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Abstract— Passivity indices are defined in terms of an excess
or shortage of passivity, and they have been introduced in
order to extend the passivity-based stability conditions to more
general cases for both passive and non-passive systems. While
most of the work on passivity-based stability results in the
literature focuses on employing the feedback interconnection of
passive or non-passive systems, our results focus on a passivity
measure for cascade interconnection. In this paper, we revisit
the results on secant criterion from the perspective of passivity
indices and we show how to use the secant criterion to measure
the excess/shortage of passivity for cascaded Input Strictly
Passive/Output Strictly Passive systems; we also propose a
method to measure passivity for cascaded dissipative systems,
where each subsystem could be passive or non-passive. Fur-
thermore, we study the conditions under which the cascade
interconnection can be directly stabilized via output feedback.

I. Introduction

In the early 1970’s, Willems[8] introduced passivity(and

dissipativity) concepts using the notions of storage function

and supply rate. Passivity is the property that the rate of

increase of the storage function is not higher than the

supply rate. A most important passivity result states that a

negative feedback loop consisting of two passive systems is

passive[12],[15]; under an additional detectability condition

this feedback loop is also stable[5]-[6].

What can happen when one of the systems in the negative

feedback interconnection is not passive? Can an “excess of

passivity” assure that the interconnection is passive? The

possibility of achieving passivity of interconnections which

combine systems with “excess” and “shortage” of passivity

led to the introduction of the passivity index. It has been

defined in terms of an excess or shortage of passivity in

order to extend the passivity-based stability conditions to the

feedback interconnection of dissipative systems, see[6],[9]

and [10], and note that they are related to Input Strict

Passivity and Output Strict Passivity introduced by Hill and

Moylan[15].

In the recent paper of Arcak and Sontag[1]-[2], the “secant

criterion” which has been used in the analysis of biological

feedback loops [3]-[4], has been revisited and its advantages

in the passivity based stability analysis for a class of output

strictly passive (OSP) systems either with a cascade or

with a cyclic interconnection structure has been shown. The

authors show that the secant criterion developed earlier in

the literature is in fact a sufficient condition for “diagonal

stability” of a class of “dissipative matrices”. They use

the secant criterion and the diagonal stability results as a
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tool to construct a candidate Lyapunov-like function for

the stabilization problem of a class of OSP systems with

a cyclic interconnection. The reason why “diagonal stabil-

ity” of the corresponding dissipative matrices is of special

interest is that it enables us to choose the proper weight

for each subsystem’s storage function and this contributes

to the construction of the composite candidate Lyapunov-

like function. They have also shown the lack of input feed-

forward passivity for this particular class of cascaded OSP

systems.

The results in [1] and [2] motivate us to revisit the

secant criterion from the perspective of passivity indices. We

use passivity indices to measure the excess or shortage of

passivity for each subsystem in the cascade interconnection

and use the secant criterion to measure the degree of passivity

for cascaded Output Strictly Passive/Input Strictly Passive

systems. We further propose a way to measure passivity

for cascaded Input Feed-forward Output Feedback Passive

systems (which is a characterization of dissipative systems,

see [6],[8] and [15]), and study how each subsystem’s

passivity indices affect the overall degree of passivity for

the entire cascade interconnection; furthermore, we show the

conditions under which the entire cascade interconnection

could be stabilized by using output feedback.

The current paper not only provides a way to measure

the degree of passivity for the cascade interconnection, it

also suggests an alternative method to stabilize cascaded

linear/nonlinear systems, in addition to the existing work in

the literature by employing the negative feedback intercon-

nection and by using “passivation” techniques, see [5]-[6],

[13]-[14] and [17]-[18]. The rest of this paper is organized

as follows: we briefly introduce some background material

on passivity and passivity indices in Section II, which is

followed by a summary of the secant criterion and some facts

on quasi-dominant matrices in Section III; the main results

are presented in section IV followed by an example given in

section V. Finally, the conclusion is provided in Section VI.

