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Abstract 

In this paper, we examine the problem of risk-sensitive control under a class of Denial-of-Service 
(DoS) attack model and derive a solution for the optimal control policy when attacker jams randomly the 
control packets in the system. For a discrete-time partially observed stochastic system with exponential 
running cost, we provide an exact solution in terms of finite-dimensional dynamics of the system via a 
measure transformation approach. We use the risk-sensitive criterion rather than quadratic cost to 
directly highlight one’s belief about system uncertainties back to the cost functional. Our results show 
that the optimal control problem can be considered with respect to the average path of the DoS attack 
model.  

I. INTRODUCTION 

Over the past few years, increasing effort has been placed in addressing the problem of risk/vulnerability 
assessment of malicious attacks against today’s critical infrastructure such as power grids, industrial control 
systems and banking/finance sectors (see references [1]–[6]). The issue of security in such critical sectors has 
now become as important as technical design. As these critical infrastructures become more interconnected and 
complex in terms of either the dynamics or the distributed structure, solutions that ensure security against such 
attacks will gain importance to an even greater extent. A systematic study of design tools that provide provable 
security against faults and malicious attacks is a core, although challenging, problem. Control theoretic tools are 
likely to play an important role in developing such tools. To mention a few, there are some interesting works 
involving security requirements, attacks and vulnerabilities in control systems, wireless sensor networks and IT 
infrastructures (e.g., [7]–[12]). 

In this paper, we consider a finite horizon control of a discrete-time plant in which the controller 
communicates the control sequences to the actuator over a communication network. We consider a Denial-of-
Service (DoS) attacker that aims to disrupt the network or jam the control packets from reaching the actuator. In 
our setting, we consider a class of DoS attack model, where the success of denying service, i.e., jamming the 
control packets from reaching the actuator, follows according to independent Bernoulli processes [7], [8]. In 
general, DoS attack models, unlike assumed stochastic uncertainty models in the system, change their targets or 
strategies in response to the protective measures that the decision makers usually take against them, so the risks 
and the consequence of risks are constantly changing. We are currently working on extending the results of this 
paper to the case when the DoS attacks are more sophisticated, including the case of Markov modulated DoS 
attack models. However to fully develop the measure transformation based approach for risk sensitive control in 
this context, here we concentrate on the case when the DoS attacks are modeled as a Bernoulli process. 

By gaining motivation from robust control and dynamic games, where such uncertainty about the parameters 
has been fruitfully considered by adopting a risk sensitive stochastic control function [13]–[17], we adopt the 
same framework in a different context. Our main technical tool is a measure transformation, which allows us to 
derive the optimal control policy for this particular problem. To this end, we use two different probability 
measures, i.e., the original reference probability measure and another new equivalent probability measure (via 
change of measure transformation), on which all process variables including the DoS attack sequences defined. 
With the new measure transformation, the DoS attack sequences appeared to remain always independent over 
their range values; while the plant observation sequences show independent characteristic to the other measure 
variables in the system. This further allows us to define an equivalent information state (together with the 



corresponding adjoint measure process) for a partially observed stochastic system, which simplifies the optimal 
control problem as a separated policy problem in terms of this information state. Moreover, the use of this 
measure transformation provides an implicit formula that essentially combines estimation and control as a single 
problem for the partially observed stochastic system [16], [18], [19]. 

This paper is organized as follows. In Section II, we introduce some preliminary concepts including the main 
problem formulation for risk-sensitive control problem under a class of DoS attack model. Section III presents 
the main results. Solution for the optimal control problem is stated formally and the associated recursive 
solution for the optimal cost value is derived. Finally, Section IV provides concluding remarks. A short 
description of Girsanov's theorem is also included in the Appendix for the convenience of readers. 

II. PRELIMINARIES AND PROBLEM STATEMENT 

A. Preliminaries 

Consider a probability space ),,Ω( P  equipped with a complete filtration Nkk ∈},{ . Unless otherwise 

stated, all the random variables initially defined on this reference probability measure. Consider the following 
discrete-time partially observed stochastic system 
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where n

kx ∈  is the state of the system, m

ku ∈  is the control input, p

ky ∈  is the observation output; and 

1}{0,∈k  is the DoS attack sequences that disrupt the control packets from reaching the actuator. Fig 1 shows 

typical malicious cyber attacks in control systems: A1 and A3 are integrity or deception type attacks, A2 and A4 
are DoS type attacks, and A5 is a direct physical attack in the system (see references [7], [8], [21]). 

We assume that the processes k  and kw  are jointly independent with normal densities )Σ,0(~  and 

)Γ,0(~ , respectively; and the covariance matrices Σ  and Γ  are also assumed positive definite. 

