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INTRODUCTION

A comprehensive study of internal stability over a desirable region of
the complex plane (Rg-stabiiity) for a class of general multivariable systems
is presented in this paper. The system consists of a general plant S, where
the measured and the controlled variables are not necessarily the same, and a
general linear controller SC' We are interested in the two degrees of
freedom controller, which has received renewed interest in the literature
because of its usefulness in addressing control problems with multiple
objectives [1-10]. 1In this paper, we first present a set of necessary and
sufficient conditions for the existence of Rg—stabilizing controllers for the
plant. A novel theorem to determine Rg-stabi!ity of the compensated system
is then introduced, which clarifies the relation between stability of two
degrees of freedom and single degree of freedom compensated systems.

Internal stability is clearly shown to be an extension of single degree of

freedom stability results. This theorem leads directly to parametric

1The work was supported in part by the National Science Foundation under
Grant ECS 81-05714.
1



characterizations of all input-output maps attainable with Rg-stability from
r, the vector of request inputs; also to controller configurations that
attain these maps. Furthermore, it directly leads to parameterizations of
all Rg-stabilizing two degrees of freedom controllers. Alﬁhough some of the
conditions presented in this paper have appeared in a more general algebraic
setting in [21,22,30], they are derived here using "internal descriptions";
thus, providing additional insight. The main internal stability theorem
appears for the first time.

A motivation for this paper is to solve the usual problem in control of
placing the controlled system’s eigenvalues in a desirable region of the
complex plane © for the general systems considered here. Let Sg denote this
region which corresponds to the "good" portion of the complex plane so that
Sg is symmetric with respect to the real axis and contains at least one real
point. Then a system will be said to be mg*stable if all its eigenvalues are
in Sg, and a controller will be said to be Rg-stabilizing if the compensated
system is Rg-stable. So the problem is to find an Rg—stabilizing controller

Sc for the plant S

p*
Let Rg(s) be a nonempty subset of Rp(s), the ring of proper rational
functions with real coefficients, consisting of the proper rational functions

which have all their poles in Sg. Then it can be shown that Rg(s) is a
proper Euclidean domain [12,13]. In particular, Rg(s) is a principal ideal
domain [14}, giving Rg(s) the same nice algebraic properties of the
polynomial ring R{s]. To develop the theory we will be using factorizations
of transfer function matrices over Rg(s), that is, a given transfer function
matrix is modeled as the ratio of two rational matrices with entries in

R_{s). The background to develop the theory can bte found in {3,15,16,4]. We

will develop the theory in the context of linear time-invariant continuous



and discrete systems but the theory can be easily extended to consider linear
distributed continuous and discrete systems (for this and other extensions
see [5-Chap. 8,4,15,16}).

The analysis of Rg-stability of the compensated systep will be clear if
a direct relation to an internal description of the systems is maintained.
This has been one of the advantages of working with polynomial matrix
factorizations, but in this paper we are using factorizations over Rg(s).
For this reason, the results of Antsaklis in [17] relating proper, stable
transfer matrix factorizations to internal descriptions have been extended to
our setting in [26,27), when Sg is not necessarily the open left half plane
€ . Furthermore, the results in [17] were extended to characterize the
relation between a bicoprime representation [3] of a transfer function matrix

and an "internal description” of that system.

PROBLEM FORMULATION

Consider the controlled system depicted in Figure 1,

Figure 1. A compensated system Z(SP,SC)-

where SP and SC denote the plant and compensator, respectively. Assume that

the plant SP is controllable and observable, and let an input-cutput

description of S_ be
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where the vectors Yor Y contain the variables of the plant to be controlled

and the ocnes that are measured, respectively; the vector w contains all the



variables that affect the plant, but are not manipulated by the compensator
{for example, nonmeasurable disturbances and initial conditions); u is the
vector of control inputs; and P and Pij’ i, j=1,2, are proper transfer
function matrices. This general plant model is used because it unifies the
study of plants where the controlled and measured variables are not
necessarily the same (yé#yﬁ), and where an exogenous signal w is present.
Assume that the controller S, is controllable and observable, and let the

C
control u be given by

Ym] [ Y
r = [-C C ] r
¥y °r

where C:{—Cy Cr} ig the transfer function matrix of SC, and r is the vector

u=_C , (2)

of command inputs. Also, assume that the compensated system Z(SP,SC) is
well-defined, that is |I+P11Cy|#0 and that every input-output map is proper.

An "internal description" of SP, in so far as Rg—stability is concerned,

[u]
-{Ui Ué] w

y]_ Vi

is
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where T, Ui, é’ Vi, Vé ] M(mg(s))l, with T' square, nonsingular aand

]
Q
—
J

biproper, and (T',[Ui U1} left coprime (l.c.) over R_{s) and ([V'lt Vét]ts

T') right coprime (r.c.} over Rg(s). With the above definitions, the
quadruple {[Vit Vét]t, T+, [Ui Ué], 0} is a bicoprime factorization of P.
The problem is to place all the compensated system’s eigenvalues in Sg,

then the system is said to be mg—stable. The compensator SC is said to be an

Rg-stabilizing compensator if Z(SP,SC) is Rd-stable.