II. Background Material

Consider the following nonlinear system:

H :











ẋ = f (x,u)

y = h(x,u)
(1)

where x ∈ X ⊂ Rn, u ∈ U ⊂ Rm and y ∈ Y ⊂ Rm are the

state, input and output variables, respectively, and X, U and

Y are the state, input and output spaces, respectively. The

representation x(t) = φ(t, t0, x0,u) is used to denote the state

at time t reached from the initial state x0 at t0.
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Definition 1(Supply Rate [8]). The supply rate ω(t) =

ω(u(t),y(t)) is a real valued function defined on U ×Y, such

that for any u(t) ∈ U and x0 ∈ X and y(t) = h(φ(t, t0, x0,u)),

ω(t) satisfies
∫ t1

t0

|ω(τ)|dτ <∞ (2)

Definition 2(Dissipative System [8]). System H with supply

rate ω(t) is said to be dissipative if there exists a nonnegative

real function V(x) : X→R+, called the storage function, such

that, for all t1 ≥ t0 ≥ 0, x0 ∈ X and u ∈ U,

V(x1)−V(x0) ≤

∫ t1

t0

ω(τ)dτ (3)

where x1 = φ(t1, t0, x0,u), and R+ is a set of nonnegative real

numbers.

Definition 3(Passive System [8]). System H is said to be

passive if there exists a storage function V(x) ≥ 0 such that

V(x1)−V(x0) ≤

∫ t1

t0

u(τ)T y(τ)dτ, (4)

if V(x) is C1, then we have

V̇(x) ≤ u(t)T y(t), ∀t ≥ 0. (5)

One can see that passive system is a special case of dissi-

pative system with supply rate ω(t) = u(t)T y(t).

Definition 4(Excess/Shortage of Passivity [6]). System H

is said to be:

• Input Feed-forward Passive (IFP) if it is dissipative with

respect to supply rate ω(u,y) = uT y−νuT u for some ν ∈

R, denoted as IFP(ν).

• Output Feedback Passive (OFP) if it is dissipative with

respect to the supply rate ω(u,y) = uT y−ρyT y for some

ρ ∈ R, denoted as OFP(ρ).

• Input Feed-forward Output Feedback Passive (IF-OFP)

if it is dissipative with respect to the supply rate ω(u,y)=

uT y−ρyT y−νuT u for some ρ ∈R and ν ∈ R, denoted as

IF-OFP(ν,ρ).

A positive ν or ρ means that the system has an excess

of passivity; otherwise, the system is lack of passivity. In

the case when ν > 0 or ρ > 0, the system is said to be

input strictly passive(ISP) or output strictly passive(OSP)

respectively.

Definition 5(Zero-State Observability and Detectability

[6]). Consider the system H with zero input, that is ẋ =

f (x,0), y = h(x,0), and let Z ⊂ Rn be its largest positively

invariant set contained in {x ∈ Rn|y = h(x,0) = 0}. We say H

is zero-state detectable(ZSD) if x = 0 is asymptotically stable

conditionally to Z. if Z = {0}, we say that H is zero-state

observable (ZSO).

III. Secant Criterion and Some Facts on Diagonally Stable

Matrices and Quasi-Dominant Matrices

The connection between diagonal stability and the secant

criterion has been shown in [1]-[2]. We briefly summarize

these results here.

Definition 4 (Diagonal Stability [7]). A matrix A := (ai j)

is said to belong to the class of Hurwitz diagonally stable

matrix if there exists a diagonal matrix D > 0 such that

AT D+DA < 0 (6)

Definition 5 (Quasi-dominant matrix [7]). A square matrix

is a quasi-dominant matrix, or in the class of diagonally row-

sum or column-sum quasi-dominant matrices if there exists

a positive diagonal matrix P=diag{p1, p2, . . . , pn} such that

aii pi ≥
∑

j�i |ai j|p j,∀i, (respectively) a j j p j ≥
∑

i� j |a ji|pi,∀ j.

If these inequalities are strict, the matrix is referred to as

strictly row-sum (respectively column-sum) quasi-dominant.

If P can be chosen as the identity matrix, then the matrix is

called row- or column- diagonally dominant.

Theorem 1 (Secant Criterion [2]). A matrix of the form:

A=

























































−α1 0 · · · 0 −βn

β1 −α2

. . . 0

0 β2 −α3

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 βn−1 −αn

























































αi > 0, βi > 0, (7)

i = 1, · · · ,n, is diagonally stable, that is, it satisfies (5) for

some diagonal matrix D > 0, if and only if the secant

criterion
β1 · · ·βn

α1 · · ·αn

< sec(π/n)n =
1

cos( π
n
)n

(8)

holds; here we assume n > 2.

