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Abstract

In this paper, we study the output synchronization problem of multi-agent systems with event-driven commu-
nication, in which the data transmissions among neighboring agents are event-based rather than pre-scheduled
periodically. We propose a set-up for the coupled agents to achieve output synchronization with event-driven
communication in the presence of constant communication delays by using scattering transformation. Thus, whenever
the agent satisfies its triggering condition, a scattering variable which contains the current output information of
the agent will be sent to its corresponding neighbors, and the neighbors will extract reference information from
its received scattering variables for its own control action update. Quantization effects on output synchronization
with event-driven communication have also been studied. The result presented in the current paper is an important
extension of applying event-driven communication to control of multi-agent systems, especially when it is difficult to
derive a common upper bound on the admissible network induced delays based on the event-triggering condition or
when the network induced delays between coupled agents are larger than the inter-event time implicitly determined
by the event triggering condition.

Index Terms

output synchronization, event-driven communication, quantization effects, communication delay, passivity, graph
theory, control of multi-agent systems

I. INTRODUCTION

Recently, several researchers have suggested the idea of event-based control as a promising technique to reduce
communication and computation load for the purpose of control in many control applications. In a typical event-
based implementation, the control signals are kept constant until the violation of a “event triggering condition”
on certain signals triggers the re-computation of the control actions. The possibility of reducing the number of
re-computations, and thus of transmissions, while guaranteeing desired levels of performance makes event-based
control very appealing in networked control systems(NCSs). A comparison of time-driven and event-driven control
for stochastic systems favoring the latter can be found in [18]; a deterministic event-triggered strategy was introduced
in [19]; similar results on deterministic self-triggered feedback control have been reported in [20], [21], [22]; an
event-triggered real-time scheduling approach for stabilization of passive and output feedback passive (OFP) systems
has been proposed in [25].

On the other hand, control of multi-agent systems is facilitated by recent technological advances on computing
and communication resources. Several results concerning multi-agent cooperative control have appeared in recent
literature involving agreement or consensus algorithms [5], [6], [7] and [10], formation control and group coordina-
tion [8], [9], and distributed estimation [11], to name a few. Important aspects in the implementation of distributed
algorithms for control of multi-agent systems are communication transmissions and actuation update schemes.
Most of the work in the literature assumes that the executionof the distributed controller and the scheduling
of the communication transmission are implemented in a conservative way, where a tight bound is selected as
the maximal allowable inter-transmission time to guarantee the performance of the interconnected systems for all
possible operating points. This traditional methodology may lead to inefficient implementation of distributed control
algorithms in terms of processor usage or available communication bandwidth. Thus, event-driven communication
in control of multi-agent systems is of interest because of the potential of reducing communication load and
implementation cost. While most of the work on event-triggered control focus on sensor-actuator NCSs, there is
not many work on applying event-triggered control in control of multi-agent systems, although a recent work on
event-triggered control for consensus problem has been reported in [12].
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There are two important problems among others needed to be addressed by applying event-driven communication
in control of multi-agent systems. First, triggering condition which assures that the coupled agents to achieve a
mutual objective (as requested by many applications for control of multi-agent systems) has to be derived. The
implementation of the triggering condition should only requires the local information of the corresponding agent
and is easy to check. The second problem is that the proposed event-driven communication strategy has to be
embedded with some sort of “robustness” with respect to the imperfections of the communication networks. We
try to address event-driven communication for control of multi-agent systems by focusing on the two problems just
mentioned.

In this paper, output synchronization problem of multi-agent systems with event-driven communication has
been studied. We assume all the agents in the network are lossless and we propose a set-up to achieve output
synchronization of coupled agents with event-driven communication in the presence of arbitrary constant network
induced delays. Triggering condition to achieve output synchronization is derived based on the rectified scattering
transformation (see [14], [15], [16] for details on scattering transformation) applied in our proposed set-up. Whenever
the agent satisfies its triggering condition, a scattering variable which contains the current output information of
the agent will be sent to its corresponding neighbors, and the neighbors will extract reference information from
its received scattering variables for its own control action update. The proposed set-up in the current paper is an
important extension of applying event-driven communication to control of multi-agent systems, especially when
it is difficult to derive a common upper bound on the admissible network induced delays based on the triggering
condition or when the network induced delays between coupled agents are larger than the inter-event time implicitly
determined by the event-triggering condition.

Quantization effects on output synchronization of multi-agent system with event-driven communication has also
been investigated in this paper. We first study the quantization effects when there are no data transmission delays
in the networks. Event-driven consensus problem with quantization is singled out as a case study. Then we further
study the quantization effects when there are arbitrary constant data transmission delays in the networks and we
have shown that with the event-driven communication set-upapplied in this paper, output synchronization error of
the studied multi-agent system is essentially bounded by the quantization errors of the signals transmitted in the
networks. The rest of this paper is organized as follows: we first introduce some background on passive system and
graph theory in section II; the problem is stated in section III; we first derive the triggering condition for output
synchronization without considering network induced delays in section IV, and we also obtain an analysis of the
inter-event time based on the triggering condition, which is provided in section V; in section VI, the continuous
consensus problem is re-formulated with event-driven communication as a case study; the results for achieving
output synchronization with event-driven communication in the presence of constant network induced delays are
presented in section VII; quantization effect on output synchronization is studied in section VIII and section X;
finally, the conclusion in provided in section XI.

II. BACKGROUND MATERIAL

A. Passivity

Consider the following dynamic system which can be used to describe both linear and nonlinear systems:

H :

{
ẋ = f(x, u)

y = h(x)
(1)

wherex ∈ X ⊂ R
n, u ∈ U ⊂ R

m andy ∈ Y ⊂ R
m are the state, input and output variables, respectively, and X,

U andY are the state, input and output spaces, respectively. The representationφ(t, t0, x0, u) is used to denote the
state at timet reached from the initial statex0 at t0.
Definition 1(supply rate)[4]: The supply rateω(t) = ω(u(t), y(t)) is a real valued function defined onU × Y,
such that for anyu(t) ∈ U andx0 ∈ X andy(t) = h(φ(t, t0, x0, u)), ω(t) satisfies

∫ t1

t0

|ω(τ)|dτ < ∞. (2)

Definition 2(Dissipative System)[4]: System H with supply rateω(t) is said to be dissipative if there exists a
nonnegative real functionV (x) : X → R

+ (R+ is the set of nonnegative real numbers), called the storage function,
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such that, for allt1 ≥ t0 ≥ 0, x0 ∈ X andu ∈ U,

V (x1) − V (x0) ≤
∫ t1

t0

ω(τ)dτ (3)

wherex1 = φ(t1, t0, x0, u).
Definition 3(Passive System)[4]:SystemH is said to bepassiveif there exists a storage functionV (x) such that

V (x1) − V (x0) ≤
∫ t1

t0

u(τ)T y(τ)dτ, (4)

if V (x) is C1, then we have
V̇ (x) ≤ u(t)T y(t), ∀t ≥ 0. (5)

One can see that passive system is a special case of dissipative system with supply rateω(t) = u(t)T y(t). If
V (x1) − V (x0) =

∫ t1
t0

u(τ)T y(τ)dτ , then we say the system islossless.

B. Graph Theory

Information exchange between agents can be modeled as a graph. In the following, we give some basic termi-
nologies and definitions from graph theory [23].

We consider finite weighted directed graphsG := (V,E) with no self-loops andadjacency matrix A, whereV

denotes the set of all vertices,E denotes the set of all edges, andA := [aij ] with aij > 0 if there is a directed
edge from vertexi into vertexj, andaij = 0 otherwise. Thein-degree and out-degree of vertex k are given by
di(k) =

∑
j ajk anddo(k) =

∑
j akj respectively.

