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Abstract

This paper examines event-triggered communication for cooperative control of multi-agent sys-

tems based on passivity analysis. We assume each agent is a passive system and propose a distributed

event-triggered communication scheme, where each subsystem broadcasts its output information to

its neighbors only when the subsystem’s local output measurement error exceeds a specified threshold

of its output. The triggering condition is related to the degree and the algebraic connectivity of the

underlying communication graph. We have shown that when theunderlying communication graph

is balanced and strongly connected, the outputs of those interconnected passive agents under our

proposed event-triggered cooperative control strategy will reach agreement asymptotically, and the

time interval between two consecutive communication updates is strictly positive. Examples illustrate

the results.

I. INTRODUCTION

Important aspects in the implementation of distributed algorithms for control of multi-agent systems

are communication transmissions and actuation update schemes. Most of the work in the literature

assumes that the execution of the distributed controller and the scheduling of the communication

transmission are implemented in a conservative way, where atight lower bound is selected as the

inter-transmission time to guarantee the performance of the interconnected systems for all possible

operating points. This leads to inefficient implementationof distributed control algorithms in terms

of processor usage or available communication bandwidth.

To overcome this drawback, several researchers have suggested the idea of event-based control

for sensor-actuator networks. In a typical event-based implementation, the control signals are kept

constant until the violation of a condition on certain signals of the plant triggers the re-computation

of the control signals. The possibility of reducing the number of re-computations, and thus of

transmissions, while guaranteeing desired levels of performance makes event-based control very
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appealing in networked control systems(NCSs). A comparison of time-driven and event-driven control

for stochastic systems favoring the latter can be found in [4]; a deterministic event-triggered strategy

was introduced in [6]; similar results on deterministic self-triggered feedback control have been

reported in [7], [8], [9]; a simple event-triggered real-time scheduling approach for stabilization of

passive/output feedback passive systems has been proposedin [17]. In those work, a centralized

approach to event-design is taken.

A formal analysis of distributed implementations of event-triggered data transmission in NCSs with

packet loss and transmission delays is reported in [13]. Theresults in [13] show how to schedule local

data transmission by using event triggering, but they involve local input-to-state stabilization problems

for each subsystem which are not easy in general. Similar techniques to reduce data transmission for

distributed control systems by using deadband control and local state estimators have been reported in

[15],[16]. However, it is not easy to extend their results togeneral nonlinear NCSs. An event-triggered

control strategy for a class of cooperative control algorithms, namely those that can be reduced to

a first order agreement problem, has appeared in [10]; note that the framework in [10] assumes that

all the subsystems have the same dynamics(first order integrator) which restricts its applications to

NCSs.

In the present paper, we propose a simple event-triggered cooperative control strategy for multi-

agent systems based on passivity analysis. By “event”, we mean a triggering of communication

transmission. We assume that each agent is a passive system and we analyze the interconnected

systems (where each subsystem could be linear or nonlinear)from an input-to-output perspective.

Many studied systems in control of multi-agent systems can be modeled as passive systems, i.e.,

robotics and mobile vehicles, so our results could be applied to a large class of systems including

the first order agreement problem studied in [10]. The triggering condition is local in the sense that

each agent only needs to use its own output information to decide when to trigger a communication

transmission. We have also shown that the inter-transmission time for each agent is strictly positive

and the length of the time interval is related to the degree ofdisagreement among interconnected

neighbors. Although we did not consider transmission delays and packet dropouts in the current paper,

our results can be extended to study those problems in a similar way as shown in [6] and [13]. The

rest of this paper is organized as follows: we introduce somebackground in section II; the problem

is stated in section III; our main results are provided in section IV and followed by the examples

provided in section V; concluding remarks are given in section VI.