Corollary 1 [19]. Every symmetric quasi-dominant matrix

is positive definite.

Lemma 1 [7]. If a matrix A is diagonally stable, then AT is

also diagonally stable.

In the subsequent sections, we will show how we use the

secant criterion and the properties of quasi-dominant matrix

to measure the shortage/excess of passivity for cascade

systems.

IV. Main Results

In this section, we show passivity measures for three

classes of cascade systems, which include output strictly

passive systems(OFP(ρ) with ρ > 0), input strictly passive

systems(IFP(ν) with ν > 0) and input feed-forward output

feedback passive systems(IF-OFP(ν,ρ) with ρ,ν ∈ R). One

should notice that while the first and the second classes

assume that each interconnected subsystem is passive, the

third class applies to the more general case of dissipative

systems. We also show sufficient conditions under which

those cascade systems can be stabilized via output feedback.

A. Passivity measure of a cascade of OSP systems

Proposition 1. Consider the cascade interconnection shown

in Fig.1, where n ≥ 2. Let each block be OFP(ρi) with ρi >

0, namely there exists C1 storage function Vi ≥ 0 for each

subsystem, such that

V̇i ≤ −ρiy
T
i yi +uT

i yi, (9)
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where ui,yi ∈ R
m. Then for some ν > 0, such that

ν >
cos( π

n+1
)n+1

ρ1ρ2 . . .ρn

, (10)

the cascade system admits a storage function of the form

V =

n
∑

i=1

diVi, di > 0, (11)

and the cascade interconnection is IFP(-ν).

Fig. 1: Cascaded Interconnection

Fig. 2: Feed-forward Passivation

Proof . To show that the cascaded interconnection is IFP(-ν),

we need to show that the storage function (11) satisfies:

V̇ ≤ νuT u+uTyn (12)

for some ν > 0. Since V =
∑n

i=1 diVi, and V̇i ≤ −ρiy
T
i

yi+uT
i

yi,

if we can show that
n
∑

i=1

di(−ρiy
T
i yi +uT

i yi)− νu
Tu−uT yn ≤ 0 , (13)

then (12) holds. Define

A =

























































−1 0 · · · 0 − 1
ν

1 −ρ1

. . . 0

0 1 −ρ2

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 1 −ρn

























































ρi > 0, ν > 0 (14)

and D = diag{ν,d1,d2, . . . ,dn}. Then it can be seen that the

left-hand side of (13) is equal to

[uT yT ]DA⊗ Im[uT yT ]T . (15)

where y = [yT
1
, . . . ,yT

n ]T . According to Theorem 1, if

ν >
cos( π

n+1
)n+1

ρ1ρ2 . . .ρn

, (16)

then there exists a diagonal matrix D > 0 such that

DA+AT D < 0 , (17)

then we have

(DA+AT D)⊗ Im < 0 . (18)

Since

[uT yT ]DA⊗ Im[uT yT ]T = [uT yT ](DA⊗ Im)T [uT yT ]T (19)

and

(DA⊗ Im)T = (DA)T ⊗ IT
m = AT D⊗ Im, (20)

we have

[uT yT ]DA⊗ Im[uT yT ]T =
1

2
[uT yT ](AT D+DA)⊗ Im[uT yT ]T

(21)

so that

[uT yT ]DA⊗ Im[uT yT ]T < 0, (22)

and thus

V̇ < νuT u+uT yn . (23)

This shows that the cascaded system is IFP(-ν). �

Remark 1: Proposition 1 shows the shortage of passivity in

cascaded OSP systems and it also shows that the shortage

of passivity could be compensated by input forward νI as

shown in Fig.2, where ν is determined by (10).

B. Passivity measure of a cascade of ISP systems

Proposition 2. Consider the cascade interconnection shown

in Fig.1, where n ≥ 2. Let each block be IFP(νi) with νi > 0,

namely there exists a C1 storage function Vi ≥ 0 for each

subsystem, such that

V̇i ≤ −νiu
T
i ui+uT

i yi (24)

where ui,yi ∈ R
m. Then for some ρ > 0, such that

ρ >
cos( π

n+1
)n+1

ν1ν2 . . . νn
, (25)

the cascade system admits a storage function of the form

given by (11) and the cascade interconnection is OFP(-ρ).

