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INTRODUCTION

The role of internal models in the regulation of linear, time invariant,
lumped continuocus time systems is well understood. Recent work has shown the
applicability of internal models to systems described over rings in the
solution of the robust regulation and robust asymptotic tracking problems
[1,2)]. We show, using a description of systems over rings, that internal
models are necessary in regulation even when robust regulation is not
required. Furthermore, the existence of internal models in the regulation of
plants, where the measured and controlled variables are not necessarily the
same, is examined in this algebraic setting. To this effect, a general
regulation problem is defined including a stability condition over a
desirable region of the complex plane; we call this problem RPIS over Rg(s).
A complete solution of RPIS over Rg(s) is given; two sets of solvability
conditions are derived, a parameterization of controllers is presented, and
the structure of the controller that solves RPIS over Rg(s) is completely
characterized. The results presented here are related to "internal
descriptions” of the plant and controller; thus, maintaining insight into the
problem. The RPIS over Rg(s) treatment presented here is an extension of the
work presented in [3,4], and gives simpler conditions than other recent ones
in [5] and [6]. Furthermore, our approach, which characterizes the
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controller’s structure, provides a transparent and direct treatment of

internal models.

Factorizations of transfer function matrices over a desirable ring,
Rg(s), are used to represent the systems, that is, a given transfer function
matrix is modeled as the ratio of two rational matrices with entries in
mg(s). Let Rg(s) be a nonempty subset of Rp(s), the ring of proper rational
functions with real coefficients, consisting of the proper rational functions
that have all their poles in Sg. Sg corresponds to the good region of the
complex plane, so that Sg is symmetric with respect to the real axis and
contains at least one real point. For a description of the properties of
Rg(s) see [T-9]. Let M(Rg(s))denote the set of all matrices with entries in
Rg(s), regardless of dimensions. The background to develop the theory can be
found in [1,2,10,11]. We will develop the theory in the context of linear
time-invariant continuous and discrete systems, but it can be easily extended
to consider linear distributed continuous and discrete systems {for the

appropriate algebraic tools see [1-Chapter 8, 2,10,11]).

INTERNAL MODELS

The study of internal models in multivariable systems started in the
early 1970’s {(for example, see {12-15]}). In these papers, the researchers
investigated the necessary controller structure required to achieve robust
regulation with internal stability. The main result is known as the Internal
Model Principle (IMP). The IMP states that the robust regulation problem
with internal stability is solvable if and conly if feedback of the controlled

variables is used and the controller includes a replication of the exogenous
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system dynamics in its denominator. The IMP is implicit in the results
presented in [16].

In 1977, a characterization of internal medels in the frequency domain
appeared in [17,18]). In particular, Bengtsson, in [17], gave a definition of
internal models without the robustness requirement. In this case the
internal model is a property of the loop gain, that is, the transfer function
matrix of the cascade comnection of the plant and controller. In this way,
the regulation problem is solved utilizing any available structure in the
plant.

The basic idea of internal models in regulation can be expressed as
follows: "for regulation a controller must create in the closed loop an
appropriate model of the dynamic structure of the exogenous system.” When
robustness is required, the poles of de, the exosystem’s transfer function
matrix, must be present as poles of the controller’s transfer function matrix
with appropriate redundancy. When robustness is not required, the poles of
de appear as poles of the loop gain, at least in the case when the
controlled and measured variables of the plant are the same.

The internal model part of our work builds on the results presented in
[17]. We present internal model definitions in our algebraic setting for the
regulation problem with no robustness requirement, and show that a necessary
and sufficient condition for regulation, when the controlled and measured
variables of the plant are the same, is that the cascade connection of the
plant and controller contain an internal model of the exogenous system.

The following definition can be considered to be an extension of the

internal model definition given in [17].
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Definition 1. Let R{s), V(s) be arbitrary proper rational matrices with the
same number of rows. Let R = ﬁé-lﬁé and V = 5;-1§; be left coprime (1l.c.)
Rg-factorizations, where 5}, 5}, 5&, ﬁ; € M(mg(s)), and 5; and 6& are square,
nonsingular and biproper. Then R(s) contains an internal model of V(s) if

a;a;-l € M(Rg(s)).

From the definition we see that R(s) contains an internal model of V(s)
if and only if §£=5£§¢ where 5; € M(mg(s)), that ig, R(s) contains a copy of
the bad poles (in 2 = C\Sg) of V(s) with appropriate structure, in the form

of a right divisor of its denominator matrix.

A second definition of internal models when the transfer function

matrices have the same number of columns is given below.