The Laplacian matrix of a directed graph is defined asL = D − A, whereD is the diagonal matrix of vertex
out-degrees.

Fig. 1: example on graph Laplacian

Example 1: Consider a graph as shown in Fig.1, where we define

aij =

{
a, if vertex i sends information to vertexj;
0, otherwise.

(6)

anda > 0 represents the coupling strength between coupled agents. Then we can get theadjacency matrix A and
the degree matrix D

A =




0 a a a

0 0 a 0
0 0 0 0
0 0 0 0


 , D =




3a 0 0 0
0 a 0 0
0 0 0 0
0 0 0 0


 , (7)

and the graph Laplacian is given by

L =




3a −a −a −a

0 a −a 0
0 0 0 0
0 0 0 0


 . (8)

Definition 4(strongly connected graph)[23]:A directed graph is strongly connected if for any pair of distinct
verticesνi andνj , there is a directed path fromνi to νj.
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Definition 5(balanced graph)[23]:A vertex is balanced if its in-degree is equal to its out-degree. A directed graph
is balanced if every vertex is balanced.
Definition 6(weakly connected)[10]:A path of length r in a directed graph is a sequenceν0, . . . , νr of r + 1
distinct vertices such that for everyi ∈ {0, . . . , r − 1}, (νi, νi+1) is an edge. Aweak path is a sequenceν0, . . . , νr

of r + 1 distinct vertices such that for eachi ∈ {0, . . . , r − 1}, either(νi, νi+1) or (νi+1, νi) is an edge. A directed
graph isweakly connected if any two vertices can be joined by a weak path.
Lemma 1 [23]: Let G be a directed graph and suppose it is balanced. ThenG is strongly connected if and only
if it is weakly connected.

III. PROBLEM STATEMENT AND ASSUMPTIONS

The evolution of multi-agent NCSs depends fundamentally ontheir interconnection topology. We list below several
assumptions regarding the interconnection topology that we will make in the sequel. The specific assumption(s)
used will be made clear in the statement of a given result.
A1. The topology of the underlying communication graph is weakly connected point-wise in time and form a
directed balanced graph with respect to information exchange.
A2. The topology of the underlying communication graph is weakly connected point-wise in time, bidirectional
and balanced.
Definition 7(Output Synchronization)[10]: Suppose we have a network ofN agents, the agents are said to output
synchronize if

yj(t) − yi(t) → 0 as t → ∞, ∀i, j = 1, . . . , N.

It has been shown in [10] that for a group ofN networked passive systems, suppose that the agents are coupled
together using the control

ui(t) =
∑

j∈Ni

K
[
yj(t) − yi(t)

]
, i = 1, 2, . . . , N (9)

whereK is a positive constant andNi denotes the set of agents transmitting their outputs to theith agent. Then
under assumptionA1, the networked passive systems are globally stable and the agents output synchronize.

The output synchronization results in [10] require that each agent communicates with its neighboring agents
continuously. In this paper, we reformulate the above control problem and take event-driven communication into
consideration. Consider a networked control system which consists ofN lossless agents each denoted byHi, for
i = 1, 2, . . . , N . Agent Hi transmits its current output information to its corresponding neighborsZi (Zi denotes
the set of agents receiving output information fromHi) whenever its event triggering condition is satisfied. The
time sequence of data transmission (event time) forHi is denoted by{tki

}, for k = 0, 1, 2, . . .. We summarize the
problem we try to solve in this paper as follows: What is the triggering condition and the control law for the coupled
agents to achieve output synchronization with event-driven communication? How frequent the data transmission is
under the triggering condition? Moreover(which should be more interesting), when the data transmission between
each coupled agents is subject to communication delay, and the delay could be much larger than the inter-event
time obtained based on the triggering condition for the no delay case, can we still achieve output synchronization
with event-driven communication? Further more, if we also consider quantization of the transmitted signals in the
networks, what is the quantization effect on output synchronization of the multi-agent system with event-driven
communication?

IV. T RIGGERING CONDITION FOR OUTPUT SYNCHRONIZATION WITHOUT COMMUNICATION DELAYS

Assume that the control input to agentHi is given by

ui(t) =
∑

j∈Ni

a(ŷkj
− ŷki

), for t ∈ [tki
, tki+1), i = 1, 2, . . . , N (10)

wherea is a positive constant represents the coupling between agent Hj and agentHi as defined in the adjacency
matrix of the underlying communication graph;ŷkj

represents the latest output information received byHi from
Hj by the timet, for j ∈ Ni; ŷki

= yi(tki
) represents the latest transmitted output information ofHi at the latest

event timetki
.
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We first assume there is no data transmission delay in the communication network and the topology of the
underlying communication graph is fixed. The triggering condition for output synchronization is shown in the
theorem below.
Theorem 1. Consider a network ofN lossless agents with control (10). Under assumptionA1, if each agentHi

transmits its current output information to its neighbors whenever the following triggering condition is satisfied

‖ei(t)‖2 =
δ1

∑
j∈Ni

‖ŷkj
− ŷki

‖2
2

‖∑
j∈Ni

(ŷkj
− ŷki

)‖2
, ∀t ≥ 0 (11)

whereδ1 ∈ (0, 0.5], ei(t) = yi(t) − ŷki
, for t ∈ [tki

, tki+1), ki = 0, 1, 2, . . . , then the agents output synchronize
asymptotically.

Proof: Since each agent is lossless, we haveV̇i(t) = uT
i (t)yi(t), ∀t ≥ 0, whereVi(t) is the storage function

for agentHi. Consider a storage function for the multi-agent system asV =
∑N

i=1 Vi, then we have

V̇ =

N∑

i=1

V̇i =

N∑

i=1

uT
i yi =

N∑

i=1

∑

j∈Ni

a(ŷkj
− ŷki

)T yi

=

N∑

i=1

∑

j∈Ni

a(ŷkj
− ŷki

)T (ei + ŷki
), ∀t ≥ 0

(12)

and we can further get

V̇ =
N∑

i=1

∑

j∈Ni

a(ŷkj
− ŷki

)T ei +
N∑

i=1

∑

j∈Ni

a(ŷkj
− ŷki

)T ŷki

=

N∑

i=1

∑

j∈Ni

a(ŷkj
− ŷki

)T ei +

N∑

i=1

∑

j∈Ni

aŷT
kj

ŷki
−

N∑

i=1

∑

j∈Ni

aŷT
ki

ŷki
.