II. BACKGROUND MATERIAL

We first introduce some background on passive systems and graph theory which will be used to

derive the results presented in the current paper.
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A. Graph Theory

We consider finite weighted directed graphsG := (V,E) with no self-loops andadjacency matrix

A, whereV denotes the set of all vertices,E denotes the set of all edges, andA := [aij ] with aij > 0

if there is a directed edge from vertexi into vertex j, and aij = 0 otherwise. Thein-degree and

out-degree of vertexk are given bydi(k) =
∑

j ajk anddo(k) =
∑

j akj respectively.

Fig. 1: example on graph Laplacian

TheLaplacian matrix of a directed graph is defined asL = D−A, whereD is the diagonal matrix

of vertex out-degrees. For example, consider a graph as shown in Fig.1, where we define

aij =







a, if vertex i sends information to vertexj;

0, otherwise.
(1)

anda ∈ R
+. Then we can get

A =

















0 a a a

0 0 a 0

0 0 0 0

0 0 0 0

















, D =

















3a 0 0 0

0 a 0 0

0 0 0 0

0 0 0 0

















, (2)

and the graph Laplacian is given by

L =

















3a −a −a −a

0 a −a 0

0 0 0 0

0 0 0 0

















. (3)

Definition 1 (algebraic connectivity)[12]: Let P be the set{x ∈ R
n|x ⊥ 1n, ‖x‖ = 1}, where

1n := [1, 1, . . . , 1]T ∈ R
n. For a directed graphG with Laplacian matrixL, the algebraic connectivity

is the real number defined as

a(G) = min
x∈P

xTLx = min
x∈P

xTLx

xTx
. (4)

Definition 2 (strongly connected graph)[11]:A directed graph is strongly connected if for any pair

of distinct verticesνi andνj , there is a directed path fromνi to νj .
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Definition 3 (balanced graph)[11]: A vertex is balanced if its in-degree is equal to its out-degree.

A directed graph is balanced if every vertex is balanced.

Lemma 1 [11]: For a balanced graphG with nonnegative weights,a(G) > 0 ⇔ G is strongly

connected.

B. Passivity

Consider the following dynamic system description which can be used to describe both a linear

and a nonlinear systems:

H :











ẋ = f(x, u)

y = h(x, u)

(5)

wherex ∈ X ⊂ R
n, u ∈ U ⊂ R

m and y ∈ Y ⊂ R
m are the state, input and output variables,

respectively, andX, U andY are the state, input and output spaces, respectively. The representation

x(t) = φ(t, t0, x0, u) is used to denote the state at timet reached from the initial statex0 at t0.

Definition 4 (supply rate)[1]: The supply rateω(t) = ω(u(t), y(t)) is a real valued function defined

on U × Y , such that for anyu(t) ∈ U andx0 ∈ X andy(t) = h(φ(t, t0, x0, u)), ω(t) satisfies

∫ t1

t0

|ω(τ)|dτ < ∞ (6)

Definition 5 (Dissipative System)[1]: System H with supply rateω(t) is said to be dissipative if

there exists a nonnegative real functionV (x) : X → R
+, called the storage function, such that, for

all t1 ≥ t0 ≥ 0, x0 ∈ X andu ∈ U ,

V (x1)− V (x0) ≤

∫ t1

t0

ω(τ)dτ (7)

wherex1 = φ(t1, t0, x0, u) andR+ is a set of nonnegative real numbers.

Definition 6 (Passive System)[1]:SystemH is said to bepassiveif there exists a storage function

V (x) ≥ 0 such that

V (x1)− V (x0) ≤

∫ t1

t0

u(τ)T y(τ)dτ, (8)

if V (x) is C1, then we have

V̇ (x) ≤ u(t)T y(t), ∀t ≥ 0. (9)

One can see that passive system is a special case of dissipative system with supply rateω(t) =

u(t)T y(t).
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III. PROBLEM FORMULATION

A. System Model

The system considered consists ofN agents, and we assume that each of them is a passive system

satisfying the following passivity inequality:

V̇i(xi) ≤ uTi (t)yi(t) ∀t ≥ 0 (10)

wherexi ∈ R
n denotes the state of agenti, Vi : R

n → R
+ denotes the storage function for agenti,

ui ∈ R
m andyi ∈ R

m denote the input and output of agenti respectively.

