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Abstract— When network induced delays are considered in
the event-triggered control literature, they are typically delays
from the plant to the controller and a tight bound on the
admissible delays is usually imposed based on the analysis of
inter-event time. In [19], a dynamic output feedback based
event-triggered control scheme is introduced for stabilization
of input feed-forward output feedback passive (IF-OFP) net-
worked control systems (NCSs), which is a more general case
compared with the passive and the output feedback passive
(OFP) systems studied in [18]. Based on the results shown
in [19], we propose a dynamic output feedback based event-
triggered control set-up for NCSs which allows us to consider
network induced delays both from the plant to the controller
and from the controller to the plant. We show that based on
the proposed set-up, finite-gain L2 stability can be achieved in
the presence of arbitrary constant network induced delays or
time-varying delays with bounded jitters.

I. INTRODUCTION

Event-triggered control has been introduced for the possi-

bility of reducing resources usage (i.e., sampling rate, CPU

time, network access frequency) while preserving system’s

stability in networked control systems (NCSs) and embed-

ded control systems[11]. Although there are heterogeneous

terminologies in the literature which refer to the trigger-

ing mechanism as event-based-sampling[11], to event-driven

sampling[12], Lebesgue sampling[4], deadband control[13],

level-crossing sampling[14], state-triggered sampling[5] and

self-triggered sampling[8] with slightly different meanings,

in all cases, the triggering mechanisms are referring to the

situation in which the control signals are kept constant until

the violation of a condition on certain signals of the plant

triggers the re-computation of the control signals.

Although the advantages of event-triggered control are

well-motivated and even practical applications show its

potential, there are still some problems that need to be

addressed before event-triggered control can be fruitfully

applied in NCSs. Most of the work on event-triggered control

considers static state feedback controllers, which assumes

that full plant’s state can be measured. As in many control

applications the full state information may not be available

for measurement, it is important to study stability and

performance of event-triggered control systems with static

and dynamical output feedback based controllers. However,

there are not many theoretical results on this problem in the

literature.

An early work on event-triggered control using dynamic

output feedback based controllers is presented in [14]. But
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a thorough analysis of the minimum time between two

subsequent events, the so-called inter-event time, is not

available in there. A recent work on output feedback based

event-triggered control scheme with guaranteed L∞-gain for

linear time-invariant control system is introduced in [17],

where the event-triggered control system is modeled as an

impulsive system and linear matrix inequalities are used to

study the stability and performance of event-triggered control

systems. The framework shown in [17] cannot be easily

extended to nonlinear control systems, and the triggering

mechanism requires a synchronization between the plant

and the network controller which is not very practical to

be implemented in NCSs. In our previous work [18], a

static output feedback based event-triggered control scheme

is introduced for stabilization of passive and output feedback

passive(OFP) NCSs, where a static output feedback gain

and a triggering condition are derived based on the output

feedback passivity indices of the plant. In [19], we propose

an event-triggered control scheme for stabilization of Input

Feed-forward Output Feedback Passive(IF-OFP) systems,

which is a more general framework compared with our

previous results in [18]. The triggering condition is derived

based on the passivity theorem which characterizes a large

class of output feedback stabilizing controllers. Moreover, L2

stability is guaranteed in the presence of bounded external

disturbances as long as network induced delays from the

plant to the network controller is upper bounded by the inter-

event time.

However, in real time NCSs, the network induced delay is

usually unknown, it is very likely having delay larger than

the inter-event time. Moreover, in the presence of external

disturbances, the admissible network induced delays derived

based on the triggering condition could be every small as

discussed in [19]. Furthermore, non-trivial delays from the

controller to the actuator could also jeopardize the stability

of the control system. Thus, when we apply event-triggered

control to NCSs, it is important to take those problems

just mentioned into consideration. Based on the passivity

framework of dynamic output feedback based event-triggered

control strategy investigated in [19], we propose an event-

triggered control set-up for NCSs which allows us to consider

network induced delays both from the plant to the controller

and from controller to the plant. We show that based on the

proposed set-up, finite-gain L2 stability can be achieved in

the presence of arbitrary constant network induced delays

or delays with bounded jitters. The rest of this paper is

organized as follows: we introduce some background on

passive and dissipative systems in section II; the problem is
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stated in section III; our main results are provided in section

IV and followed by the examples provided in section V;

concluding remarks are made in section VI.