(13)

As the information exchange graph is balanced, we have
n∑

i=1

∑

j∈Ni

ŷT
ki

ŷki
=

1

2

N∑

i=1

∑

j∈Ni

ŷT
ki

ŷki
+

1

2

N∑

i=1

∑

j∈Ni

ŷT
kj

ŷkj
, (14)

and therefore it follows that

V̇ =
N∑

i=1

∑

j∈Ni

a(ŷkj
− ŷki

)T ei −
a

2

N∑

i=1

∑

j∈Ni

(ŷki
− ŷkj

)T (ŷki
− ŷkj

)

≤ a

N∑

i=1

∥∥ei

∥∥
2

∥∥ ∑

j∈Ni

(ŷkj
− ŷki

)
∥∥

2
− a

2

N∑

i=1

∑

j∈Ni

∥∥ŷki
− ŷkj

∥∥2

2
,

(15)

so if

‖ei‖2 ≤
∑

j∈Ni
‖ŷki

− ŷkj
‖2
2

2‖∑
j∈Ni

(ŷkj
− ŷki

)‖2
, ∀t ≥ 0, (16)

then V̇ ≤ 0. Note that the triggering condition (11) actually guarantees that (16) is satisfied.
Moreover, since we can rewritėV as

V̇ =

N∑

i=1

∑

j∈Ni

a(ŷkj
− ŷki

)T yi =

N∑

i=1

∑

j∈Ni

a
[
(yj − ej) − (yi − ei)

]T
yi

=
N∑

i=1

∑

j∈Ni

a
[
(yj − yi) − (ej − ei)

]T
yi

=

N∑

i=1

∑

j∈Ni

a(yj − yi)
T yi −

N∑

i=1

∑

j∈Ni

a(ej − ei)
T yi = −Y T LY + ET LY,

(17)
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whereY = [yT
1 , yT

2 , . . . , yT
N ]T is the output vector of the multi-agent system. Thus based onLasalle’s Invariance

Principle [1] and strong connectivity of the underlying communication graph,̇V = −Y T LY + ET LY ≤ 0 implies
output synchronization of those coupled agents.

V. A NALYSIS OF INTER-EVENT TIME BASED ON THE TRIGGERING CONDITION

The triggering condition shown in Theorem 1 explicitly determines the time instants at which each agent should
transmit its current output information to its neighbors inorder to achieve output synchronization. Another problem
needs to be answered is how often the event-driven data transmission is needed under the derived triggering
condition? In general, it is not easy to get a common lower bound on the inter-event time since we are dealing
with heterogeneous multi-agent systems, and in many situations, zeno inter-event time may not be avoided unless
a specified lower bound on the inter-event time is imposed. Inthe following proposition, we give an analysis of
the inter-event time based on the triggering condition provided in Theorem 1.
Proposition 1. Consider the dynamics ofHi given by

Hi :

{
ẋi = fi(xi, ui)

yi = hi(xi),
(18)

let the following assumptions be satisfied

1) fi(xi, ui) : R
m ×R

m → R
m is locally Lipschitz continuous inxi on a compact setSxi

⊂ R
m with Lipschitz

constantLxi
;

2) ‖fi(xi, ui) − fi(xi, 0)‖2 ≤ Lui
‖ui‖2 for all xi ∈ Sxi

with some nonnegative constantLui
;

3) hi(xi) : Rm → Rm belongs to a sector(Ki1,Ki2), with Ki1x
T
i xi ≤ xT

i hi(xi) ≤ Ki2x
T
i xi, whereKi1 ∈ R,

Ki2 ∈ R and0 < Ki1Ki2 < ∞;
4)

∥∥∂hi

∂xi

∥∥
2
≤ γi, where0 < γi < ∞;

then with the control (10), the inter-event time[tki+1 − tki
] implicitly determined by the triggering condition (11)

is strictly positive.
Proof: Sinceei(t) = yi(t) − ŷki

for t ∈ [tki
, tki+1), we can get fort ∈ [tki

, tki+1)

d

dt
‖ei‖2 ≤ ‖ėi‖2 = ‖ẏi‖2 = ‖ḣi(xi)‖2

=
∥∥∥

∂hi

∂xi
fi(xi, 0) +

∂hi

∂xi

[
fi(xi, ui) − fi(xi, 0)

]∥∥∥
2

≤ γiLxi

∥∥xi

∥∥
2
+ γiLui

∥∥ui

∥∥
2

= γiLxi

∥∥xi

∥∥
2
+ γiLui

∥∥ ∑

j∈Ni

a(ŷkj
− ŷki

)
∥∥

2
.

(19)

Sincehi(xi) belongs to the sector(Ki1,Ki2), one can verify that‖xi‖2 ≤ ζi‖yi‖2, where

ζi = max
{ 1

|Ki1|
,

1

|Ki2|
}

. (20)

Therefore, we have

d

dt
‖ei‖2 ≤ γiLxi

ζi‖yi‖2 + γiLui
‖

∑

j∈Ni

a(ŷkj
− ŷki

)‖2

= γiLxi
ζi‖ei + ŷki

‖2 + γiLui
‖

∑

j∈Ni

a(ŷkj
− ŷki

)‖2

≤ γiLxi
ζi‖ei‖2 + γiLxi

ζi‖ŷki
‖2 + γiLui

‖
∑

j∈Ni

a(ŷkj
− ŷki

)‖2,

(21)

so the evolution of‖ei‖2 during the time interval[tki
, tki+1) is bounded by the solution to

d

dt
φ(t) = γiLxi

ζiφ(t) + γiLxi
ζi‖ŷki

‖2 + γiLui
‖

∑

j∈Ni

a(ŷkj
− ŷki

)‖2, (22)
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with initial condition φ(tki
) = 0. Thus the time for‖ei‖2 to evolve from 0 to

δ1

∑
j∈Ni

‖ŷki
−ŷkj

‖2
2

‖∑
j∈Ni

(ŷkj
−ŷki

)‖2
is lower bounded

by the solution toφ(tki
+ τki

) =
δ1

∑
j∈Ni

‖ŷki
−ŷkj

‖2
2

‖∑
j∈Ni

(ŷkj
−ŷki

)‖2
. Let

σo =
δ1

∑
j∈Ni

‖ŷki
− ŷkj

‖2
2

‖∑
j∈Ni

(ŷkj
− ŷki

)‖2
, (23)

then we can get

τki
=

1

γiLxi
ζi

ln
(
1 +

Lxi
ζiσo

Lxi
ζi‖ŷki

‖2 + Lui
‖∑

j∈Ni
a(ŷkj

− ŷki
)‖2

)
. (24)

So before agentHi output synchronizes with its neighbors, we will haveτki
> 0. Moreover, whenHi output

synchronizes with its neighbors, then there is no need for data transmission any more, thusτki
= ∞. The proof is

completed.
Remark 1. As shown in (24), when we are dealing with multi-agent systemwith heterogeneous dynamics, it is
usually difficult to get a common lower bound on{τki

}s. Thus, it is not very practical to impose an common
upper bound on the admissible network induced delays based on the inter-event time implicitly determined by the
triggering condition.

VI. CASE STUDY: EVENT-DRIVEN CONSENSUSPROBLEM

In this section, we apply the results obtained in the previous sections to study the first order consensus problem.
Since data transmissions among those coupled agents are event-based rather than synchronized, one could consider
the control problem studied in this section as “asynchronous consensus” problem reported in [2], [3].

The system considered consists ofN agents, withxi ∈ R denoting the state of agentHi. Note that the results
derived in this section are extendable to arbitrary dimensions by using Kronecker algebra. We assume that agent’s
motion obeys a single integrator model

ẋi = ui

yi = xi

(25)

with control
ui(t) =

∑

j∈Ni

a(ŷkj
− ŷki

) (26)

for t ∈ [tki
, tki+1), wherea > 0 is some positive scalar.