Let k  denoted the complete filtration generated by },,,{ 21 kyyy  ; while k  be the corresponding 

anticipated DoS attack sequences (or path) and assumed to be independent to the other measure variables in the 

system. Moreover, the admissible controls },,,{= 110 Tuuuu   are m - valued sequences and considered to be 

}∨{ kk �  adapted processes. The set of all admissible control sequences on the interval lkk ,,1+,   is 

denoted by lk , . 

We consider an exponential running cost with quadratic function for the risk-sensitive control problem 
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where 0>  is the risk-sensitive parameter, 1,0∈ Tu  is the admissible control sequences; while ].[E  denotes 

the expectation with respect to the original reference probability measure .P  

B. Problem Statement 

The problem considered in this paper is stated as follows. 

Problem: Find an optimal control policy for the finite-horizon risk-sensitive control problem under a given 
class of DoS attack model, i.e., 
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Fig. 1 Typical malicious cyber attacks in control systems. 

Here we consider the class of DoS attack model as a Bernoulli packet drop model, in which at each time k , 

the attacker jams a control packet according to independent Bernoulli random trials with success probability k

. In general, this attack model )(Ber  will have the following anticipated attack strategy 

{
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We remark that the exponential running cost function weighted by a risk-sensitive parameter   highlights 

one’s belief about system uncertainties back to the scale of cost functional. For a risk-neutral criterion, when   

is sufficiently close to zero, the risk-sensitive control problem reduces to an LQG control problem. We pointed 
out that a similar idea is followed by Amin et al. [7] using LQG control problem under a class of DoS attack 
model, but in a different context. Schenato et al. [22] have also done a similar work in the context of network 
reliability and its effect on the performance of the control system.  

III. CHANGE OF MEASURE AND SOLUTION TO RISK-SENSITIVE CONTROL PROBLEM UNDER A CLASS 

OF DOS ATTACK MODELS 

In this section, we explicitly use the measure transformation technique to derive the optimal control policy for 
the risk-sensitive control problem under a class of DoS attack model. The key idea is to introduce a new 
measure transformation (which is equivalent to the original probability measure) under which the observation 
and state variables become independent along the anticipated DoS attack path in the system. This allows us to 
obtain algebraic recursive formulas for the equivalent information state and associated adjoint process based on 
the observation history, the current control input and the anticipated average path of the DoS attacks. Using this 
fact, we further derive an implicit formula for optimal control policy (i.e., separated policy which essentially 
combines estimation and control as a single problem) in terms of the original system matrices via the dynamic 
programming. 

A. Change of measure and finite-dimensional information state 

For any admissible control sequences 1,0∈ Tu  , consider the following random variable 
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Using this random variable, we can introduce an equivalent measure transformation P  (where the restriction 

of the Radon-Nikodym derivative implies the measure 1

,0 ]Λ[ u

k  is an k - martingale process [19], [20], [23]) as 

follows 

TkdPPd u

k ,,1,0=,]Λ[= 1

,0           (6) 

Under this measure transformation P , the state kx  and the observation ky  will become normal densities and 
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independent to each other on the anticipated path of the DoS attacks in the system. This fact is a direct 
application of Girsanov’s theorem [23]. For the convenience of readers, a short description of this theorem 
including the measure transformation (i.e., the construction of this change of measure for the discrete-time 
measure processes) is given in the Appendix. 

Moreover, consider the following measure for any admissible control u  and anticipated DoS attack 

sequences or path in the system 
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where )∈( dxxI kA  is the indicator function of the Borel set A , u

kjD ,  is the quadratic running function given by 
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u

kj uNuxMxD   for 1<≤≤0 Tkj . Moreover, the initial boundary condition for this 

measure valued process is specified by )(=)( 000 xx  . 

Then, we obtain the following theorem. 

Theorem 1: (forward recursive formula for )(xu

k ). The measure valued process )(xu

k  satisfies the 

following forward recursion 
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where u

kkD ,  is given by }.+{21 '

1+

'

kkk NuuM   

Proof: For any Borel test function )(xf , consider the following 
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With change of variable  ++= 1+ kk BuAz , we have 
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The above holds for all Borel test functions, thus we have equation (8).            � 

Due to the linearity of the system (together with the anticipated average path of the DoS attacks) the measure 

valued process u

k  has a normal density and is given by 
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Moreover, )(uZk , )(1 uR k  and )(uk  are given by the following coupled forward, algebraic recursive 

equations. 
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Therefore, the measure valued process )(xu

k  (i.e., the information state for this partially observed stochastic 

system) is determined by these finite-dimensional parameters )(uZk , )(1 uRk  and )(uk  that involve coupled 

forward, algebraic recursive relations.  