II. BACKGROUND MATERIAL

Consider the following control system, which could be

linear or nonlinear:

Hp :

{
ẋp = fp(xp, up)

yp = hp(xp, up)
(1)

where xp ∈ Xp ⊂ R
n, up ∈ Up ⊂ R

m and yp ∈ Yp ⊂ R
m

are the state, input and output variables, respectively, and Xp,

Up and Yp are the state, input and output spaces, respectively.

The representation φp(t, t0, xp0, up) is used to denote the

state at time t reached from the initial state xp0 at time t0.

Definition 1(Supply Rate)[1]: The supply rate ωp(t) =
ωp(up(t), yp(t)) is a real valued function defined on Up×Yp,

such that for any up(t) ∈ Up and xp0 ∈ Xp and yp(t) =
hp(φp(t, t0, xp0, up), up), ωp(t) satisfies

∫ t1

t0

|ωp(τ)|dτ < ∞. (2)

Definition 2(Dissipative System)[1]: System Hp with

supply rate ωp(t) is said to be dissipative if there exists

a nonnegative real function Vp(x) : Xp → R
+, called the

storage function, such that, for all t1 ≥ t0 ≥ 0, xp0 ∈ Xp

and up ∈ Up,

Vp(xp1) − Vp(xp0) ≤
∫ t1

t0

ωp(τ)dτ, (3)

where xp1 = φp(t1, t0, xp0, up) and R
+ is a set of nonneg-

ative real numbers.

Definition 3(Passive System)[1]: System Hp is said to be

passive if there exists a storage function Vp(xp) such that

Vp(xp1) − V (xp0) ≤
∫ t1

t0

uT
p (τ)yp(τ)dτ, (4)

if Vp(xp) is C1, then we have

V̇p(xp) ≤ uT
p (t)yp(t), ∀t ≥ 0. (5)

One can see that passive system is a special class of

dissipative system with supply rate ωp(t) = uT
p (t)yp(t).

Definition 4(IF-OFP systems)[2]: System Hp is said to be

Input Feed-forward Output Feedback Passive(IF-OFP) if

it is dissipative with respect to the supply rate

ωp(up, yp) = uT
p yp − ρpy

T
p yp − νpu

T
p up, ∀t ≥ 0, (6)

for some ρp, νp ∈ R.

For the rest of this paper, we will denote an m−inputs

m−outputs dissipative system with supply rate (6) by IF-

OFP(νp, ρp)
m and we will call (νp, ρp) passivity indices of

the system.

Theorem 1 (Passivity Theorem)[15]: Consider a well-posed

feedback interconnection as shown in Fig.1, and suppose

each feedback component satisfies the inequality

V̇i ≤ uT
i yi − ρiy

T
i yi − νiu

T
i ui, for i = 1, 2, (7)

for some storage function Vi(xi). Then, the closed-loop map

from ω = [ωT
1 , ωT

2 ]T to y = [yT
1 , yT

2 ]T is finite gain L2 stable

if

0 < ρ1 + ν2 < ∞, 0 < ρ2 + ν1 < ∞. (8)

Fig. 1: Feedback Interconnection of Two IF-OFP Systems

Lemma 1[16]: Without loss of generality the domain of

ρp, νp in IF-OFP system (6) is considered by Ω = Ω1 ∪ Ω2

with Ω1 = {ρp, νp ∈ R|ρpνp < 1
4}, Ω2 = {ρp, νp ∈

R|ρpνp = 1
4 ; ρp > 0}.