1M(Rg(s)) denotes the set of all matrices with entries in m¢(5)’ regardless

of dimension.



MATN RESULTS

Existence of Stabilizing Controllers

We present some kmown results and extensions of known results that

answer the question: when is the plant S_ stabilizable over mg(s), that is,

P
when does there exist an Rg—stabilizing controller SC for the plant SP? The
following definitions are needed. Let P ,=NiD -lzﬁi-lﬁi be coprime

117N
R -factorizations, that is, (Nj,Dj) and (ﬁi,‘ﬁi) are r.c. and l.c. in R (s),

respectively, with Di and Bi nonsingular and biproper, and let xi,xé €

M(Rd(s)) satisfy the Diophantine equation xiDi+xéNi=I. Consider the partial

. . ot iom s sl - +
fraction expansion Pij_Pij+Pij’ i, j=1,2, where all the poles of Pij (Pij) are

in §_ (2:=€\S_); and let u+[Pij] denote the McMillan degree of P;j’ that is,

+
u[Pij]'
A state space description of the plant is given by

u ]

x(t) = Ax(t) + [B] B,l| w |

[y (t) C E E,, 17 utty
m : 1 K(t) + 11 “12 , (1)
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where A, B, C, and E are nxn, nx(m+s), (g+p)xn and {g+p)x(m+s) real constant

matrices, respectively. Stabilizability and detectability in this case can
be expressed in terms of rank tests denoted PBH tests in [23]. For example,
for continuous systems, we say that the pair (A,B) is stabilizable if and
only if [sI-A B] has rank n for all s with Re{s} > 0. A dual relation holds
for dectectability of the pair (C,A). This definitions can be extended to
consider stabilizability and detectability over Rg(s) as follows. A pair
{A,B) is stabilizable over Rg(s) if and only if the rank of {sI-A, B} is n
for all s € @, and the pair (C,A) is detectabl= over mg{s) if and only if the

rank of [Ct, (sI—A)t]t is n for all s € Q.



Theorem 1. Consider the plant SP’ then the following statements are

equivalent:
(1) There exists an Rg—stabilizing controller C.
(ii) AlY) (T',Ui) are l.c. over Rg(s), and

A2') (V:,T') are r.c. over Rg(s).

P P
(1i1) BlY) vhp) =W M 12
Po1  Po
(iv) Clr) P,,D; < M(!Rg(S)).
C2*) DiP12 € M(Rg(s)), and
C3') P22 - P21DixéP12 € M(Rg(s)).
(v) D1t} [T'l and |Di| are associatesz.
(vi) El') (A’BI) is stabilizable over mg(s), and

E2°) (Cl,A} is detectable over Rg(s).

The conditions in Theorem 1 imply that the plant SP, has all its
uncontroliable eigenvalues from u and unobservable eigenvalues from Y if
any, in Sg, that is, the existence of a compensator driven by the measurement
variables Y to produce the control signal u requires that SP be stabilizable
from u and detectable from Yo In this way, all the modes of SP that
correspond to an eigenvalue in & (the "bad" modes) will be observable from

Yo otherwise, S_. could not be an mg-stabilizing controller., Conditions (ii)

c
and (iii) extend the results in [24] and [18,19] to the general case
considered here. Recently, similar conditions as in (iv) and (v) have
appeared in {22}. Condition (vi) extends the stabilizability and
detectability properties as have been presented, for example, in [21,22,25].

For a discussicn of all these conditions and the proof of Theorem 1 see

2Two elements a, b € R_(s) are associates if they differ by u, a unit in
Rg(s), that is, a = ub.



[26,27]. Two additional sets of conditions to characterize the plants

stabilizable over mg(s) have been presented in [28, Theorem 4.3.1].

Internal stability, Attainable Maps, and Parameterizations

We now present a novel Rg-stability theorem. Note that any of the
conditions in Theorem 1 can be used to characterize the mg—admissiblg plants

SP for which there exists an Rg—stabilizing controller SC'

Theorem 2. If the plant SP is Rg—admissible then the compensated system

Z(SP,S is R _-stable if and only if

C) g

{a} the compensated system described by ym=P11u, u:-nyﬁ is R _-stable, and
, _ -1 . lo el -

{b) Cr is such that MF(I+CyP11) Cr satisfies D1 M=X', with X' € M(Rg(s)),

where Cy satisfies (i) and P11=ViDi-1 is a r.c. factorization in Rg(s).

Theorem 2 provides some advantages over other stability theorems
presented so far for the two degrees of freedom control systems. These
advantages are discussed below. The proof of Theorem 2 is based on an
"internal description” of the compensated system and it is given in {26,27].