B. Problem Statement

Consider the cooperative control laws given by

ui(t) = −
∑

j∈Ni

(yi(t)− yj(t)), ∀t ≥ 0 (11)

whereNi denotes the set of neighbors of agenti (agents that send information to agenti ). In

this paper, we re-formulate the cooperative control action(11) to take into account event-triggered

communication transmission and derive a decentralized event-triggered cooperative control strategy.

In our decentralized event-triggered cooperative controlstrategy, we assume that there are no

communication delays between coupled agents and there is noactuation update delay for each

subsystem. A monotone increasing sequence of event timesti0, t
i
1, . . . , t

i
k is defined for agenti based

on its event triggering condition. For agenti and∀t ≥ 0, we introduce an output novelty errorei(t)

which is given by

ei(t) = yi(t)− yi(t
i
k), (12)

for t ∈ [tik, t
i
k+1], whereyi(t) is the output of agenti andyi(tik) is the transmitted output information

at the event timetik; whenever the output novelty error exceeds a specified threshold of its output, the

agent will broadcast its latest sampled output informationyi(t
i
k) to its neighbors(we assume that each

agent is facilitated with embedded hardware to monitor whenthe triggering condition is satisfied); at

the same time, it will also update its control actions based on yi(t
i
k) and the last received information

of its neighbors’ outputsyj(t
j

k
′ )s, j ∈ Ni, wheretj

k
′ is the latest event time of agenti′s neighbors.

Thus the control action in this case is given by

ui(t) = −
∑

j∈Ni

(

yi(t
i
k)− yj(t

j

k
′ )
)

. (13)

The control action is kept constant fort ∈ [tik, t
i
k+1] if the neighboring agents do not send in any new

information during this time interval, otherwise, it will be piecewise constant. The triggering condition

is decentralized in the sense that each agent requires knowledge of its own output measurement
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information to verify its triggering condition. Note that although the cooperative control action for

agent i is updated both at its own event timesti0, t
i
1, . . . , t

i
k as well as the latest event times of

its neighborstj0, t
j
1, . . . , t

j

k
′ , j ∈ Ni, the triggering of a local communication transmission is only

requested when the triggering condition for the agent is satisfied.

IV. M AIN RESULTS

In this section, we consider a system consisting ofN agents, where each of them is a single

input single output(SISO) passive system with inputui ∈ R, outputyi ∈ R, and statexi ∈ R (note

that this assumption is only for convenience, and the results in this paper can be easily extended to

multi-input-multi-output passive systems; moreover, thedimension of the state dose not need to be

the same as the input and the output, which will be discussed later). For notation convenience, we

let Y = [y1, y2, . . . , yN ]T denote the output vector and lete = [e1, e2, . . . , eN ]T denote the output

novelty vector; let|Σ| denote the number of the elements inΣ; let ‖ · ‖2 denote the 2-norm of a

vector; letL denote the Laplacian of the underlying communication graphand leta(G) denote graph

algebraic connectivity.

Theorem 1.Consider a group ofN agents, where each agent is a SISO passive system that satisfies

the passivity inequality (10), where the dynamics of each agent are given by

Hi :











ẋi = fi(xi, ui)

yi = hi(xi).