III. PROBLEM STATEMENT

We consider the control system given in (1). We assume

Hp is IF-OFP(νp, ρp)
m with storage function Vp. Based on

Theorem 1, we know that if we design an IF-OFP(νc, ρc)
m

controller with storage function Vc such that 0 < ρc + νp <

∞, 0 < ρp + νc < ∞, then the closed-loop system is finite

gain L2 stable.

Fig. 2: Event-Triggered NCSs

In real time NCSs, the implementation of the feedback

control law is typically done by sampling the plant output

yp(t) at time instants t0, t1, . . . , computing the control

action yc(t) and updating the input to the plant at time

instants t0 + ∆0, t1 + ∆1, . . . , where ∆k ≥ 0, for

k = 0, 1, 2, . . . represents the network induced delay from

the plant to the network controller(here, we assume the

delay from the controller to the actuator is negligible). This

means a sequence of measurements yp(tk)s corresponds

to a sequence of controller’s input updates uc(tk + ∆k)s.

In event-triggered NCSs, an event-detector (an embedded

hardware in the sampler) is used to monitor the output of the

plant with sufficiently fast sampling rate, an updated output

measurement is sent to the network controller only when

the size of the output novelty error ẽp(t) = yp(t) − yp(tk)
(for t ∈ [tk, tk+1)) exceeds a certain threshold(triggering
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condition), where yp(tk) denotes the last transmitted output

information of the plant. However, in most set-up of event-

triggered NCSs studied in the literature (see [5],[6],[8], [18]),

only network induced delay (∆k as shown in Fig.2 ) from

the plant to the controller has been considered and a bound

on the admissible network induced delay is obtained based

on the inter-event time to schedule data transmission, while

the network induced delay from the controller to the actuator

(∆̃ as shown in Fig.2) is neglected.

As discussed in Section I, it is important to consider

network induced delays both from the plant to the controller

and from the controller to the actuator in event-triggered

NCSs, and we also need to take care of the case when

network induced delay is larger than the inter-event time.

In the following section, we propose a set-up to solve those

problems based on our previous results in [19].

IV. MAIN RESULTS

We first state a main result in our companion paper [19],

which is important to arrive at the triggering condition in our

proposed set-up.

Theorem 2 ([19]). Consider the control system as shown

in Fig.2, where the plant is IF-OFP(νp, ρp)
m with storage

function Vp, the controller is IF-OFP(νc, ρc)
m with storage

function Vc, and 0 < νc + ρp < ∞ , 0 < νp + ρc < ∞.

Assume that the network induced delay ∆k ≡ 0 and ∆̃ ≡ 0.

If the event time tk is explicitly determined by the following

triggering condition

‖ẽp(t)‖2 =
δ

ζ

[√

β(ρp + νc) +
ν2

c

ζ2
− |νc|

ζ

]
‖yp(t)‖2, ∀t ≥ 0,

(9)

where ζ =
[ 1

4α(νp + ρc)
+ |νc| − νc

] 1
2

, (10)

with δ ∈ (0, 1] and 0 < α, β < 1, then the control

system is L2 stable from ω(t) = [ωT
1 (t), ωT

2 (t)]T to y(t) =
[yT

p (t), yT
c (t)]T .

The triggering condition (9) in Theorem 2 determines

when a new sampled output information of the plant should

be sent to the network controller for control action update to

ensure L2 stability of the control system in the absence of

network induced delays. We could further get the admissible

network induced delay from the plant to the controller by

following similar analysis shown in [5], [6] and [7], [8], and

as long as the delay is upper bounded by the inter-event time

implicitly determined by the triggering condition, L2 stability

of the system can be assured. However, the admissible

delay obtained by following those methods might be very

conservative and in the presence of external disturbances,

the admissible delay could be extremely small [19].