It separates the role of Cy from Cr in achieving Rg-stability, showing
that stability in a two degrees of freedom configuration is based on the
stability of a well studied single degree of freedom configuration {condition
(a)) while condition (b) represents the condition needed to maintain
mg-stability. Observe that for a single degree of freedom controller
condition (b) follows immediately from (a).

From Thecorem Z we can directly characterize the input-output maps
attainable from r with mg-stability. In particular, we ccnsider the
characterization of the maps achievable from r to u, Yo and Yo The first one

is given by M {u=Mr) and from {(b) we have that M:DiX' where X' € M(Rg(s))‘



The next two maps are given by Tﬁr=P11M and Tcr=P21M (yhzThrr and yé=Tcrr),
which are characterized starting with the characterization of M, as TmeriX'

and Tcr=P21DiX;, where X' € M(Rg(s)), and from Theorem 1, P ' € M(mg(s)).

2101
For control systems design, it is of interest to characterize these
input-output maps to see if a desirable Tcr can be realized with

le
next theorem, which is shown in [27].

-stability, while maintaining acceptable Tﬁr and M. This is done in the

Theorem 3. A triple (Tbr’ Tﬁr’ M) is realized with Rg—stability via a two

degrees of freedom configuration if and only if

Tcr P21Di
Tmr = Ni X', X' < M(Rg(s)) {5)
M Di

If the conditions in Theorem 3 are satisfied, then the triple
(Tcr'Thr’M) can be realized via a two degrees of freedom control law since
this is the most general linear control law.

Theorems 2 and 3 show a way of choosing Cy and Cr to attain the maps

o’ Tmr and M. Consider

=
v
(%]

+ “‘“<::>E”

“m

Figure 2. A two degree of freedom compensator,
with {Cy Cr] = [G M+GT].
with M = M and with T = Tmr' In this way, feedback of the measured variables
is used to create an error signal that drives the controller G. Other

configurations to attain these maps are, of course, possible [27].



Another useful result from Theorem 2 is that it directly leads to
parameterizations of all Rg-stabilizing controllers, starting from any one
degree of freedom Rg-stabilizing controller. First, parameterize Cy using a
one degree of freedom Rg-stabilizing controller characteri;ation of Pll’ then
Cr is given by Cr=(I+CyP11)M. The characterizations of Cy over Rg(s) can be
obtained by extending the characterizations given in {20,15,16,5]; this is

done in [26,27]. Three characterizations of all Rg—stabilizing controllers

are
- 4 ‘s‘u'l -1 - + "|~|‘ [}
C = (xl—h Nl) [ (x2+h Dl’ X' {6)
— [ ] -1 1 ] i 1
C= (I Pll) {Q D1X ] {(7)
C = ((I—L'Ni)Di-l)-l[L' X', (8)
where K', @', X', L', (I-L'N})D: « M(R,(s)); |xj-K'Nj|#0, |I-Q'P,|#0 and

!I—L'Ni|¢0; (xi-K'ﬁi), (I-Q'Pll), and (I—L'Ni) are biproper. For a

description and history of these parameterizations see [20].

From Theorem 2, a necessary condition for Rg-stability is that IﬁC '
5
1

and !5 '| are associates, where C=D_ " "[N_ N 1 and C_=D -5 are l.c.
o] c y r Cy Cy

factorizations in Rg(s); the proof of this condition follows directly from
the proof of Theorem 2. This condition is similar to the plant’s
Rg—admissibility condition in Theorem 1 (v), and it can be considered to be

the R_-admissibility criterion for the controller SC.

conditions of the plant SP and of the controller Sc imply that the controlled

system is Rg—stable if and only if (a) in Theorem 2 is satisfied.

The Rg—admissibility
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Theorem 4. If the plant SP and controller SC are Rg-admissible, then the
compensated system Z(SP,SC) is Rg—stable if and only if the single degree of
freedom system described by Vg = Pllu’ u = -nyh is Rg-stable as depicted in

Figure 3.

Figure 3. A one degree of freedom system.

Note that a similar result has been independently shown in (21,22,301;

and , recently, for a compensated system that ccnsists of S_. and a one degree

P
of freedom compensator in [28]. A consequence of this theorem is that only
four of all the possible input-output maps need to be tested to check

mg-stability; these four maps correspond to the ones presented in [29].

CONCLUSION

We have presented a comprehensive study of Rg—stability of two degrees
of freedom control systems. First, several conditions to characterize the
set of all plants stabilizable over Rg(s) were presented. Then a novel
Rg-stability theorem was introduced that led directly to:

{i) characterization of all transfer function matrices from r, (ii} a way to
realize Cy and Cr to attain these desired maps, and (iii) a direct way to
parameterize all Rg—stabilizing two degrees of freedom controllers. These
results are expected to be useful in the design of two degrees of freedom

control systems.
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