Definition 2. Let R{(s) and V(s) be arbitrary proper rational matrices with
the same number of columns. Let R = PEQE—I and V = P&Q;-l be right coprime
{r.c.) Rg-factorizations. Then R({s) contains an internal model of V{s) if

and only if Q;-IQ; € M(Rg(s)), that is, Q& is a left divisor of Qé.

As an illustration of the applicability of these definitions consider

the system Z(P,C) in Figure 1,

+ =

l

) Y .
C H P {_F vy

Figure 1. Basic system £(P,C) configuration.

where P and C are the transfer function matrices of the controllable and
observable plant and controller, respectively; the vector y is the vector of

output variables and the vector w contains the unmeasurable disturbances at
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the output of the plant. It is assumed that w can be modeled as the output
of a causal, linear, time-invariant finite dimensional system described by

W= deﬁ, (1)

where d is a bounded vector, and T , is antistable, that is, all the poles of

wd
de are in 2. One interpretation for d is as the vector of initial

conditions of the exogenous system. Let de 1 1

Rg—factorizations. Assume that the compensated system Z(P,C) is well defined

=D: N+ and PC:f)I'; ﬁfac be l.c.
(|I+PC|#0), all its input-output maps are proper, and that it is Rg-stable,
that is, all its eigenvalues are in Sg. It can be shown that Z(P,C} is
Rg—stable if and only if (5ﬁc+ﬁﬁc) is unimodular over Rg(s). The regulation
requirement is satisfied if T ,, the transfer function matrix from d to Yo

is stable. In our setting, regulation over Rg(s) requires Tcd € M(Rg(s)).

Now, regulation over Rg(s) is satisfied if and only if (=)

LIEC RS -y MR (s)) (2)
= T, (B§o+~§c)-lﬁﬁch € M(R,(s))
= Ty= (~£)c+~;'ac)_151;>cﬁi:¢-1ﬁs‘-f € M(R_(s))
o T,= (5§c+~§c)_1ﬁﬁcﬁé-1 € M(R_(s))
o T,= 'ﬁﬁcﬁ‘;‘l < M(R (3))
- ﬁl-w =DD;, D e M(R,(s)) (3)

The last statement shows that PC contains an internal model of Tﬁd'

RPIS and Internal Models in a General System
Problem Formulation

Consider the system Z(SP,SC) in Figure 2,

W ¥

u

Figure 2. The compensated system Z(SP,SC).
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where SP and Sc denote the plant and contrcller, respectively. For a recent
overview of the regulation problem with internal stability for Z(SP,SC) see
[19]). Assume that SP and SC are controllable and observable. Let an

input-output description of the plant be

Y, u P P, ifu
m | _ p - 11 12 , (4)
Yo W Poy Pop | ¥

where P, Pij € M(Rg(s)); the vectors Yor ¥ contain the variables of the
plant to be controlled and the ones that are measured, respectively; the
vector w contains all the variables that affect the plant, but are not
manipulated by the controller {for example, nonmeasurable disturbances and
initial conditions); and u is the vector of control inputs. This general
plant model is used because it unifies the study of plants where the
controlled and measured variables are not necessarily the same (yc#ym), and

where an exogenous signal w is present. Let the control u be given by

u = —Cym. (5)
We also assume that the controlled system z(SP,SC) is well-defined, that is,
]I+PIIC|=|I+CP11|#0, and that all possible input-output maps are proper. As
in the first part of the paper it is assumed that w is the output of a linear
system with input-output relation given by

W= wai, {6)
where d is a bounded vector.

We call RPIS over Rg(s) the problem of finding a linear compensator SC
that makes

(1) TCd € M(mg(s)), and,

{2) z(SP,SC) Rg—stable.
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Solvability Conditions

A complete treatment of Rg-stability for the compensated system Z(SP,SC)
is presented in [7-9]. Some of the results in [7-9] are presented here for
clarity. A system is Rg-stable if all its eigenvalues are in Sg. Because of
the general plant model it is necessary to characterize the class of plants
that can be stabilized over Sg. SP is stabilizable over Rg(s) if and only if
SP is stabilizable over Rg(s) from u and detectable over Rg(s) from Y {(for
example, see [7-9]). With the following definitions we will be able to state
a useful set of conditions to determine whether SP is gtabilizable over Rg(s)
or not., Let
Ny (N
-1

C = DNy (8)
c o]

be coprime factorizations over Rg(s), and let a doubly coprime factorization

of P11 be
x! x}! D __;cl
U U'-l - Hl ~2 1 ~2 : (9)
N By F
[} 1 - -t 3 373 tEd
where X1 X0 X0 X5 € M(mg(s)). Then SP is stabilizable, usually sta as
SP is Rg-admissible, if and only if