For simplification of presentation, let

σo =
1

ζ

[√

β(ρp + νc) +
ν2

c

ζ2
− |νc|

ζ

]
. (11)

In the following proposition, we consider network induced

delays both from the plant to the controller and from the

controller to the plant and we introduce a set-up which

guarantees L2 stability of the control system in the presence

of arbitrary constant network induced delays or delays with

bounded jitter.

Fig. 3: Proposed Set-up for Event-Triggered NCSs

Proposition 1. Consider the set-up for event-triggered net-

worked control system as shown in Fig.3. The plant hp is an

IF-OFP(νp, ρp)
m system with storage function Vp and the

network controller hc is an IF-OFP(νc, ρc)
m system with

storage function Vc; T1(t) represents the network induced

delay from the network controller to the plant, and T2(t)
represents the network induced delay from the plant to the

network controller; the “ZOH” block denotes the zero-order

holder; the “DB” block represents the dead-band control so

that the signal υr(t) can only be transmitted when

‖υr(t) − υr(tk)‖2 = δσo‖υr(t)‖2 and ‖υr(t)‖2 ≥ ∆min,

(12)

where ∆min is some lower bound on the dead-band designed

for practical application; υr(tk) denotes the last transmitted

signal at the time instant tk, υr(t0) = M11yp(t0), and δ ∈
(0, 1]; M is a local controller implemented at the plant side

such that
[
υr(t)
ur(t)

]
= M

[
ũc(t)
ỹc(t)

]
=

[
M11Im 0
M21Im M22Im

] [
ũc(t)
ỹc(t)

]
(13)

where Im ∈ R
m×m is the identity matrix and M11, M21,

M22 are chosen such that

M2
11 =

1
4ρc

− νc

1
2ρc

+ |νc|
, M2

21 =
1

2(1 − d1)ρ2
c

M2
22 =

2

1 − d1
, M21M22 < 0.

(14)
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The implementation of M is also illustrated in Fig.3. Let the

following conditions be satisfied:

1) the controller is designed such that 0 < νc + ρp < ∞
and 0 < ρc + νp < ∞, with ρc > 0 and ρcνc < 1

4 ;

2) 0 ≤
∣∣dT1(t)

dt

∣∣ ≤ d1 < 1, 0 ≤
∣∣dT2(t)

dt

∣∣ ≤ d2 < 1;

3) the holder at the controller side yields

uc(t) =
1

(1 + δσo)
√

1 + d2

υr(tk), (15)

for t ∈
[
tk + T2(tk), tk+1 + T2(tk+1)

)
, ∀k.

If the event time tk is explicitly determined by the triggering

condition

‖ẽp(t)‖2 = δσo‖yp(t)‖2, when ‖yp(t)‖2 ≥ ∆min

M11
(16)

then the control system is finite-gain L2 stable from ω(t) to

yp(t).
Proof: Since the controller hc is IF-OFP(νc, ρc)

m, such

that

V̇c ≤ uT
c (t)yc(t) − ρcy

T
c (t)yc(t) − νcu

T
c (t)uc(t) (17)

with ρc > 0 we can get

V̇c ≤ −ρc‖yc(t)‖2
2 + ‖uc(t)‖2‖yc(t)‖2 + |νc|‖uc(t)‖2

2

= − 1

2ρc

(
‖uc(t)‖2 − ρc‖yc(t)‖2

)2
+

1

2ρc

‖uc(t)‖2
2

− ρc

2
‖yc(t)‖2

2 + |νc|‖uc(t)‖2
2

≤
( 1

2ρc

+ |νc|
)
‖uc(t)‖2

2 −
ρc

2
‖yc(t)‖2

2,

(18)

integrating both sides of the inequality (18) from t0 to t, we

can get

∆Vc = Vc(t) − Vc(t0) ≤
( 1

2ρc

+ |νc|
) ∫ t

t0

‖uc(t)‖2
2dt

− ρc

2

∫ t

t0

‖yc(t)‖2
2dt.