(14)

We assume that the underlying communication graph is balanced and strongly connected, and there is

no transmission delay and actuation update delay for each agent. Then with the control action given

in (13), for any initial condition inR, the output of each agent will reach an agreement asymptotically

under the triggering condition given by

‖ei(t)‖2 >
a(G)

2|Ni|
‖yi(t)‖2, ∀i, ∀t ≥ 0. (15)

Moreover, let the following assumptions be satisfied

1) fi : R× R → R is Lipschitz continuous on compacts;

2) hi : R → R is is Lipschitz continuous on compacts and it is also a staticnonlinear function of

xi which belongs to a sector[ai, bi] such thataix2i ≤ xihi(xi) ≤ bix
2
i , where0 < aibi < ∞;

3) ‖∂hi(xi)
∂xi

‖2 ≤ γi, where0 < γi < ∞;

then the inter-transmission time[tik+1 − tik] implicitly determined by the triggering condition (15) is

lower bounded by some strictly positive timeτi.

proof : Since the output novelty error for agenti is defined as

ei(t) = yi(t)− yi(t
i
k),∀k,∀t ≥ 0 (16)
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then with the control action (13) we can get

ui(t) = −
∑

j∈Ni

[

yi(t)− yj(t)
]

+
∑

j∈Ni

[

ei(t)− ej(t)
]

. (17)

Let V =
∑N

i=1 Vi denotes the storage function for the entire system withVi being the storage function

for each subsystem, we can get fort ∈ [tik, t
i
k+1],∀k

N
∑

i=1

V̇i ≤
N
∑

i=1

uiyi =

N
∑

i=1

(

∑

j∈Ni

[ei − ej ]−
∑

j∈Ni

[yi − yj]
)

yi

=

N
∑

i=1

∑

j∈Ni

[ei − ej ]yi −
N
∑

i=1

∑

j∈Ni

[yi − yj]yi

= Y TLT e− Y TLTY,

(18)

so

V̇ ≤ −a(G)‖Y ‖22 +
N
∑

i=1

∑

j∈Zi

ei(yi − yj)

= −a(G)‖Y ‖22 +
N
∑

i=1

∑

j∈Zi

eiyi −
N
∑

i=1

∑

j∈Zi

eiyj

= −a(G)‖Y ‖22 +
N
∑

i=1

|Zi|eiyi −
N
∑

i=1

∑

j∈Zi

eiyj,

(19)

whereZi denotes the set of agents receiving information from agenti; since the underlying commu-

nication graph is balanced, we have|Zi| = |Ni|. Moreover, since|xy| ≤ ϕ
2 x

2 + 1
2ϕy

2,∀ϕ > 0, we

can obtain

V̇ ≤ −a(G)‖Y ‖22 +
N
∑

i=1

α|Ni|

2
e2i +

N
∑

i=1

|Ni|

2α
y2i

+

N
∑

i=1

∑

j∈Zi

β

2
e2i +

N
∑

i=1

∑

j∈Zi

1

2β
y2j ,

(20)

thus

V̇ ≤ −a(G)‖Y ‖22 +
N
∑

i=1

α|Ni|

2
e2i +

N
∑

i=1

|Ni|

2α
y2i

+

N
∑

i=1

β

2
|Ni|e

2
i +

N
∑

i=1

∑

j∈Zi

1

2β
y2j , α > 0, β > 0,

(21)

because the underlying communication graph is balanced, wecan get

N
∑

i=1

∑

j∈Zi

1

2β
y2j =

N
∑

i=1

|Ni|

2β
y2i , (22)
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which yeilds

V̇ ≤ −a(G)‖Y ‖22 +
α+ β

2

N
∑

i=1

|Ni|e
2
i + (

1

2α
+

1

2β
)

N
∑

i=1

|Ni|y
2
i

= −a(G)

N
∑

i=1

y2i +
α+ β

2

N
∑

i=1

|Ni|e
2
i + (

1

2α
+

1

2β
)

N
∑

i=1

|Ni|y
2
i

= −
N
∑

i=1

[

a(G) − (
1

2α
+

1

2β
)|Ni|

]

y2i +
α+ β

2

N
∑

i=1

|Ni|e
2
i ,

(23)

thus a sufficient condition foṙV ≤ 0,∀t ≥ 0 is given by

e2i ≤
a(G)− ( 1

2α + 1
2β )|Ni|

α+β
2 |Ni|

y2i , ∀t ≥ 0. (24)