Theorem 2. Consider a network ofN agents with each agent’s dynamics described by (25)-(26). Assume there
is no data transmission delay in the network. Under assumption A1, if each agentHi transmits its current output
information to its coupled neighbors whenever the triggering condition (11) is satisfied, then those coupled agents
output synchronize to their initial average asymptotically, i.e.,

lim
t→∞

xi(t) = x =
1

N

N∑

i=1

xi(0), (27)

for i = 1, 2, . . . , N .
Proof: The proof to show output synchronization under the triggering condition (11) is identical to the proof

shown in Theorem 1 since single integrator model is lossless. Thus, we havelimt→∞(xj−xi) = 0, ∀i, j, it remains
to show agents output synchronize to their initial average.Let

x =
1

N

N∑

i=1

xi, (28)

then we have

ẋ =
1

N

N∑

i=1

ẋi =
1

N

N∑

i=1

ui =
1

N

N∑

i=1

∑

j∈Ni

a(x̂kj
− x̂ki

)

=
1

N

N∑

i=1

∑

j∈Ni

a(xj − xi) −
1

N

N∑

i=1

∑

j∈Ni

a(ej − ei),

(29)
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under assumption A1, we haveẋ = 0, ∀t ≥ 0, thus

x = x(0) =
1

N

N∑

i=1

xi(0). (30)

Sincelimt→∞(xj − xi) = 0, ∀i, j, this implies thatlimt→∞ xi = 1
N

∑N
i=1 xi(0), ∀i, and the proof is completed.

Proposition 2. Consider a network ofN agents with each agent’s dynamics described by (25)-(26). Assume there
is no data transmission delay in the network. Under assumption A1, the inter-event time[tki+1 − tki

] implicitly
determined by the triggering condition (11) is lower bounded by

tki+1 − tki
≥ τki

=
δ1

∑
j∈Ni

‖x̂kj
− x̂ki

‖2
2

a‖∑
j∈Ni

(x̂kj
− x̂ki

)‖2
2

(31)

for k = 0, 1, 2, . . ., with δ1 ∈ (0, 0.5].
Proof: For t ∈ [tki

, tki+1),

d

dt
‖ei‖2 ≤ ‖ėi‖2 = ‖ẋi‖2 = ‖ui‖2 = ‖a

∑

j∈Ni

(x̂kj
− x̂ki

)‖2, (32)

so the evolution of‖ei‖2 during the time interval[tki
, tki+1) is bounded by the solution to

d

dt
φ(t) = ‖a

∑

j∈Ni

(x̂kj
− x̂ki

)‖2 (33)

with initial condition φ(tki
) = 0. Thus the time for‖ei‖2 to evolve from 0 to

δ1

∑
j∈Ni

‖ŷki
−ŷkj

‖2
2

‖∑
j∈Ni

(ŷkj
−ŷki

)‖2
is lower bounded

by the solution toφ(tki
+ τki

) =
δ1

∑
j∈Ni

‖ŷki
−ŷkj

‖2
2

‖∑
j∈Ni

(ŷkj
−ŷki

)‖2
, and we can get

τki
=

δ1
∑

j∈Ni
‖x̂kj

− x̂ki
‖2
2

a‖∑
j∈Ni

(x̂kj
− x̂ki

)‖2
2

. (34)

The proof is completed.
Example 2.We consider the “asynchronous consensus” problem as discussed above, the topology of the underlying
communication graph is given by

L =




1 0 0 0 −1
−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1




. (35)

The simulation results are shown in Fig.2 and Fig.3.
In Fig.2, the x-axis shows the time instants of events while the y-axis shows the length of inter-event time of each

agent. Fig.3 shows the evolution of agent’s state. With initial statex1(0) = 20, x2(0) = 4, x3(0) = 100, x4(0) =
−60, x5(0) = −15, and 1

N

∑N
i=1 xi(0) = 9.8, the agent’s state converges to their initial average.
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VII. O UTPUT SYNCHRONIZATION WITH EVENT-DRIVEN COMMUNICATION AND CONSTANT

COMMUNICATION DELAYS: A SCATTERING TRANSFORMATION APPROACH

In this section, we propose a set-up to achieve output synchronization of multi-agent systems in the presence
of constant network induced delays by using event-driven communication and scattering transformation. Scatter-
ing transformation has been used earlier in the problem of bilateral teleoperation and NCSs to guarantee delay
independent stability, see [10], [13], [16] and [17]. In oursetting for event-driven communication with scattering
transformation, the agents transmit the so called “scattering variables” instead of their outputs to the neighbors,
and the data transmissions are event-based. The set-up for the event-driven communication strategy with scattering
transformation is illustrated schematically in Fig.4.

Fig. 4: event-driven communication with scattering transformation

In Fig.4, the “ED” block represents the “event-detector” , and whenever the event-detector detects that the
corresponding agent satisfies its specific triggering condition, an updated scattering variables (υ+

ij(t) or υ−
ji(t) as

shown in Fig.4) will be obtained and sent to the neighboring agents. The event time of agenti is defined by the time
sequence{tki

}, ki = 0, 1, 2, . . . and the event time of agentj is defined by the time sequence{tkj
}, kj = 0, 1, 2, . . ..

The “ZOH” block represents the zero-order hold, thusυ̃+
ji(t) holds the last sample ofυ+

ji(t) and υ̃−
ij(t) holds the

last sample ofυ−
ij(t). Tji represents the communication delay form agentj to agenti while Tij represents the

communication delay form agenti to agentj. Tij andTji are not necessarily equal to each other. As the scattering
variables are transmitted over networks, we have

υ+
ji(t) = υ+

ij

(
t − Tij

)
and υ−

ij(t) = υ−
ji

(
t − Tji

)
, ∀(i, j) ∈ E(G). (36)

Let the agents be coupled together using the control

ui(t) = a
[
yjs(t) − ŷki

]
, for t ∈ [tki

, tki+1), ki = 0, 1, 2, . . . , (37)

with ŷki
= yi(tki

), and

uj(t) = a
[
yis(t) − ŷkj

]
, for t ∈ [tkj

, tkj+1), kj = 0, 1, 2, . . . , (38)

with ŷkj
= yj(tkj

), ∀(i, j) ∈ E(G). a > 0 is a constant representing the coupling among agents as shown in
the adjacency matrix of the underlying communication graph. We assumeyis(t), yjs(t), ŷki

and ŷkj
are signals

belonging toL2e. The variablesyjs(t) andyis(t) are derived out of the scattering transformation which is given by




For t ∈ [tki
, tki+1),

1

M22
υ̃−

ij(t) −
M21

M22
ŷki

= a
[
yjs(t) − ŷki

]

At t = tki
, M11ŷki

= υ+
ij(t)

(39)
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and 



For t ∈ [tkj
, tkj+1),

1

M22
υ̃+

ji(t) −
M21

M22
ŷkj

= a
[
yis(t) − ŷkj

]

At t = tkj
, M11ŷkj

= υ−
ji(t),

(40)

∀(i, j) ∈ E(G). Positive constantsM11,M21,M22 are the parameters of the scattering transformation. The super-
script +,− for the scattering variables is a convention for the direction of the power flow.

As shown in Fig.4, agenti transmits the scattering variablesυ+
ij(t) to agentj who receives it as the scattering

variablesυ+
ji(t). Agent j then uses the controla

[
yis(t)− ŷkj

]
to extract the variablesyis(t) output of the variable

υ̃+
ji(t). A similar procedure is used to obtain the variablesyjs(t) by agenti. One should notice that agenti is

participating in|Ni| closed-loops as the one demonstrated in Fig.4, where|Ni| is the number of neighbors of agent
i.
Theorem 3.Consider the set-up of event-driven communication with scattering transformation between any coupled
lossless agenti and agentj with m inputs andm outputs as shown in Fig.4,∀(i, j) ∈ E(G). ChooseM11 = M21 =√

a
2 , M22 = 1√

a
. Assume that the communication delays between agenti and agentj are constant and finite. Then

if agent i transmits its current output information to its neighbors whenever the following triggering condition is
satisfied

‖ei(t)‖2 =
δ3

∑
j∈Ni

∥∥yjs(t) − ŷki

∥∥2

2∥∥ ∑
j∈Ni

[
yjs(t) − ŷki

]∥∥
2

, ∀t ≥ 0 (41)

whereei(t) = yi(t) − ŷki
, for t ∈ [tki

, tki+1
), and δ3 ∈ (0, 1], then underA2, those coupled agents will output

synchronize asymptotically.
Proof: The proof is provided in the Appendix A.