(19)

Since

υ̂r(t) =

{
0, for t ∈

(
tk + T2(tk), tk+1 + T2(tk+1)

)
, ∀k

υr(tk), for t = tk + T2(tk), ∀k,
(20)

and uc(t) = 1
(1+δσo)

√
1+d2

υr(tk), for t ∈
[
tk +

T2(tk), tk+1 + T2(tk+1)
)

, we can further obtain

∫ t

t0

‖uc(t)‖2
2dt

=

N∑

k=0

[
tk+1 − tk + T2(tk+1) − T2(tk)

] ‖υr(tk)‖2
2

(1 + δσo)2(1 + d2)

≤
N∑

k=0

(1 + d2)(tk+1 − tk)

(1 + d2)

‖υr(tk)‖2
2

(1 + δσo)2

=

N∑

k=0

(tk+1 − tk)
‖υr(tk)‖2

2

(1 + δσo)2
.

(21)

Note that the dead-band control actually guarantees that

‖υr(t) − υr(tk)‖2 ≤ δσo‖υr(t)‖2, for t ∈ [tk, tk+1], ∀k,

(22)

also note that ‖υr(t)−υr(tk)‖2 ≥ ‖υr(tk)‖2−‖υr(t)‖2, we

can conclude that

‖υr(tk)‖2 ≤ (1 + δσo)‖υr(t)‖2, for t ∈ [tk, tk+1], ∀k,

(23)

thus
∫ t

t0

‖uc(t)‖2 ≤
N∑

k=0

(
tk+1 − tk

) ‖υr(tk)‖2
2

(1 + δσo)2

=

N∑

k=0

∫ tk+1

tk

‖υr(tk)‖2
2

(1 + δσo)2
dt

≤
N∑

k=0

∫ tk+1

tk

‖υr(t)‖2dt =

∫ t

t0

‖υr(t)‖2
2dt.

(24)

Since 0 ≤
∣∣dT1(t)

dt

∣∣ ≤ d1 < 1, one could verify that

∫ t

t0

‖ur(t)‖2
2dt ≤ 1

1 − d1

∫ t

t0

‖yc(t)‖2
2dt,

so

−
∫ t

t0

‖yc(t)‖2
2dt ≤ −(1 − d1)

∫ t

t0

‖ur(t)‖2
2dt. (25)

Substitute (24) and (25) into (19), we have

∆Vc ≤
( 1

2ρc

+ |νc|
) ∫ t

t0

‖υr(t)‖2
2dt

− ρc(1 − d1)

2

∫ t

t0

‖ur(t)‖2
2dt.

(26)

Based on (13), we can get

υr(t) = M11ũc(t), ur(t) = M21ũc(t) + M22ỹc(t), (27)

substitute (27) and (14) into (26) we can get,

∆Vc ≤
∫ t

t0

(
ũT

c (t)ỹc(t) − νcũ
T
c (t)ũc(t) − ρcỹ

T
c (t)ỹc(t)

)
dt,

(28)

which implies that the system h̃c : ũc(t) → ỹc(t) is IF-

OFP(νc, ρc)
m.

According to Theorem 2, for the feedback interconnection

of hp and h̃c, if we schedule the transmission of the output

measurement yp(t) according to the triggering condition (9),

then the closed-loop system will be finite-gain L2 stable.

Further more, because the growing rate on the threshold of

the dead-band control is the same as the growing rate on

the threshold of the triggering condition, one can conclude

that the data transmission of υr(t) and the triggering process

are actually synchronized. Thus, whenever a new output

information of the plant is obtained, an updated signal υr(t)
will be sent to the network controller. When ‖υr(t)‖2 <

∆min, which could be considered as the case when the

output of the plant reaches some safe region for practical

application, then no more data transmission is needed. The

proof is completed.