Let

σs(α, β) =
a(G)− ( 1

2α + 1
2β )|Ni|

α+β
2 |Ni|

, (25)

one can verify that whenα = β > 0, σs(α, β) will achieve its maximum, so we chooseα = β, and

(24) will becomes

e2i ≤
a(G) − 1

α
|Ni|

α|Ni|
y2i , ∀t ≥ 0,∀i. (26)

Let

σ(α) =
(a(G) − 1

α
|Ni|

α|Ni|

)
1

2

, (27)

then we can get the maximum ofσ(α) by taking dσ(α)
α

= 0, which yields

σm =
a(G)

2|Ni|
, (28)

and in this case, (26) becomes

‖ei‖2 ≤ σm‖yi‖2,∀t ≥ 0,∀i. (29)

When we choose

‖ei‖2 > σm‖yi‖2,∀t ≥ 0,∀i, (30)

as the triggering condition for each agent(note that this isthe triggering condition in Theorem 1),

then at each event-time which is implicitly defined by (30), agent i will get a new sampled output

information andei(t) will be reset to zero; at the same time, agenti will broadcast this newly sampled

output information to its neighbors; the time of the next communication transmission is determined

by when this triggering condition is satisfied again. Moreover, if all the agents trigger their local

communication transmissions based on (30), then we haveV̇ ≤ 0,∀t ≥ 0. In view of (18) and

according to LaSalle’s invariance principle [14], we can conclude thatlimt→∞

(

yi(t) − yj(t)
)

=

0,∀i, j.
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Now we need to show that based on assumption 1)-3), the inter-transmission time is nontrivial for

any agent. Since‖ei(t)‖2 = ‖yi(t)− yi(t
i
k)‖2 for t ∈ [tik, t

i
k+1],∀i, we have

‖ei(t)‖2 ≥ ‖yi(t
i
k)‖2 − ‖yi(t)‖2 ⇒ ‖yi(t)‖2 ≥ ‖yi(t

i
k)‖2 − ‖ei(t)‖2, (31)

so a sufficient condition for the triggering condition (30) to hold is given by

‖ei(t)‖2 <
σm

σm + 1
‖yi(t

i
k)‖2, for t ∈ [tik, t

i
k+1],∀k. (32)

For t ∈ [tik, t
i
k+1], we have

d

dt
‖ei(t)‖2 =

d(ei(t)
T ei(t))

1

2

dt
=

ei(t)
T ėi(t)

‖ei(t)‖2

≤ ‖ėi(t)‖2 = ‖ẏi(t)‖2

= ‖
∂hi(xi)

∂xi
ẋi‖2 ≤ ‖

∂hi(xi)

∂xi
‖2‖ẋi‖2

= γi‖fi(xi,−
∑

j∈Ni

[yi(t
i
k)− yj(t

j

k
′ )])‖2

≤ γiLi‖xi‖2 + γiLi‖
∑

j∈Ni

[yi(t
i
k)− yj(t

j

k
′ )]‖2,

(33)

whereLi is the Lipschitz constant offi(xi, ui). Moreover, sinceaix2i ≤ xihi(xi) ≤ bix
2
i , where

0 < aibi < ∞, one can verify that

‖xi‖2
‖yi‖2

≤ max{
1

|ai|
,
1

|bi|
} = ζi, (34)

then
d

dt
‖ei(t)‖2 ≤ γiLiζi‖yi‖2 + γiLi‖

∑

j∈Ni

[yi(t
i
k)− yj(t

j

k
′ )]‖2

= γiLiζi‖ei + yi(t
i
k)‖2 + γiLi‖

∑

j∈Ni

[yi(t
i
k)− yj(t

j

k
′ )]‖2,

(35)

we can get
d

dt
‖ei(t)‖2 ≤ γiLiζi‖ei‖2 + γiLiζi‖yi(t

i
k)‖2

+ γiLi‖
∑

j∈Ni

[yi(t
i
k)− yj(t

j

k
′ )]‖2.