PyiDis» DiPygs Pyp-Po DiX5P15

It will be convenient to denote these expressions as

€ M(Rg(s)). {10)

- P, Dix:P

22 = Po1Pi¥5F12- (11)

Pi iz leDi, Pé := DiPlz, Pé =P

Remark: If SP is Rg—admissible then P11 containg an internal model of P12

and P21. Furthermore, it is shown in [9] that P} € M(Rg(s)) implies that P

3 12

and P21 contain an internal mocdel of P22‘ Similar conditions are presented

in [20}, where the term "containment" is used.
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If the plant is Rg—admissible, the compensated system is well defined
(|I+P110|=|I+CP11|¢0), and every input-output map is proper, then z(SP,SC) is
Rg-stable if and only if

DéDi + NéNi is unimodular over Rg(s). {12)
A characterization of all mg—stabilizing C is given by
—-— | - l~| -1 (] I~I
C= (xl K Nl) (x5+K Dl), (13)
where K' e M(Rg(s)) is such that |xi-K'ﬁi]#0 and (xi-K-ﬁi) is biproper. This
parameterization of Cy can be used to combine the regulation and Rg-stability
conditions into one. The characterization in (13) can be used to simplify

Tcw’ the transfer function matrix from w to Yo Note that

_ -1
Tcw = PZZ-PZIC(I + PIIC } P12 {14)
and substituting (11) and (13) into (14) gives
T = P: - PK'P.. (15)

cw 3 1 2

The regulation over mg(s) condition is satisfied if and only if Tcd=Tchwd €
M(Rg(s)), which can be written using (15) as
- 1 B [ 3 L] ~l—1~l

Tcd = (P3 - PlK PZ)Dw NW € M(Rg(s)), (16}

where deéﬁénlﬁé ig a l.c. factorization over Rg(s). So RPIS over Rg(s) is
solvable if and only if there exists K' M(Rg(s)) such that (16) is

satisfied. Let

~|_1 - ' |-1
P Dw B NZtzw
1

DTt =
T

1% (17)

= Dy No,
-1

Pé NéWDBW '
where (Néw’Déw)’ (ﬁéw,ﬁéw), (Néw’Déw) are coprime factorizations. Then there

(18)

exist xiw, xéw € M(Rg(s)), satisfying

xiwDéw + XéwNéw = I. (19)

The solvability conditions are given in the following theorem.
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Theorem 1. The RPIS over Rg(s) for the system Z(SP,SC) is solvable if and
only if either (i) or (ii) is satisfied.

(i) There exist K*', V' ¢ M(Rg(s)) so that

VD + PIK'Py = Py (20)
33 ] 1 = |-1 ]
(ii) (a) D1w € M(Rg(s)), where Dlw’D3w D). and (21)
{b) there exist K', R' ¢ M(Rg(s)) so that
PiK' - R'Dy = N3 D1 X5 (22)

The theorem is proven in [9). A similar condition to the one in (20)
has appeared in [1], for the plant considered in Figure 1. The conditions in
(ii) demonstrate once again that the solvability condition of the regulation
problem with internal stability depends on a skew-prime equation.

An important special case is when Y=Y and there are exogenous signals
acting on the output of the plant as shown in Figure 1. 1In this case,the
regulation condition is satisfied when

T = (I+P

cd 1 12 5d
where P11=P. In order to combine both the regulation and Rg—stability

-1
1Cy) P € M(IRg(S)), {23)
requirements, substitute the characterization of Rg—stabilizing controllers
Cy in {13) in Tcd’ giving

Tccl = (xi - NiK' )Diplszd
So RPIS over Rg(s) is solvable if and only if there exists K' € M(Rg(s)) such

(24)

that (24) is satisfied. The solvability conditions follow from Theorem 1;

they are given in Corollary 1.1.

Corollary 1.1: RPIS over Rg(s) for the system depicted in Figure 1 is

solvable if and only if there exist ei, eé € M(Rg(s)) satisfying

= I, (25)
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Structure of the Controller
In this section we are going to characterize the structure of the

controllers that solve RPIS over Rg(s). Using this characterization it will
be possible to comment on internal models. First, write the characterization
of all Rg~stabilizing controllers in (13) as

(B, N.l=([1 KU, (26)
In order for (28) to characterize the set of all C that solve RPIS over Rg(s)
K' must satisfy additional conditions. These additicnal conditions are
obtained by characterizing the general solution to one of the solvability
conditions. In particular, we consider (22). The general solution of (22)
is the sum of a particular and the homogenecus solution. Let

