feedback with constant updates and constant closed loop 

times, that means, 1l lh h h+ − = , which represents how often we close the loop between the sensor 
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and the controller, and l hτ τ= < , which represents the constant number of clock tics that the 

loop remains closed, h and τ  are positive integer numbers. 

Theorem 2. The lifted system with intermittent feedback (III.8) is asymptotically stable if only if 

the eigenvalues of: 

1
1

0

ˆ ˆ( ( ) )( )
h

h h j j

j
A A BK A BK A BK

τ
τ τ τ

− −
− − − −

=

+ + +∑                                 (III.9) 

lie inside the unit circle. 

Proof: Similarly to theorem 1, we rewrite the state equation of the lifted LTI system in terms of 

only the state. To do this, we consider closed loop and open loop behaviors. For the interval 

h k h τ≤ ≤ + the response of the system at time kh τ+ is given by (closed loop response): 

( ) ( ) ( )x kh A BK x khττ+ = +                                               (III.10)  

 

And the response of the system at time kh h+  in terms of the state at time kh τ+ can be shown 

by following the procedure in theorem 1,  

 
1

1

0

ˆ ˆ( ) ( ( ) ) ( )
h

h h j j

j
x kh h A A BK A BK x kh

τ
τ τ τ

− −
− − − −

=

+ = + + +∑                      (III.11) 

 

Then, the response of the system at time (k+1)h in terms of only the state at time kh is given by: 

1
1

0

ˆ ˆ(( 1) ) ( ( ) )( ) ( )
h

h h j j

j
x k h A A BK A BK A BK x kh

τ
τ τ τ

− −
− − − −

=

+ = + + +∑               (III.12) 

 

Again, the resulting system is a LTI system, and stability is present when the eigenvalues of 

(III.9) lie inside the unit circle. ■ 
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Example 2: We take the same example as before but with intermittent feedback. For simplicity 

we fix one of the variables (h or τ ) and plot the eigenvalues of the test matrix over a range of 

interest of the remaining variable, see Fig 5. 

 

Fig. 5. Absolute value of the eigenvalues of (III.9), showing the values of h for which the system remains stable. 
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b) 

Fig. 6. Response of the plant for τ=5 and for values of h for which: a) stability is still preserved and b) system 
becomes unstable. 

 

 

C. Double network path MB-NCS. 

 

We call double network path MB-NCS a NCS in which not only the path from the sensor to the 

controller is implemented using a digital network but also the path from the controller to the 

actuator as well. The configuration is shown in Fig. 7; here the two switches are closed at 

different constant rates. As a starting point we wish to find the bounding values of m and n that 

preserve stability of the MB-NCS using instantaneous feedback. Note that in this case, between 

input updates, the input to the plant is held constant in the actuator and it is equal to the last 

received value.  
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Fig. 7. Model-Based Networked Control System with communication network between sensor-controller and 

controller-actuator (plant). 

 

Assume that n m≥ (low measurement rate, which is typical in many implementations of physical 

systems) and p=n/m is assumed to be an integer, for simplicity. Then we have: 

Theorem 3: The lifted system corresponding to Fig. 7 is asymptotically stable if only if the 

eigenvalues of: 

1

0

p
n i

i
i

A H
−

=

+ Γ∑                                                          (III. 13) 

lie inside the unit circle, where 

1

m
n im j

i
j

H A BK− −

=

= ∑                                                     (III.14a) 

ˆ ˆ( )mA BKΓ = +                                                         (III.14b) 

 

Proof: Since p=n/m is an integer the period of the equivalent linear time-varying periodic system 

is n. Taking a similar approach as in the last two cases we obtain a LTI system. In order to find 
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the state equations of the lifted system let us describe the response of the system as a function of 

the input updates that take place every m clock tics. From equation (III.4) we obtain: 

1 2( ) ( ) [ ... ] ( )n n n n mx kn n A x kn A A A Bu kn− − −+ = + +  

                    1 2 2[ ... ] ( )n m n m n mA A A Bu kn m− − − − − + +                                (III.15) 

2 1 2 2 3[ ... ] ( 2 ) ....n m n m n mA A A Bu kn m− − − − − + +  

 

The input u is a function of the state of the plant at times kn and a function of the state of the 

model otherwise. The state of the model between sensor updates can be expressed in terms of the 

state of the plant at times kn as follows: 

2

( ) ( )
ˆ ˆˆ( ) ( ) ( ) ( )

ˆ ˆˆ( 2 ) ( 2 ) ( ) ( )
:

m

m

u kn Kx kn

u kn m Kx kn m K A BK x kn

u kn m Kx kn m K A BK x kn

=

+ = + = +

+ = + = +
                            (III.16) 