Fig. 3: Output Feedback Passivation

Proof . The proof is very similar to the proof shown in

Proposition 1, thus it is omitted here. �

Remark 2: Proposition 2 shows shortage of passivity in

cascaded ISP systems and it also implies that the lack of

passivity could be compensated by output feedback ρI as

shown in fig.3, where ρ is determined by (25).

C. Stabilization of a cascade of OSP / ISP systems via output

feedback

Proposition 3. Consider the feedback interconnection shown

in Fig.4, where n > 2. Let each block be OFP(ρi) for some

Fig. 4: Stabilized Via Output Feedback
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ρi > 0 with the storage function Vi ≥ 0 such that (9) holds

with ui,yi ∈ R
m . If

1

ρ1ρ2 . . .ρn

<
1

cos( π
n
)n
, (26)

and the input to the cascaded system r = 0, then the closed-

loop system admits a candidate Lyapunov-like function which

is a weighted sum of each subsystem’s storage function given

by (11) and

V̇ =

n
∑

i=1

diV̇i ≤ −ε ‖ y ‖22 (27)

for some ε > 0 , where y = [yT
1
,yT

2
, . . . ,yT

n ]T . Moreover, if {y =

0} is contained in the invariant set for which V̇ = 0, and if

each subsystem is ZSD, then the equilibrium xi = 0 of each

subsystem is asymptotically stable.

Proof . Fig.4 is a cyclic structure and since r = 0, we have

u1 = −yn, u2 = y1, . . . , un = yn−1 (28)

Moreover, since each subsystem is OFP(ρi) we have

V̇1 ≤ −yT
n y1−ρ1yT

1 y1

V̇2 ≤ yT
1 y2−ρ2yT

2 y2

...

V̇n ≤ yT
n−1yn −ρnyT

n yn.

(29)

If we take the time derivative of the candidate Lyapunov-like

function V =
∑n

i=1 diVi, we will get

V̇ ≤ d1(−yT
n y1−ρ1yT

1 y1)+

n
∑

i=2

di(y
T
i−1yi−ρiy

T
i yi). (30)

Define

A =

























































−ρ1 0 · · · 0 −1

1 −ρ2

. . . 0

0
. . .

. . .
. . .

...
...

. . . 1 −ρn−1 0

0 · · · 0 1 −ρn

























































ρi > 0 (31)

and D = diag{d1,d2, . . . ,dn}. Notice that the right-hand side

of (30) is equal to yT DA⊗ Imy. According to Theorem 1, if

1

ρ1 . . .ρn

<
1

cos( π
n
)n

(32)

then there exists some diagonal matrix D> 0 such that matrix

A is diagonally stable, and we will have

V̇ ≤ yT DA⊗ Imy =
1

2
yT (AT D+DA)⊗ Imy ≤ −ε ‖ y ‖22 (33)

for some ε > 0. According to LaSalle’s theorem [15], if

{y = 0} is contained in the invariant set for which V̇ = 0,

then we have limt→∞ yi(t) = 0, for i = 1, . . . ,n. Moreover, if

each subsystem Hi is ZSD, then limt→∞ yi(t) = 0 implies

limt→∞ xi(t) = 0, so each subsystem’s equilibrium xi = 0 is

asymptotically stable. �

Remark 3: One can show that for the case when there are

only two subsystems in the cascade interconnection as shown

in Fig. 5. if ρ1 > 0 and ρ2 > 0, which means both H1 and

Fig. 5: Special Case When n = 2

H2 are OSP, then we can simply choose the sum of their

storage function as the potential Lyapunov-like function for

the closed-loop system when we directly apply the unity

output feedback to the cascade interconnection of H1 and

H2.

We have studied the conditions under which the cascade

interconnection of a class of OSP systems can be directly

stabilized via output feedback. The following proposition

shows similar results for a cascade of ISP systems.