Remark 2. If Tij = Tji = 0, since

υ̃+
ji = M11ŷki

= M21ŷkj
+ M22a

[
yis(t) − ŷkj

]
, for t ∈ [tkj

, tkj+1], (42)

we can get

yis(t) =
1

2

(
ŷki

+ ŷkj

)
, for t ∈ [tkj

, tkj+1]. (43)

Similarly, we can obtain

yjs(t) =
1

2

(
ŷki

+ ŷkj

)
, for t ∈ [tki

, tki+1]. (44)

where ŷki
and ŷkj

are the latest output information sent by agenti and agentj respectively. And one can verify
that, in this case, the triggering condition (41) becomes

‖ei(t)‖2 =
δ1

∑
j∈Ni

∥∥ŷkj
− ŷki

∥∥2

2∥∥ ∑
j∈Ni

(ŷkj
− ŷki

)
∥∥

2

, (45)

with δ1 ∈ (0, 0.5], ∀t ≥ 0, which is the same as the triggering condition derived in Theorem 1 for no data
transmission delays case.
Example 3. We consider again the “asynchronous consensus” problem studied in section VI, the underlying
communication graph is given by

L =




3 −1 −1 0 −1
−1 2 0 −1 0
−1 0 1 0 0
0 −1 0 2 −1
−1 0 0 −1 2




, (46)

thus the topology of the underlying communication graph satisfies A2. Let the communication delay between
each coupled agents be randomly generated from the interval[1, 2]s, and we use the set-up of event-driven
communication with scattering transformation for each coupled agents, the simulation results with initial condition
x1(0) = −20, x2(0) = 15, x3(0) = 32, x4(0) = 68, x5(0) = 0 are shown in Fig.5-Fig.6, the states of agents finally
converge to a value around 10.4 while their initial average is 19. Thus in this case, the event-driven consensus
problem cannot guarantees agreement around the initial average if we consider arbitrary constant communication
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delays among the coupled agents. Also observing from simulations, with different communication delays, the final
agreement is also different. Fig.7 and Fig.8 show the simulation results by randomly generating communication
delays from the interval[0, 1]s and [2, 3]s while the initial conditions of agents are kept the same. However, if
there is no communication delays between any coupled agents, then the states of agents will still converge to their
initial average with the scattering transformation set-up, this is shown in Fig.9.

0 2 4 6 8 10 12 14 16 18 20
0

1

2

t k
1
+

1
−

t k
1

 

 

0 2 4 6 8 10 12 14 16 18 20
0

1

2
t k

2
+

1
−

t k
2

 

 

0 2 4 6 8 10 12 14 16 18 20
0

1

2

t k
3
+

1
−

t k
3

 

 

0 2 4 6 8 10 12 14 16 18 20
0

1

2

t k
4
+

1
−

t k
4

 

 

0 2 4 6 8 10 12 14 16 18 20
0

1

2

t(s)

t k
5
+

1
−

t k
5

 

 

event time of agent 3

event time of agent 4

event time of agent 1

event time of agent 2

event time of agent 5

Fig. 5: simulation result of example 3: event time with communication delays in [1,2]s
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Fig. 7: simulation result of example 3: consensus with communication delays in [0,1]s reaches agreement around 12.6
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Fig. 8: simulation result of example 3: consensus with communication delays in [2,3]s reaches agreement around 5.6
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Fig. 9: simulation result of example 3: consensus with no communication delays reaches agreement around 19
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VIII. T RIGGERING CONDITION FOR OUTPUT SYNCHRONIZATION WITHOUT COMMUNICATION DELAYS:
QUANTIZATION EFFECTS

It was assumed in the previous sections that each agent is equipped with an “event-detector” which is able to
measure the output of the agent with infinite precision, and the event-detector uses that measurement to examine
the corresponding triggering condition of the agent and transmit that measurement through the network whenever
the triggering condition is satisfied. In reality, however,the transmitted measurement first has to be quantized
in order to be represented by a finite number of bits and to be used in processor operations and carried over a
digital communication network. Thus, it becomes necessaryto study the effects of quantization error on output
synchronization of the networked multi-agent system with event-driven communication.

Assume that the control input to agentHi is given by

ui(t) =
∑

j∈Ni

a
[
q(ŷkj

) − q(ŷki
)
]
, for t ∈ [tki

, tki+1), ki = 0, 1, 2, . . . , (47)

q(ŷkj
) is the quantized latest transmitted output information of agentHj by the timet andq(ŷki

) is the quantized
latest transmitted output information of agentHi by the timet. We first assume there is no communication delay
in the networks.

Each agent is equipped with an “event detector” and a “quantizer”. The event detector can continuously (or
with adequately small sampling period) monitor the output of the agent, and whenever it detects the “triggering
condition” associated with the corresponding agent is satisfied, it will get a sample of the agent’s current output
information denoted byyi(tki

) = ŷki
(with tki

denoting the event time of agenti) and sends this sampled output
information to the quantizer. The quantizer then processesthe received data and the quantized output information
q(ŷki

) will be sent to the neighboring agents of agentHi. We assume the data processing time in the quantizer is
negligible.

For t ∈ [tki
, tki+1), let ei(t) = yi(t) − ŷki

denote the output novelty error with respect to the sampled output
information; letεki

= ŷki
− q(ŷki

) denote the quantization error with respect to the sampled output information;
let ẽi(t) = yi(t)− q(ŷki

) denote the output novelty error with respect to the quantized sampled output information.
One can verify that̃ei(t) = yi(t) − ŷki

+ εki
. With event-driven communication and quantized sampled output

information transmitted between coupled agents, we have the following theorem.
Theorem 4. Consider a network ofN lossless agents with control (47). Under assumptionA1, if each agentHi

transmits its current output information to its neighbors whenever the following triggering condition is satisfied

‖ei(t)‖2 = δ4

(1 − κ

2
− 1

2β

) 1

|Ni|
∑

j∈Ni

∥∥q(ŷkj
) − q(ŷki

)
∥∥

2
, ∀t ≥ 0, (48)

whereδ4 ∈ (0, 1], 0 < κ < 1 and1 < 1
1−κ

< β, then the output synchronization error of the studied multi-agent
system is bounded by the quantization errors of agents’ latest transmitted output information by the timet.

Proof: The proof is provided in the Appendix B.

IX. SPECIAL CASE: EVENT-DRIVEN CONSENSUSPROBLEM WITH QUANTIZATION

In this section, we study the consensus problem with event-driven communication and quantization as a special
case for the problems investigated in the previous section.We assume that agent’s motion obeys a single integrator
model as shown in (25) with control

ui(t) =
∑

j∈Ni

a
[
q(ŷkj

) − q(ŷki
)
]

(49)

for t ∈ [tki
, tki+1), whereq(ŷki

) is the quantized value of agentHi
′

s latest transmitted output information,q(ŷkj
)

is the quantized value of agentHj
′

s latest transmitted output information.
Lemma 2. The cascade connection of an integrator and a passive memoryless functionh as shown in Fig.10, is
still lossless fromu to h(x).