(36)

So the evolution of‖ei(t)‖2 for t ∈ [tik, t
i
k+1] is bounded by the solution of

ṗi(t) = γiLiζipi(t) + γiLiζi‖yi(t
i
k)‖2 + γiLi‖

∑

j∈Ni

[yi(t
i
k)− yj(t

j

k
′ )]‖2, (37)

with p(tik) = 0 (since att = tik, we haveei(tik) = yi(t
i
k)− yi(t

i
k) = 0), the corresponding solution to

(37) during[tik, t
i
k+1] is given by

pi(t) = Λ
[

eγiLiζi(t−ti
k
) − 1

]

, (38)
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with

Λ =
γiLiζi‖yi(t

i
k)‖2 + γiLi‖

∑

j∈Ni
[yi(t

i
k)− yj(t

j

k
′ )]‖2

γiLiζi
. (39)

So we can get a lower bound of the time for‖ei(t)‖2 to evolve from 0 to σm

1+σm

‖yi(t
i
k)‖2 based on

(38) which is given by

τi =
1

γiLiζi
ln
(

1 +
1

Λ

σm

1 + σm
‖yi(t

i
k)‖2

)

. (40)

In view of (40), we can see thatτi is strictly positive for anyσm > 0 and‖yi(tik)‖2 6= 0. One should

notice thatlimt→∞ ‖
∑

j∈Ni
[yi(t

i
k) − yj(t

j

k
′ )]‖2 = 0 since limt→∞

(

yi(t) − yj(t)
)

= 0, ∀i, j, and

when yi(t) approaches origin asymptotically‖
∑

j∈Ni
[yi(t

i
k) − yj(t

j

k
′ )]‖2 goes to zero at the same

time, andτi will approach to 1
γiLiζi

ln
(

1 + σm

1+σm

)

, so we will still get non-trivial inter-transmission

time; moreover, ifyi(t) ≡ 0 for somet ≥ t0 ≥ 0, then no event will be generated fort ∈ [t0,∞),

becauseei(tik) = 0 for any tik ∈ [t0,∞) and the triggering condition (30) is never satisfied.�

Remark 1: In view of (40), when‖
∑

j∈Ni
[yi(t

i
k)−yj(t

j

k
′ )]‖2 is large,τi will be small, which implies

more frequent communication updates between coupled agents are needed when their outputs are far

from agreement.�

Remark 2: In view of the triggering condition (28),(30), we can see that when a(G) is relatively

larger and|Ni| is relatively smaller, we can obtain a larger threshold for the triggering condition.

Notice that |Ni| is the degree of nodei of the underlying communication graph. This implies

that if the connectivity of the underlying communication network a(G) is fixed, we may reduce

the communication frequency needed for reaching agreementamong the interconnected agents by

reducing the number of communication links for each node(reduce|Ni|); and with fixed number of

communication links for each node(fixed|Ni|), we may reduce the transmission load by improving

the connectivity of the communication network(have a larger a(G)). So the topology of the underlying

communication network actually influences the event-triggered data transmission for the control of

multi-agent systems.�

Remark 3: One may remark that assumption 1) and 2) in Theorem 1 are conservative since we

restrict the output of each agentyi = hi(xi) to belong to a bounded sector of full-state and we

assume thatfi(xi, ui) andhi(xi) are Lipschitz continuous on compact set . But this conditioncan

be relaxed as long as
d

dt
‖ei(t)‖2 ≤ C1‖ei(t)‖

p
2 + C2, t ∈ [tik, t

i
k+1] (41)

for some constant0 < C1, C2 < ∞, p ≥ 0, and the way to show that the inter-transmission time

is strictly positive will be the same; moreover, the dimension of the state does not need to be the

same as the dimension of the input and output(i.e.,yi belongs to a bounded sector of subsystem’s
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observable state while the unobservable state is zero-state detectable, and one can check the example

provided in the next section to see how it works).�

Remark 4: For linear passive system, consider the subsystem given by:

Hi :











ẋi = Aixi +Biui

yi = Cixi,

(42)

we have
d

dt
‖ei‖2 ≤ ‖ėi‖2 = ‖ẏi‖2 ≤ ‖CiAixi‖2 + ‖CiBiui‖2

= ‖CiAixi‖2 + ‖CiBi

∑

j∈Ni

[yi(t
i
k)− yj(t

j

k
′ )]‖2,

(43)

since‖CiAixi‖2 = (xTi A
T
i C

T
i CiAixi)

1

2 and‖yi‖2 = ‖Cixi‖2 = (xTi C
T
i Cixi)

1

2 , if (x
T

i
AT

i
CT

i
CiAixi

xT

i
CT

i
Cixi

)
1

2

is well bounded, such that

(
xTi A

T
i C

T
i CiAixi

xTi C
T
i Cixi

)
1

2 ≤ Γ, (44)

where0 < Γ < ∞, then we have

d

dt
‖ei‖2 ≤ Γ‖yi‖2 + ‖CiBi

∑

j∈Ni

[yi(t
i
k)− yj(t

j

k
′ )]‖2

= Γ‖ei + yi(t
i
k)‖2 + ‖CiBi

∑

j∈Ni

[yi(t
i
k)− yj(t

j

k
′ )]‖2

≤ Γ‖ei‖2 + Γ‖yi(t
i
k)‖2 + ‖CiBi

∑

j∈Ni

[yi(t
i
k)− yj(t

j

k
′ )]‖2.

(45)

So in this case, we haved
dt
‖ei‖2 ≤ Ci1‖ei‖2 + Ci2(note that this is the case we have mentioned in

Remark 3, withp = 1), where

Ci1 = Γ, Ci2 = Γ‖yi(t
i
k)‖2 + ‖CiBi

∑

j∈Ni

[yi(t
i
k)− yj(t

j

k
′ )]‖2. (46)

Accordingly, the evolution of‖ei(t)‖2 during [tik, t
i
k+1] is bounded by the solution to

ṗi(t) = Ci1pi(t) + Ci2 (47)

with pi(t
i
k) = 0, and we can obtain the solution to (47) which is given by

pi(t) =
Γ‖yi(t

i
k)‖2 + ‖CiBi

∑

j∈Ni
[yi(t

i
k)− yj(t

j

k
′ )]‖2

Γ

(

eΓ(t−ti
k
) − 1

)

, (48)

and in this case,τi is given by

τi =
1

Γ
ln
(

1 +
Γ σm

1+σm

‖yi(t
i
k)‖2

Γ‖yi(tik)‖2 + ‖CiBi

∑

j∈Ni
[yi(t

i
k)− yj(t

j

k
′ )]‖2

)

. �
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V. EXAMPLE

In this section, two examples are provided to illustrate ourresults in this paper. We studied the

event-triggered cooperative control for five interconnected agents with two different communication

graphs, and compared the communication rate and the performance between them.