Proposition 4 . Consider the feedback interconnection shown

in Fig. 4, where n > 2. Suppose that r = 0 and let each block

be IFP(νi) for some νi > 0 with the storage function Vi ≥ 0

such that (24) holds with ui,yi ∈ R
m. If

1

ν1ν2 . . . νn
<

1

cos( π
n
)n
, (34)

then the closed-loop system admits a candidate Lyapunov-

like function which is a weighted sum of each subsystem’s

storage function given by (11) and

V̇ =

n
∑

i=1

diV̇i ≤ −ε ‖ y ‖22 (35)

for some ε > 0, where y = [yT
1
,yT

2
, . . . ,yT

n ]T . Moreover, if {y =

0} is contained in the invariant set for which V̇ = 0, and if

each subsystem is ZSD, then the equilibrium xi = 0 of each

subsystem is asymptotically stable.

Proof . The proof is very similar to the proof shown in

Proposition 3, and it is omitted here.�

Remark 4: One can show that for the case when there are

only two subsystems in the cascade interconnection as shown

in Fig.5, if ν1 > 0 and ν2 > 0, which means both H1 and H2

are ISP, then again we can simply choose the sum of their

storage functions as the candidate Lyapunov-like function

for the closed-loop system when we directly apply the unity

output feedback to the cascade interconnection.

D. Passivity measure of a cascade of IF-OFP systems

In this section, we present our results on passivity measure

for IF-OFP systems, which is an often used characterization

of dissipative systems. An IF-OFP system, in general, could

be passive or non-passive based on the sign of its passivity

indices.

Proposition 5 . Consider the cascade interconnection shown

in Fig.1, where n ≥ 2, and let each block be dissipative with

respect to the supply rate given by ωi(ui,yi) = uT
i

yi−ρiy
T
i

yi−
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νiu
T
i

ui, that is there exists a C1 storage function Vi ≥ 0 for

each subsystem, such that

V̇i ≤ uT
i yi−ρiy

T
i yi − νiu

T
i ui, (36)

where ui,yi ∈ R
m. Here, νi and ρi are not necessarily all

positive.

Consider the symmetric matrix given by

A =















































−ν1+ ν̂
1
2

0 · · · − 1
2

1
2

−ν2−ρ1
1
2

· · · 0
...

. . .
. . .

. . .
...

0 · · · 1
2
−νn−ρn−1

1
2

− 1
2

0 · · · 1
2

−ρn + ρ̂















































, (37)

if −A is quasi-dominant for some ν̂, ρ̂ ∈ R, then the cascade

system admits a storage function of the form given by

V =
∑n

i=1 Vi such that the cascade interconnection is IF-

OFP(ν̂,ρ̂).

Proof. To show that the cascade interconnection is IF-OFP(ν̂,

ρ̂), we need to show that the storage function V(x) satisfies:

V̇ ≤ uT yn− ν̂u
T u− ρ̂yT

n yn (38)

since

V̇ ≤

n
∑

i=1

(uT
i yi − νiu

T
i ui−ρiy

T
i yi) (39)

so if
n
∑

i=1

(uT
i yi − νiu

T
i ui −ρiy

T
i yi)−uT yn+ ν̂u

T u+ ρ̂yT
n yn ≤ 0, (40)

then (38) is true. Define

A1 =



























































ν̂ 0 · · · 0 − 1
2

1
2
−ρ1

. . . 0

0 1
2
−ρ2

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 1
2
−ρn



























































(41)

A2 =





















































−ν1 0 · · · 0 − 1
2

1
2
−ν2

. . . 0
...

. . .
. . .

. . .
...

0 · · · 1
2
−νn 0

0 · · · 0 1
2

ρ̂





















































(42)

notice that the left-hand side of (40) is equal to

[uT yT ](A1+A2)⊗ Im[uT yT ]T , (43)

or we can rewrite it as

[uT yT ](A1+AT
2 )⊗ Im[uT yT ]T . (44)

We can see that A1 +AT
2

is a symmetric matrix which is

equal to the matrix A defined in (37). Based on Corollary

1, we can conclude that if −A is quasi-dominant, then A is

negative definite, and A⊗ Im is also negative definite. So we

can get

[uT yT ](A1+AT
2 )⊗ Im[uT yT ]T = [uT yT ]A⊗ Im[uT yT ]T < 0

(45)

and thus (38) holds. This shows that the entire cascade

interconnection is IF-OFP(ν̂, ρ̂). �

E. Stabilization of a cascade of IF-OFP systems via output

feedback

In this section, we present the conditions under which a

cascade of IF-OFP systems can be stabilized directly via

output feedback.