Proof: Passivity ofh guarantees that
∫ x

0 h(σ)dσ ≥ 0 for all x. With V (x) =
∫ x

0 h(σ)dσ as the storage function,
we haveV̇ = h(x)ẋ = yu. Hence the system is lossless.
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Fig. 10: cascade connection of an integrator and a passive memoryless function

Remark 3. Lemma 2 indicates that the cascade connection of an integrator and a passive memoryless quantizer
can be studied as a lossless system with the quantized outputas the new output of the system. This result enables
us to derive the triggering condition for the event-triggered consensus problem with quantization.

Assume that each agent is equipped with a passive memorylessquantizerq(·) and an event detector which is
denoted by “ED”as shown in Fig.11. The event detector continuously (or sampling with an adequately fast sampling
rate) monitors the output of the quantizer connected with the agent, and whenever it detects that the triggering
condition associated with the agent is satisfied, a quantized output informationq(ŷki

) at that event time (tki
) will be

transmitted to the agent’s corresponding neighbors. The theorem below provides a triggering condition to achieve
consensus among the coupled agents.

Fig. 11: cascade connection of an integrator and a passive memoryless quantizer

Theorem 5.Consider a network ofN agents with each agent’s dynamics described by (25) and (49). Assume there
is no data transmission delay in the network. Under assumption A1, if each agentHi transmits its current output
information to its coupled agents whenever the following triggering condition is satisfied

εi(t) =
δ5

∑
j∈Ni

∥∥q(ŷkj
) − q(ŷki

)
∥∥

2∥∥∑
j∈Ni

[
q(ŷkj

) − q(ŷki
)
]∥∥

2

, ∀t ≥ 0, (50)

for someδ5 ∈ (0, 0.5], whereεi(t) = q(yi(t)) − q(ŷki
), then those coupled agents will converge to a value around

their initial average asymptotically, i.e.,

lim
t→∞

xi(t) ≈ x̄ =
1

N

N∑

i=1

xi(0), ∀i.

Proof: The proof is provided in Appendix C.
Example 4. We consider the “asynchronous consensus” problem as discussed above, the underlying information
exchange graph is given by (35), which satisfies assumptionA1. Assume that each agent is equipped with a uniform
mid-tread quantizer with quantization level 0.5 (one can verify that a uniform mid-tread quantizer is passive since
yi(t)q(yi(t)) ≥ 0). The simulation results are shown in Fig.12-Fig.15. In Fig.12, the x-axis shows the time instants of
events while the y-axis shows the length of inter-event timeof each agent. Fig.13 shows the evolution of quantized
output of each agent, Fig.14 shows the evolution of the stateof each agent and Fig.15 shows the evolution of
average of the agents’ state. With initial statex1(0) = 20, x2(0) = 4, x3(0) = 100, x4(0) = −60, x5(0) = −15,
we have 1

N

∑N
i=1 xi(0) = 9.8. And one can see from Fig.13-Fig.15 that while the quantizedoutput of each agent

converges to 10, the average of the agents’ state keeps constant at their initial average 9.8 along with time, and the
state of each agent finally converges to a value around 9.8.
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Fig. 12: example 4: event time
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Fig. 14: example 4: evolution of the state of each agent

0 5 10 15
9.8

9.8

9.8

9.8

9.8

9.8

9.8

9.8

t(s)

 

 

1

5

∑5

i=1
xi(t)

Fig. 15: example 4: evolution of average of the states



19

X. TRIGGERING CONDITION FOR OUTPUT SYNCHRONIZATION WITH CONSTANT COMMUNICATION DELAYS:
QUANTIZATION EFFECTS

In section VII, we proposed a set-up to achieve output synchronization among coupled agents with event-driven
communication in the presence of constant network induced delays by using scattering transformation. In this section,
in addition to communication delays, we take quantization into consideration and further study the quantization
effects on the output synchronization based on the set-up shown in section VII.

Let the agents be coupled together using the control

ui(t) =
∑

j∈Ni

a
[
yjs(t) − q(M21ŷki

)
]
, for t ∈ [tki

, tki+1), ki = 0, 1, 2, . . . , and

uj(t) =
∑

i∈Nj

a
[
yis(t) − q(M21ŷkj

)
]
, for t ∈ [tkj

, tkj+1), kj = 0, 1, 2, . . . ,
(51)

∀(i, j) ∈ E(G), whereq(M21ŷki
) andq(M21ŷkj

) denote the quantized values ofM21ŷki
andM21ŷkj

respectively.
The variablesyis(t) andyjs(t) are derived out of the scattering transformation which are given by





for t ∈ [tki
, tki+1),

1

M22
υ̃−

ij(t) −
1

M22
q(M21ŷki

) = a
[
yjs(t) − q(M21ŷki

)
]

at t = tki
, υ+

ij(t) = q(M11ŷki
), and

(52)





for t ∈ [tkj
, tkj+1),

1

M22
υ̃+

ji(t) −
1

M22
q(M21ŷkj

) = a
[
yis(t) − q(M21ŷkj

)
]

at t = tkj
, υ−

ji(t) = q(M11ŷkj
)

(53)

∀(i, j) ∈ E(G).

Fig. 16: event-driven communication with scattering transformation and quantization effect

Positive constantsM11,M21,M22 are the parameters of the scattering transformation. The superscript+,− for the
scattering variables is a convention for the direction of the power flow. The set-up for the event-driven communication
strategy with scattering transformation is illustrated schematically in Fig.16. The “ED” block represents the “event-
detector” , and whenever the event-detector detects that the corresponding agent satisfies its specific triggering
condition, a newly sampled output information will be sent to the quantizer (denoted by “Qn”) and updated scattering
variables (υ+

ij(t) or υ−
ji(t) as shown in Fig.8) will be obtained and sent to the coupled agents. The event time of

agenti is defined by the time sequence{tki
}, ki = 0, 1, 2, . . . and the event time of agentj is defined by the time

sequence{tkj
}, kj = 0, 1, 2, . . .. The “ZOH” block represents the zero-order hold, thusυ̃+

ji(t) holds the last sample
of υ+

ji(t) and υ̃−
ij(t) holds the last sample ofυ−

ij(t). Tji represents the communication delay form agentj to agent
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i while Tij represents the communication delay form agenti to agentj. Tij andTji are not necessarily equal to
each other. As the scattering variables are transmitted over networks, we have

υ+
ji(t) = υ+

ij

(
t − Tij

)
and υ−

ij(t) = υ−
ji

(
t − Tji

)
, ∀(i, j) ∈ E(G). (54)

Agent i transmits the scattering variablesυ+
ij(t) to agentj who receives it as the scattering variablesυ+

ji(t).
Agent j uses the controla

[
yis(t) − q(M21ŷkj)

]
to extract the variablesyis(t) output of the variablẽυ+

ji(t). A
similar procedure is used to obtain the variablesyjs(t) by agenti. One should notice that agenti is participating in
|Ni| closed-loops as the one demonstrated in Fig.16, where|Ni| is the number of agents that send output information
to agenti.
Theorem 6.Assume that the underlying information exchange graph satisfies assumptionA2 and the data transmis-
sion delays between each coupled agents are constant and finite. Consider the set-up of event-driven communication
with scattering transformation and quantization between any coupled lossless agenti and agentj (with m inputs
and m outputs) as shown in Fig.16. The control action for each agent is given by (51). The parameters of the
scattering transformation are chosen such thatM21 = M11 > 0 andaM22 = 2. Define êi(t) = M11

[
yi(t) − ŷki

]

as the output novelty error of agenti, i = 1, 2, . . . , N . If agent i transmits its current output information to its
neighbors whenever the following triggering condition is satisfied

‖êi(t)‖2 =
δ6(1 − β

2 )γ

|Ni|
∑

j∈Ni

∥∥yjs(t) − q(M21ŷki
)
∥∥

2
, ∀t ≥ 0 (55)

for someδ6 ∈ (0, 1], where0 < γ < 1 and0 < β < 2. Then the output synchronization error of the studied multi-
agent system is ultimately bounded by the quantization errors of agents’ latest transmitted outputs information in
the networks.