X' = Kﬁ + Kﬁ {27)

where Kﬁ (Kﬁ) denotes a particular {the homogeneous) solution. Substitution
of (27) in {26) gives a characterization of all C that solve RPIS over Rg(s),

whenever it is solvable,
~I
c

N
C

:—ci - Kﬁ'ﬁi (28)

:-cé + K};ﬁ', (29)

where xi:xi—KéNi, xé:xé+K§Di € M(Rg(s)). A characterization of a large class
of solutions for Kﬁ is given by

Kﬁ = W'Déw‘ {30)
See [9] for a discussion on the generality of solutions in (30).
Substituting (30) in (29) and solving for [I W'ﬁéw] gives the set of

structural conditicns that must be satisfied by C

DéDi + NéNi = I {31)

D(':(—xé) + N(':xi = W'Déw. (32)

Notice that (31) is the Rg-stability condition and that {32) corresponds to

the RPIS over Rg(s) requirement. A characterization of controllers that

10
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solve RPIS over Rg(s) can be obtained from (31) and (32) and is written below

e, = X§ - WDy N (33)
N, = x5 + W'D, Dy, (34)

Notice that the set characterized by (33) and (34) is nonempty if RPIS over

Rg(s) is solvable. Suppose that ﬁéw € Ker(W'), then a compensator that

golves RPIS over Rg(s) is described by

R
¢

é:xi:xi—K‘i (39)
N, = x5 = x5 + Kﬁni‘ (36)

The characterization of controllers given in {(33) and (34) depends on
the particular choice of W*. One way to characterize the part of the

controller that is independent of the choice of W' is by defining

1 — 1 -‘ ~l ~|
Gd = a g.c.r.d. {xl, b le) {37)
Gﬁ = a g.c.r.d. (Xé, DéwDi)’ {38)
then
s =Dy, Ky =g (39)
- I—l-l
> C = Gd CGh’ (40)
where 6=ﬁé'lﬁé. The significance of Gy and G! is that they are introduced

solely because of the regulation over Rg(s) requirement, while C must satisfy

both structural conditions: (31) and {(32). Note that ]G&||Gﬁ‘ divides

By, | and that C satisfies the R -stability condition (31) if and only if
|Gé| |Gﬁ| and lﬁéwl are associatesz. {41)

If (41) is satisfied and if RPIS is solvable then

~l = N’l ]
c cn

-

B = Dol » (42)

1g.c.r.d. denotes greatest common right divisor.

2Two elements a, b € Rg(s) are associates if they differ by u, a unit in

Rg(s), that is, a = ub.

11
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is a necessary and sufficient condition for regulation over Rg(s). In this
case the controller must contain the exogenous system dynamics in G& and/or
G'.
n

In the special case when VY, 8 in the system depicted in Figure 1 the
structure of the controller is well understood. The controller that solves
the RPIS over Rg(s} in this case is of the form

c = 6y, (43)
where G& satisfies (41) and Gﬁ:I [21,22]. This controller structure has been
associated to the existence of an internal model in the cascade connection
PC. Note that Ga contains the poles of de that are not poles of the plant
with similar structure.

For the general plant, ybtyh, the controller that solves RPIS over Rg(s)
is given by (40). This was derived using the class of homogeneous solutions
{30). Observe that there may be additional solutions to the homogeneous
equation which though result in a controller of the form in (40} [19]. When
(41) is satisfied, then the appropriate transmission zeros in,Tcw are
introduced via poles of C (in Géfl) and zeros of C (in Gﬁ), in addition to
some appropriate structure on the plant. But, this is not necessary. So,
for the general plant internal models as defined here are not necessary [4].
In general, the role of the controller in regulation is to introduce
appropriate transmission zeros in Tcw [23]. These transmission zeros are
introduced by the imposition of structural relations ((31) and (32)) on the
numerator and denominator matrices of C. In the case yé#yﬁ this does not
necessarily translate into transmission zeros of Tcw being poles or zeros of

C as discussed above.
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CONCLUSION

We have presented two definitions for internal models over rings that

pertain to the regulation problem with internal stability without a

robustness requirement. The applicability of the intcrnal model definitions

was illustrated with two compensated systems. When the controlled and

measured variables of the plant are the same, the necessity of internal

models as defined here is directly established. When the controlled and

measured variables differ, the controller C does not need to contain explicit

information about the dynamics of the exosystem, but the numerator and

denominator matrices of C must satisfy the structural conditions in

(31)-(32). Research to generalize the definitions of internal models

presented here and establish the conditions under which they will be

necessary for RPIS over Rg(s) is ongoing.

{11
(2]

(31

{4]

£33

6]

(7]
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