Proposition 6 . Consider the feedback interconnection shown

in Fig.4, where n > 2. Let each block be IF-OFP(νi,ρi) with

its storage function Vi ≥ 0 such that (36) is satisfied, where

ui,yi ∈ R
m. νi,ρi ∈ R are not necessarily all positive.

Consider the symmetric matrix given by

A =















































−ρ1 − ν2
1
2

0 · · · − 1
2

1
2

−ρ2− ν3
1
2

· · · 0
...

. . .
. . .

. . .
...

0 · · · 1
2
−ρn−1− νn

1
2

− 1
2

0 · · · 1
2

−ρn − ν1















































,

(46)

if −A is quasi-dominant, then the closed-loop system with

r = 0 admits a candidate Lyapunov-like function given by

V =
∑n

i=1 Vi such that

V̇ =

n
∑

i=1

V̇i ≤ −ε ‖ y ‖22 (47)

for some ε > 0, where y = [yT
1
,yT

2
, . . . ,yT

n ]T . Moreover, if

{y = 0} is contained in the invariant set for which V̇ = 0,

and if each subsystem is ZSD, then the equilibrium xi = 0 of

each subsystem is asymptotically stable.

Proof . The proof is very similar to the proof shown in

Proposition 5, thus is omitted here. �

Remark 5: One can show that for the case when there are

only two subsystems in the cascade interconnection (n= 2)as

shown in Fig.5., if ν1 + ρ2 > 0 and ν2 + ρ1 > 0, then again

we can simply choose the sum of storage functions for

H1 and H2 as the candidate Lyapunov-like function for the

closed-loop system when we directly apply the unity output

feedback to their cascade interconnection.

V. Example

Example. Consider a cascade of three dissipative systems H1,

H2 and H3 given by

H1 :



















ẋ1(t) =
1

20
x1(t)+u1(t)

y1(t) = x1(t)+5u1(t) ,

H2 :



















ẋ2(t) = −
1

6
x2(t)+u2(t)

y2(t) = x2(t)+6u2(t)
(48)

H3 :



























ẋ31(t) = x32(t)

ẋ32(t) = −0.5x3
31(t)+0.5x32(t)+2u3(t)

y3(t) = x32(t)+u3(t)

(49)
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Choosing V1(x) = x2
1
(t) as the storage function for H1, we

can obtain

V̇1 = u1(t)y1(t)−7.5u2
1(t)+0.1y2

1(t) , (50)

so the passivity indices for H1 are ρ1 = −0.1 and ν1 = 7.5.

We can see that H1 is ZSD but unstable. H2 admits a storage

function given by V2(x) = 1
6

x2
2
, and

V̇2 = y2(t)u2(t)−4u2
2(t)−

1

18
y2

2(t) , (51)

so the passivity indices for H2 are ρ2 =
1
18

and ν2 = 4. We can

see that H2 is stable and ZSD. H3 admits a storage function

given by V3(x) = 1
8

x4
31

(t)+ 1
2

x2
32

, and

V̇3 = u3(t)y3(t)−1.5u2
3(t)+0.5y2

3(t) , (52)

so the passivity indices for H3 are ρ3 = −0.5 and ν3 = 1.5.

H3 is neither ZSD or stable. Then the A matrix defined in

Proposition 6 is given by

A =





















−ρ1− ν2
1
2

− 1
2

1
2

−ρ2− ν3
1
2

− 1
2

1
2

−ρ3− ν1





















. (53)

Since

ν2 +ρ1 = 3.9 > 1, ν1 +ρ3 = 7 > 1, ν3 +ρ2 =
14

9
> 1 (54)

−A is row/column diagonally dominant. Moreover, since

{y1 = y2 = y3 = 0} is contained in the invariant set for which

V̇ =
∑3

i=1 V̇i = 0, according to Proposition 6, the cascade of

H1, H2 and H3 could be stabilized directly via unity output

feedback. The simulation results for the closed-loop system

with r = 0 (see Fig.4) are shown in Fig.6-Fig.7.

VI. Conclusions

In this paper, we introduce a way to measure the degree

of passivity for cascaded ISP/OSP systems. We further

proposed a method for passivity measure of cascaded IF-

OFP systems(dissipative systems), and study the conditions

under which the cascade interconnection can be stabilized

via output feedback.