Example 1. Consider the system consists of five agents, where the dynamic of each agent is given by

H1 :























ẋ11(t) = −x311(t) + 0.5x11(t)x12(t)

ẋ12(t) = −3x12(t) + 2u1(t)

y1(t) = x12(t);

(49)

H2 :























ẋ21(t) = −2x321(t) + 3x21(t)x22(t)

ẋ22(t) = −3x22(t) + 2u2(t)

y2(t) = x22(t);

(50)

H3 :























ẋ31(t) = −3x331(t) + x31(t)x32(t)

ẋ32(t) = −3x32(t) + 2u3(t)

y3(t) = x32(t);

(51)

H4 :























ẋ41(t) = −10x341(t) + x41(t)x42(t)

ẋ42(t) = −3x42(t) + 2u4(t)

y4(t) = x42(t);

(52)

H5 :























ẋ51(t) = −3x351(t) + 10x51(t)x52(t)

ẋ52(t) = −2x52(t) + 2u5(t)

y5(t) = x52(t);

(53)

one could verify that each agent is a passive system. The underlying communication graph is shown

in Fig. 2, which is balanced and strongly connected, and the corresponding graph Laplacian is given

Fig. 2: underlying communication graph
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by:

L =























2 −1 0 0 −1

0 2 −1 −1 0

0 −1 1 0 0

−1 0 0 1 0

−1 0 0 0 1























(54)

the algebraic connectivity for the graph isa(G) = 0.6753. The corresponding triggering condition

(15) for each agent is given by

‖ei(t)‖2 > 0.1688‖yi(t)‖2,∀t ≥ 0, i = 1, 2

‖ei(t)‖2 > 0.3376‖yi(t)‖2,∀t ≥ 0, i = 3, 4, 5.

(55)

If we denote the evolution of‖ei(t)‖2

‖yi(t)‖2

by σi(t), for i = 1, 2, 3, 4, 5, and apply the proposed event-

triggered cooperative control strategy as claimed in Theorem 1, we get the simulation results for each

agent as shown in Fig.3-Fig.4. The evolution of agent 2 is depicted in Fig.3, whereσ2 shows the

evolution of ‖e2(t)‖2

‖y2(t)‖2

, [t2k+1−t2k] shows the evolution of the inter-transmission time, and we can see that

wheneverσ2(t) reaches the triggering threshold (depicted by the dashed red line), a communication

update is triggered (marked by a dot, with x-axis showing theevent timet2k and with y-axis showing

the time interval from the last communication update);|e2| shows the evolution of the absolute value

of the output novelty error; andy2 shows the evolution of the output. Fig.4 shows the evolutionof

outputs of five agents.
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Example 2. In Remark 2, we have mentioned that the topology of the underlying communication

graph will influence the threshold of the triggering condition: in view of (28),(30), if we can enhance

the connectivity while reducing the degree of each node of the underlying communication graph,

then we can get a larger threshold for the triggering condition. This is illustrated through simulation

shown in this example, where we still consider the same interconnected five agents as discussed in

Example 1(the initial conditions for each agent is also the same), but now they are interconnected in

a different way and the underlying communication graph is shown in Fig.5, with the corresponding

Fig. 5: underlying communication graph

graph Laplacian given by:

L =























1 −1 0 0 0

0 1 −1 0 0

0 0 1 −1 0

0 0 0 1 −1

−1 0 0 0 1























(56)

the algebraic connectivity for the graph isa(G) = 0.6910. The corresponding triggering condition

(15) for each agent in this case is given by

‖ei(t)‖2 > 0.3455‖yi(t)‖2,∀t ≥ 0,∀i, (57)

and we get the simulation results. We can see that the frequency of communication is reduced

significantly for the interconnected agents in this case (check the simulation results comparing the

communication rate and performance of agent 1 in Example 1 and Example 2 from Fig.6), Fig.7

shows the evolution of outputs of the five agents.
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VI. CONCLUSION

In the present paper, we propose an event-triggered cooperative control strategy for multi-agent

systems based on passivity analysis. We assume that each agent is a passive system, and the triggering

condition is local in the sense that each agent only needs to use its own output information to decide

when to trigger a communication transmission. At each agent’s event time, the agent will broadcast its

latest output information to its neighbors, and the neighboring agents will update their control actions

accordingly. We also show the inter-transmission time for each agent is strictly positive. Simulations

are used to illustrate these results. Future work will take packet loss and transmission delays into

consideration.
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