Proof: The proof is provided in the Appendix D.
Example 5. We consider again the “asynchronous consensus” problem as studied in section V, the underlying
information exchange graph is given by (46), thus the topology of the underlying information exchange graph
satisfiesA2. Let the communication delay between each coupled agents beconstant and we randomly choose
the delays from the interval[1, 4]s. We use the set-up shown in Fig.16 for each coupled agents, and we choose
M11 = M21 = 1, M22 = 2, δ = 1, γ = 0.9 and β = 0.1. The quantizer of each agent is a uniform mid-
tread quantizer with quantization level 0.5. The simulation results with initial conditionx1(0) = −20, x2(0) =
15, x3(0) = 32, x4(0) = 68, x5(0) = 0 are shown in Fig.17-Fig.19, the states of agents finally converge to a value
around 3.4. However, if we randomly choose the delays from the interval [0.5, 1]s, the states of agents finally
converge to a different value which is around 9.5 as shown in Fig.19.



21

0 2 4 6 8 10 12 14 16 18 20
0

1

2

t k
1
+

1
−

t k
1

 

 

0 2 4 6 8 10 12 14 16 18 20
0

2

4

t k
2
+

1
−

t k
2

 

 

0 2 4 6 8 10 12 14 16 18 20
0

1

2

t k
3
+

1
−

t k
3

 

 

0 2 4 6 8 10 12 14 16 18 20
0

1

2

t k
4
+

1
−

t k
4

 

 

0 2 4 6 8 10 12 14 16 18 20
0

1

2

t(s)

t k
5
+

1
−

t k
5

 

 

event time of agent 3

event time of agent 2

event time of agent 5

event time of agent 4

event time of agent 1

Fig. 17: example 5: event time



22

0 2 4 6 8 10 12 14 16 18 20
−20

−10

0

10

20

30

40

50

60

70

t(s)

 

 
x1
x2
x3
x4
x5

converge around 3.4 

Fig. 18: example 5: evolution of the agent’s state for delays chosen from the interval [1, 4]s

0 2 4 6 8 10 12 14 16 18 20
−20

−10

0

10

20

30

40

50

60

70

t(s)

 

 
x1
x2
x3
x4
x5

converge around 9.5

Fig. 19: example 5: evolution of the agent’s state for delays chosen from the interval [0.5, 1]s
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Remark 3. It could be seen from Example 3 and Example 5 that when arbitrary constant network induced delays
are considered in our proposed set-up, the event-driven consensus problem may not be able to achieve agreement
at the agents’ initial average, and with different constantdelays, the final agreement value could be different.
However, as seen from Example 2 and Example 4, it is still possible to achieve average consensus with event-
driven communication (and with signal quantization) in thepresence of network induced delays as long as the
delays are upper bounded by the inter-event time implicitlydetermined by the triggering condition. It is interesting
to further study distributed algorithm which could achieveaverage consensus with event-driven communication
in the presence of arbitrary constant network induced delays. However, it is not the focus of our interests in the
current paper. Note that in many control applications of multi-agent systems, in order for all the agents to achieve
output synchronization at some specific value or within somepre-determined set (i.e., leader following problem
or rendezvous problem), we could designate certain agents as leaders in the group and send important leading
information to the leaders from time to time, while the information exchange between leaders and their followers
are still event-based as the event-driven communication set-up shown in the current paper.
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XI. CONCLUSION

In this paper, we study the output synchronization problem of multi-agent systems with event-driven commu-
nication. We assume all the agents in the network are lossless and we use scattering transformation to deal with
network induced delays between coupled agents. Whenever the agent satisfies its triggering condition, a scattering
variable which contains the sampled output information of the agent will be sent to its coupled neighbors, and the
neighbors will extract reference information from its received scattering variables for its control action update. The
proposed set-up allows us to find a composite storage function (which is derived from the scattering transformation)
to analyze the stability of the entire system. The result presented in this paper is an important extension of applying
event-driven communication to control of multi-agent systems, especially when it is difficult to derive a common
upper bound on the admissible network induced delays or whenthe network induced delay between coupled agents
is larger than the inter-event time implicitly determined by the event triggering condition. Quantization effects
on output synchronization with event-driven communication have also been investigated in this paper. We have
shown that output synchronization error of coupled agents is ultimately bounded by the quantization errors with
the event-driven communication set-up proposed in this paper.
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APPENDIX A
PROOF OFTHEOREM 3

Proof: With Tij andTji being constant and finite, we can verify that
∫ t

0

∥∥υ+
ji(τ)

∥∥2

2
dτ ≤

∫ t

0

∥∥υ+
ij(τ)

∥∥2

2
dτ and

∫ t

0

∥∥υ−
ij(τ)

∥∥2

2
dτ ≤

∫ t

0

∥∥υ−
ji(τ)

∥∥2

2
dτ. (56)

Since ∫ t

0

∥∥υ+
ij(τ)

∥∥2

2
dτ =

ni∑

ki=0

δ(t − tki
)M2

11

∥∥ŷki

∥∥2

2
≤

ni∑

ki=0

∫ tki+1

tki

M2
11

∥∥ŷki

∥∥2

2
dτ (57)

whereδ(·) is the Dirac delta function,ni is the number of scattering variables sent from agenti to agentj during
the time interval[0, t]. Similarly, one can obtain

∫ t

0

∥∥υ−
ji(τ)

∥∥2

2
dτ =

nj∑

kj=0

δ(t − tkj
)M2

11

∥∥ŷkj

∥∥2

2
≤

nj∑

kj=0

∫ tkj+1

tkj

M2
11

∥∥ŷkj

∥∥2

2
dτ (58)

wherenj is the number of scattering variables sent from agentj to agenti during the time interval[0, t]. Denote
∫ t

0

∥∥υ̃+
ij(τ)

∥∥2

2
dτ =

ni∑

ki=0

∫ tki+1

tki

M2
11

∥∥ŷki

∥∥2

2
dτ ,

∫ t

0

∥∥υ̃−
ji(τ)

∥∥2

2
dτ =

nj∑

kj=0

∫ tkj+1

tkj

M2
11

∥∥ŷkj

∥∥2

2
dτ .

(59)

If we let n̂i denote the number of scattering variables received by agentj during the time interval[0, t], then we
can obtain ∫ t

0

∥∥υ+
ji(τ)

∥∥2

2
dτ =

n̂i∑

ki=0

δ(t − tki
− Tij)M

2
11

∥∥ŷki

∥∥2

2
. (60)

Note that due to delayTij from agenti to agentj, we haven̂i < ni. Sinceυ̃+
ji(t) holds the last sample ofυ+

ji(t),
we have

υ̃+
ji(t) = M11ŷki

, for t ∈ [tki
+ Tij , tki+1 + Tij], (61)

therefore ∫ t

0

∥∥υ̃+
ji(τ)

∥∥2

2
dτ =

n̂i∑

ki=0

∫ tki+1+Tij

tki
+Tij

∥∥M11ŷki

∥∥2

2
dτ

=

n̂i∑

ki=0

∫ tki+1

tki

M2
11‖ŷki

‖2
2dτ.