VII. Acknowledgments

The support of the National Science Foundation under

Grant No. CCF-0819865 is gratefully acknowledged.

References

[1] E. D. Sontag, “Passivity gains and the secant condition for stability”,
Systems & Control Letters, Volume 55, Issue 3, March 2006, Pages
177-183.

[2] M. Arcak, E. D. Sontag, “Diagonal stability of a class of cyclic systems
and its connection with the secant criterion”, Automatica, Volume 42,
Issue 9, September 2006, Pages 1531-1537.

[3] J. J. Tyson, H. G. Othmer, “The dynamics of feedback control circuits
in biochemical pathways ”, in: R. Rosen, F. M. Snell (Eds.), in:
Progress in Theoretical Biology, vol.5, Academic Press, New York,
1978, pp.1-62.

[4] C. D. Thron, “The secant condition for instability in biochemical
feedback control-Parts I and II ”. Bulletin of Mathematical Biology

53 (1991) pp.383-424.

0 10 20 30 40 50
−1

0

1

2

3

4

5

6

time(s)

o
u

tp
u

ts

Y
1

Y
2

Y
3

Fig. 6: Outputs of H1,H2 and H3

0 10 20 30 40 50
−5

0

5
X

31

X
32

0 10 20 30 40 50
−4

−2

0

2

s
ta

te
s

X
2

0 10 20 30 40 50
0

1

2

time(s)

X
1

Fig. 7: States of H1,H2 and H3

[5] C. I. Byrnes, A. Isidori, and J. C. Willems, “Passivity, feedback
equivalence and the global stabilization of minimum phase nonlinear
systems ”, IEEE Transactions on Automatic Control, vol.36, no. 11,
pp.1228-1240, Nov.1991.

[6] R. Sepulchre, M. Jankovic, and P. V. Kokotovic, Constructive Nonlin-
ear Control, Springer-Verlag, 1997.

[7] E. Kaszkurewicz, A. Bhaya, Matrix Diagonal Stability in Systems and

Computation,Birkhauser Boston, 1999.
[8] J. C. Willems, “Dissipative dynamical systems part I: General theory”,

Archive for Rational Mechanics and Analysis, Springer Berlin, Volume
45, Number 5, Page 321-351, January, 1972.

[9] J. T. Wen, “Time domain and frequency domain conditions for strict
positive realness”, IEEE Trans. on Automatic Control, vol.33, no.10,
pp.988-992, 1988.

[10] J. T. Wen, “Robustness analysis based on passivity”, In Proceedings

of American Control Conference, page 1207-1212, Atlanta, 1988.
[11] V. M. Popov, “Absolute stability of nonlinear systems of automatic

control”, vol.22, no.8, pp.857-875, Aug, 1961.
[12] V. M. Popov, Hyperstability of Control Systems, Springer-Verlag, 1973.
[13] C. I. Byrnes, A. Isidori , “New results and examples in nonlinear

feedback stabilization”, Systems & Control Letters Volume 12, Issue
5, June 1989, Pages 437-442.

[14] P. V. Kokotovic and H. J. Sussmann, “A positive real condition for
global stabilization of nonlinear systems ”, Systems & Control Letters,
Volume 13, Issue 2, August 1989, Pages 125-133.

[15] D. J. Hill and P. J. Moylan, “Stability results for nonlinear feedback
systems”, Automatica, Vol. 13, pp. 377-382, July 1977.

[16] J. P. LaSalle, “Some extensions of Lyapunovs second method”, IRE

Transactions on Circuit Theory, CT-7, pp.520-527, 1960.
[17] M. Jankovic, R. Sepulchre, P. V. Kokotovic, “Constructive Lyapunov

stabilization of nonlinear cascade systems”, “IEEE Transactions on
Automatic Control”, Volume 41, Issue 12, Dec. 1996, Page 1723 -
1735.

[18] R. Sepulchre, M. Jankovic, P. V. Kokotovic, “Integrator Forwarding:
A New Recursive Nonlinear Robust Design”, Automatica, Volume 33,
Number 5, May 1997 , pp. 979-984.

[19] O. Taussky, “A recrurring theorem on determinants”, American Math-
ematical Monthly, 56:672-676, 1949.

2191