With minor abuse of notation, we consider these parameters as a new state variable of the system 
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Furthermore, we can rewrite this equivalent information state )(xu

k  as follows 
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Remark 1: Note that these parameters are determined on the average path of the DoS attack model since the 

value for )(uz  computed as an expected value with respect to anticipated DoS attacks. 

B. Solution to risk-sensitive control problem under a class of DoS attack model 

In the following, we provide an exact solution for the optimal control policy in terms of finite-dimensional 
dynamics, i.e., separated policy in terms of the equivalent information state, using dynamic programming 
technique. For any admissible control and anticipated DoS attack sequences, the expected total cost of (2) with 
respect to equivalent probability measure transformation is given as follows 
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For any Tkk <<0, , the expected total cost can be  expressed in terms of this equivalent information state as 
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where the inner expectation of the last equation in (16) involves conditioning on }{ kx  due to the Markov 

property of  x . Define a new adjoint process 
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With this, the expected total cost can be further rewritten as 
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which is independent of k . 

Theorem 2: (backward recursive formula for )(xu

k ). The adjoint process )(xu

k  satisfies the following 

backward recursion 
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where u

kkD , is given by }.+{21 '
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Proof: From (17), )( k

u

k x is given by 
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Using the independent property under P , integrating the last equation in (20) with respect to the density of 

1+kx  gives equation (19) in the above theorem.                    � 

Remark 2: The boundary condition for the adjoint process is given by })2exp{(Λ=)( '

, TTT

u

TTTT xMxx  . 

Moreover, the adjoint process u

k  has a normal density (c.f. equation (11)) and given by 
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where the finite-dimensional parameters kZ
~

, )(1 uS k  and )(uk  satisfy coupled backward, algebraic recursions. 

From equations (8) and (12), the information state )(xu

k  is determined by )(uZk , )(1 uR k  and )(uk  that 

involve only algebraic recursive equations. Thus, based on the current value of u

k  together with the new 

observation 1+ky , current control ku  and anticipated attack 1+k , the next value can be determined by the 

following functional recursion 

),,,(= 1+1+1+1+ kkk

u

k

u

k

u

k yu              (22) 

Suppose at some intermediate time Tkk <<0, , the information state u

k  is given by ),,(= 1  RZ , then, 

from equation (18), the value function for the optimal control problem satisfies the following 
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Theorem 3: (dynamic programming formulation). The value function satisfies the following recursive 
equation 
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Proof: Consider equation (23) 
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Note that the adjoint process k  is determined from 1+k  via the backward recursion of (19), which means we 



can specify a functional recursion form )(= 1+
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      � 

Due to the lattice property of the control sequences, we interchanged the order of conditional expectation and 

minimization operations in the last equation of (25). Moreover, the optimal control sequences )(*

kku   for each 

1,,1,0= Tk   of the dynamic programming problem are indeed the optimal control policies for the original 

problem stated in (3), i.e., 1,0

*∈ Tu  . 

IV. CONCLUSION 

In this paper we considered a finite-horizon risk-sensitive control problem under a class of DoS attack model 
when the attacker strategy is to disrupt the network or jam the control packets from reaching the actuator. Using, 
risk-sensitive criterion, we derived recursive optimal control policy in terms of finite-dimensional dynamics via 
measure transformation technique, while highlighting one’s belief about the system uncertainties into the cost 
functional. Our results show the optimal control problem will have an implicit formula (that essentially 
combines estimation and control as a single problem) in terms of the original system matrices and the average 
path of the DoS attack sequences.  
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APPENDIX 

The following theorem is the discrete-time version of Girsanov’s theorem [23]. 

Theorem A: Assume the process kz  on the probability space },,Ω{ P  admit the following representation 

TkFfz kkkk ,,1,0=,+=                (26) 

where k  is a Gaussian white process with respect to the family of   sub-algebra  ⊂k ; and kF  is a matrix 

sequence with an appropriate dimension. Let k  be another   predictable process with the same dimension as 

k . Next introduce a new probability measure P  as follows: 

dPPd kkk

T

k
)||21(exp= 2'

0=

∏                  (27) 

On this new probability space },,Ω{ P , the process kkk  =  will become a Gaussian white process; 

moreover, the process kz  admits the following representation kkkk Ffz +=  where kkkk Fff += . 

Proof: The proof follows from the fact that for all Borel sets A , the following identity holds true 
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