208



Remark 1: Based on the set-up shown in Proposition 1, one

can see that system h̃c : ũc(t) → ỹc(t) is IF-OFP(νc, ρc)
m as

the controller hc : uc(t) → yc(t), so the networked control

system can still be analyzed as a feedback interconnection of

an IF-OFP(νp, ρp)
m plant with an IF-OFP(νc, ρc)

m subsys-

tem h̃c, and we can apply Theorem 2 to derive the triggering

condition. One can further use the analysis shown in ([19],

Proposition 1 and Proposition 3) to estimate the inter-event

time.

Remark 2: Traditionally, NCSs are referred to the direct type

remote control loops as shown in Fig.2. One may argue that

in our set-up, we need a local controller at the plant side. But

as illustrated in Fig.3, the local controller M only requires

a direct output feedback loop from ũc(t) to ỹc(t) with

gain M21

M22
, so in many cases, this should not be a problem

regarding cost considerations and hardware limitations for

the implementation of such a simple local controller. The

tedious and complex control action computation can still be

done at the network controller hc.

Remark 3: In our proposed set-up, instead of obtaining

a bound on the admissible networked induced delay based

on the triggering condition or on the current state of the

plant (see [5],[7],[8],[9],[18]), we consider delays both from

the plant to the controller and from the controller to the

plant, and we have shown that finite-gain L2 stability can

be achieved with arbitrary constant delays or delays with

bounded “jitter”.

Remark 4: One should notice that the implementation of the

local controller M at the plant side requires the knowledge

of the network controller’s passivity indices (ρc, νc), and the

knowledge of the “jitter” of the network induced delay from

the controller to the plant d1. The implementation of the

“holder” at the controller side requires the knowledge of

the “jitter” of the network induced delays from the plant to

the controller d2, and also the information on the triggering

threshold δσo.

V. EXAMPLE

Example 1. Consider the IF-OFP system given by

ẋp1(t) = −3x3
p1(t) + xp1(t)xp2(t)

ẋp2(t) = 0.2xp2(t) + 2up(t)

yp(t) = xp2(t),

(29)

we can see that the system is ZSD but unstable. If we choose

the storage function Vp(xp) = 1
4x2

p2(t), we can get

V̇p(xp) = up(t)yp(t) + 0.1y2
p(t), (30)

and in this case ρp = −0.1, νp = 0.

If we consider an IF-OFP controller, which is given by

ẋc(t) = −3xc(t) + uc(t)

yc(t) = 7xc(t) + uc(t),
(31)

with storage function Vc(xc) = 49
26x2

c(t), we can get

V̇c(xc) = uc(t)yc(t) −
3

13
y2

c (t) − 10

13
u2

c(t), (32)

and in this case ρc = 3
13 , νc = 10

13 . So we have ρc + νp > 0
and νc + ρp > 0.

If we choose α = β = 0.9, then the triggering condition

shown in Proposition 1 with δ = 1 is given by

‖ẽp(t)‖2 = 0.3142‖yp(t)‖2, ∀t ≥ 0. (33)

Assume that the network induced delay from the plant to

the controller is 0.5s, and the delay from the controller to the

plant is 0.2s(since we assume constant delays in this case,

d1 = d2 = 0). We can get

M2
11 =

1
4ρc

− νc

1
2ρc

+ |νc|
= 0.1070, M2

22 =
2

1 − d1
= 2,

M2
21 =

1

2(1 − d1)ρ2
c

= 9.3889, M21M22 < 0.

(34)

Choose M11 = 0.3271, M21 = 3.0641, M22 = −1.4142,

and note that the output of the holder in this case should

be uc(t) = 1
(1+δσo)

√
1+d2

υr(tk) = 0.7609υr(tk), for t ∈[
tk + T2(tk), tk+1 + T2(tk+1)

)
.

Assume that the external disturbance ω(t) is an uniformly

distributed random signal on the interval [0, 1]. The simula-

tion result is shown in Fig.4, where σ(t) shows the evolution

of
‖ẽp(t)‖2

‖yp(t)‖2
, {tk+1 − tk} shows the evolution of the inter-

event time, xp1 and xp2 show the evolution of the states of

the plant. Fig.5 shows the signal transimission process from

yp(t) to uc(t).