 

Note that the model has access to the input that it generates at all times as it can be deduced from 

Fig 7. The network connection is between the controller and the plant, and the model is part of 

the controller. Equation (III.15) becomes: 

0 1 2 1
0 1 2 1(( 1) ) ( .... ) ( )n p

px k n A H H H H x kn−
−+ = + Γ + Γ + Γ + + Γ  

                    
1

0
( ) ( )

p
n i

i
i

A H x kn
−

=

= + Γ∑                                                              (III.17) 

 

where iH  and Γ  are given in (III.14). Equation (III.17) represent a discrete-time LTI, therefore 

stability is achieved when the eigenvalues of  (III.13) lie inside the unit circle. ■ 
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Example 3: 

0.9 0.1 0.01
0 1.07 0.01

A B   
= =   

   
 

0.9117 0.1054 0.0109ˆ ˆ
0.0360 1.0672 0.0117

A B   
= =   

   
 

( )2.3294 17.6266K = − −  

 

As in the intermittent case we have two variables, n and m, but for this case we expect a decrease 

in the necessary value of n as m increases. An appropriate way to proceed here then is as follows: 

first find the largest value of n for m=1, that is, find the value of h in theorem 1; then we select a 

value for n less than the value of h that we just found and we find the divisors of n, with this 

information we can plot the eigenvalues of (III.13) as a function of m. For the example in hand, 

the highest value of h, from theorem 1, is 29, so for illustrative purposes we can fix n=12. 

 

Fig. 8. Absolute value of the eigenvalues of (III.13) with n=12, showing the values of m for which the system 
remains stable. 
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a) 

 

b) 

Fig. 9. Response of the plant for n=12 and different values of m for which: a) stability is still preserved and b) 
system becomes unstable. 
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Note that in Fig. 8 the horizontal axis refers to the value in the vector [1, 2,3, 4,6,12]M =  at that 

position; this vector contains the actual values that m takes, i.e. the last value of m is M at 6 

which is m=12. 

We can also consider to take n=24 which is still less than the value of h (the choice of n is taken 

considering the existence of a large number of divisors). For this case the eigenvalues of equation (III.13) 

are shown in Fig. 10 and the response of the plant in Fig. 11. For Fig. 10 the vector that contains the 

possible values of m (horizontal axis) is defined as M = [1,2,3,4,6,8,12,24]. 

 

 

 

Fig. 10. Absolute value of the eigenvalues of (III.13) with n=24. 
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a) 

 

b) 

Fig. 11. Response of the plant for n=24 and different values of m for which: a) stability is still preserved and b) 
system becomes unstable. 
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Example 4. We could think that if a system is stable for some n and m, the same system will be stable for 

the same n and lower values of m, i.e. a faster input update; but this is not true in general. We take the 

same plant as in example 3 but in this case the knowledge of the plant dynamics is very limited so we 

choose the model to be: 

0 0 0ˆ ˆ
0 0 0

A B   
= =   

   
 

 

For m=1 this system is stable only for very low values of n (1, 2), then we cannot proceed as in example 

3; we try higher values of n in order to find the eigenvalues of equation (III.13) for different values of m, 

a case of interest is shown in Fig. 12, here the system is stable only for m=4=M(4) and m=6=M(5). The 

selected model holds the control input only for the first mT units of time after an update in the model has 

occurred, and then the state of the model is zero which makes the input zero until a new state update takes 

place. This situation makes sense since our knowledge of the dynamics of the plant is very imprecise; our 

estimate of the state becomes zero as we expect to stabilize the plant using the last measurement.    

 

 

Fig.12. Absolute value of the eigenvalues of (III.13) with n=12 and model as in example 4.  
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a) 

 

b) 

Fig. 13. Response of the plant for n=12 and a) m=1 (unstable system) and b) m=6 (stable system).  
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IV. Conclusions and future work. 

 

 

The Model-Based control of networked systems has been revisited in this paper making use of 

lifting procedures. Basic details on lifting were provided and this technique was applied to 

different configurations of Networked Control Systems that use a model of the plant to generate 

an estimate of the state between updates. The typical MB-NCS configurations (those in which 

the network is implemented only between the sensor and the controller) were analyzed and 

conditions for asymptotic stability were obtained. In addition, the more general configuration 

where the network is also present between the controller and the plant was also studied and 

analogous results were derived. These results represent the main contributions of the paper. 

There exists the interest in continuing working with the latest, more general configuration 

because it offers more flexibility in implementation.  
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