Now assume that the network induced delay from the plant

to the controller is increasing with rate 0.6(T2(0) = 0.5s),

and the delay from the controller to the plant is increasing

with rate 0.2(T1(0) = 0.2s), then in this case we have

d1 = 0.2, d2 = 0.6. We can further get M11 = 0.3271,

M21 = 3.4258, M22 = −1.5811, and the output of the

holder in this case should be uc(t) = 1
(1+δσo)

√
1+d2

υr(tk) =

0.6015υr(tk), for t ∈
[
tk + T2(tk), tk+1 + T2(tk+1)

)
. The

simulation results are shown in Fig.6 and Fig.7.

VI. CONCLUSION

In this paper, based on the dynamic output feedback based

event-triggered control strategy shown in our companion

paper [19], we propose a set-up for output feedback based

event-triggered NCSs. The proposed set-up allows us to

consider network induced delays both from the plant to

the controller and from the controller to the plant. We

have also shown that under the proposed scheme, finite-gain

L2 stability can be achieved in the presence of arbitrary

constant network induced delay or network induced delay

with bounded jitter.
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Fig. 4: simulation result of example 1 with constant network
induced delay: triggering process and state evolution
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ũc

0 2 4 6
0

0.5

1

1.5

2

2.5

t(s)

output of holder

 

 

uc
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ũc

0 2 4 6
0

0.5

1

1.5

2

t(s)

output of holder

 

 

uc

Fig. 7: simulation result of example 1 with time-varying network
induced delay: signal transmission process from yp to uc

[11] K. J. Aström, “Event Based Control”, Analysis and Design of Nonlin-

ear Control Systems, Part 3, pp.127-147, 2008.
[12] W. P. M. H. Heemelsa, J. H. Sandeeb, P. P. J. Van Den Boscha,

“Analysis of event-driven controllers for linear systems”, International

Journal of Control, Volume 81, Issue 4, pp.571-590, April 2008.
[13] P. G. Otanez, J. R. Moyne, D. M. Tilbury, “Using deadbands to reduce

communication in networked control systems”, Proceedings of the

American Control Conference, pp.3015-3020, 2002.
[14] E. Kofman, J. H. Braslavsky, “Level Crossing Sampling in Feedback

Stabilization under Data-Rate Constraints”, Proceedings of the 46th

IEEE Conference on Decision and Control, pp.4423-4428, San Diego,
CA, December 13-15, 2006.

[15] H. Khalil, Nonlinear systems, Prentice Hall, 3 edition.
[16] T. Matiakis, S. Hirche and M. Buss, “A novel Input-Output Trans-

formation Method to Stabilize Networked Control Systems of Delay”,
Proceedings of 17th International Symposium on Mathematical Theory

of Networks and Systems, pp.2890-2897, 2006.
[17] M. C. F. Donkers and W. P. M. H. Heemels, “Output-Based Event-

Triggered Control with Guaranteed L∞-gain and Improved Event-
Triggering”, Proceedings of the 49th IEEE Conference on Decision

and Control, pp.3246-3251, Atlanta, GA, December 15-17, 2010.
[18] H. Yu and P. J. Antsaklis, “Event-Triggered Real-Time Scheduling For

Stabilization of Passive/Output Feedback Passive Systems”, Proceed-

ings of the 2011 American Control Conference, pp.1674-1679, San
Francisco, CA, June 29-July 1, 2011.

[19] H. Yu and P. J. Antsaklis, “Event-Triggered Output Feedback Control
for Networked Control Systems using Passivity: Triggering Condition
and Limitations”, Proceedings of the 50th IEEE Conference on Deci-

sion and Control (CDC’11) and ECC’11, Orlando, Florida, December
12-15, 2011.

210