(62)

Similarly, sinceυ̃−
ij(t) holds the last sample ofυ−

ij(t), we can get

υ̃−
ij(t) = M11ŷkj

, for t ∈ [tkj
+ Tji, tkj+1 + Tji], (63)

therefore ∫ t

0

∥∥υ̃−
ij(τ)

∥∥2

2
dτ =

n̂j∑

kj=0

∫ tkj+1+Tji

tkj
+Tji

∥∥M11ŷkj

∥∥2

2
dτ

=

n̂j∑

kj=0

∫ tkj+1

tkj

M2
11‖ŷkj

‖2
2dτ.

(64)

Sinceni ≥ n̂i andnj ≥ n̂j, thus we have
∫ t

0

∥∥υ̃+
ij(τ)

∥∥2

2
dτ −

∫ t

0

∥∥υ̃+
ji(τ)

∥∥2

2
dτ +

∫ t

0

∥∥υ̃−
ji(τ)

∥∥2

2
dτ −

∫ t

0

∥∥υ̃−
ij(τ)

∥∥2

2
dτ ≥ 0. (65)
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Since fort ∈ [tkj
, tkj+1], we have

1

M22
υ̃+

ji(t) −
M21

M22
ŷkj

= a
[
yis(t) − ŷkj

]

⇒ υ̃+
ji(t) =

[
M21ŷkj

+ M22a
(
yis(t) − ŷkj

)]
,

(66)

and for t ∈ [tki
, tki+1], we have

1

M22
υ̃−

ij(t) −
M21

M22
ŷki

= a
[
yjs(t) − ŷki

]

⇒ υ̃−
ij(t) =

[
M21ŷki

+ M22a
(
yjs(t) − ŷki

)]
,

(67)

therefore ∫ t

0

∥∥υ̃+
ji(τ)

∥∥2

2
dτ =

nj∑

kj=0

∫ tkj+1

tkj

∥∥M21ŷkj
+ M22a

(
yis(t) − ŷkj

)∥∥2

2
dτ

∫ t

0

∥∥υ̃−
ij(τ)

∥∥2

2
dτ =

ni∑

ki=0

∫ tki+1

tki

∥∥M21ŷki
+ M22a

(
yjs(t) − ŷki

)∥∥2

2
dτ,

(68)

with M11 = M21 =
√

a
2 andM22 = 1√

a
, we can get

∫ t

0

∥∥υ̃+
ji(τ)

∥∥2

2
dτ =

nj∑

kj=0

∫ tkj+1

tkj

[a

4

∥∥ŷkj

∥∥2

2
− ayT

isŷkj
+ a

∥∥yis

∥∥2

2

]
dτ

∫ t

0

∥∥υ̃−
ij(τ)

∥∥2

2
dτ =

ni∑

ki=0

∫ tki+1

tki

[a

4

∥∥ŷki

∥∥2

2
− ayT

jsŷki
+ a

∥∥yjs

∥∥2

2

]
dτ

∫ t

0
‖υ̃+

ij(τ)‖2
2dτ =

ni∑

ki=0

∫ tki+1

tki

a

4

∥∥ŷki

∥∥2

2
dτ

∫ t

0
‖υ̃−

ji(τ)‖2
2dτ =

nj∑

kj=0

∫ tkj+1

tkj

a

4

∥∥ŷkj

∥∥2

2
dτ,

(69)

thus if we define

V ij =

∫ t

0

∥∥υ̃+
ij(τ)

∥∥2

2
dτ −

∫ t

0

∥∥υ̃+
ji

∥∥2

2
dτ +

∫ t

0

∥∥υ̃−
ji(τ)

∥∥2

2
dτ −

∫ t

0

∥∥υ̃−
ij(τ)

∥∥2

2
dτ, (70)

then we can get

V ij =

ni∑

ki=0

∫ tki+1

tki

[
ayT

js(τ)ŷki
− a

∥∥yjs(τ)
∥∥2

2

]
dτ

+

nj∑

kj=0

∫ tkj+1

tkj

[
ayT

is(τ)ŷkj
− a

∥∥yis(τ)
∥∥2

2

]
dτ.

(71)

Consider a storage function for the multi-agent system given by

V =

N∑

i=1

Vi +
1

2

∑

(i,j)∈E(G)

V ij, (72)

whereVi is the storage function of agenti, such thatV̇i = uT
i (t)yi(t), ∀t ≥ 0. Since

N∑

i=1

Vi =
N∑

i=1

ni∑

ki=0

∫ tki+1

tki

uT
i (τ)yi(τ)dτ

=

N∑

i=1

ni∑

ki=0

∫ tki+1

tki

a
∑

j∈Ni

[
yjs(t) − ŷki

]T [
ei(τ) + ŷki

]
dτ

(73)
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and
1

2

∑

(i,j)∈E(G)

V ij =

N∑

i=1

ni∑

ki=0

∫ tki+1

tki

a
∑

j∈Ni

[
yT

js(τ)ŷki
−

∥∥yjs(τ)
∥∥2

2

]
dτ, (74)

therefore, we further get

V̇ =
N∑

i=1

a
∑

j∈Ni

[
yT

js(t) − ŷki

]T
ei(t) +

N∑

i=1

a
∑

j∈Ni

[
yT

js(t) − ŷki

]T
ŷki

+

N∑

i=1

a
∑

j∈Ni

[
yT

js(t)ŷki
− ‖yjs(t)‖2

2

]

=

N∑

i=1

a
∑

j∈Ni

[
yT

js(t) − ŷki

]T
ei(t) −

N∑

i=1

a
∑

j∈Ni

∥∥yjs(t) − ŷki

∥∥2

2

≤
N∑

i=1

a
∥∥ei(t)

∥∥
2

∥∥ ∑

j∈Ni

[
yjs(t) − ŷki

]∥∥
2
−

N∑

i=1

a
∑

j∈Ni

∥∥yjs(t) − ŷki

∥∥2

2
,

(75)

so if

‖ei(t)‖2 ≤
∑

j∈Ni

∥∥yjs(t) − ŷki

∥∥2

2∥∥ ∑
j∈Ni

[
yjs(t) − ŷki

]∥∥
2

, ∀t ≥ 0, (76)

then V̇ ≤ 0. Notice that the triggering condition (41) guarantees that(76) holds. Invoking LaSalle’s Invariance
principle[1], we can conclude thatlimt→∞ V̇ = 0, thus we can further conclude that

lim
t→∞

[
yjs(t) − ŷki

]
= lim

t→∞
[
yis(t) − ŷkj

]
= 0, ∀(i, j) ∈ E(G). (77)

Under the triggering condition (41), (76) and (77) also implies that

lim
t→∞

ei(t) = lim
t→∞

[
yi(t) − ŷki

]
= 0, ∀i, (78)

which yields
lim
t→∞

yjs(t) = lim
t→∞

ŷki
= lim

t→∞
yi(t) and

lim
t→∞

yis(t) = lim
t→∞

ŷkj
= lim

t→∞
yj(t)

(79)

∀(i, j) ∈ E(G). Since

lim
t→∞

M11ŷki
= lim

t→∞
υ̃+

ji(t) = lim
t→∞

[
M21ŷkj

+ M22a
(
yis(t) − ŷkj

)]
, (80)

thus limt→∞ ŷki
= limt→∞ ŷkj

. Similarly, we have

lim
t→∞

M11ŷkj
= lim

t→∞
υ̃−

ij(t) = lim
t→∞

[
M21ŷki

+ M22a
(
yjs(t) − ŷki

)]
, (81)

thuslimt→∞ ŷkj
= limt→∞ ŷki

. UnderA2 and in view of (79), we can conclude thatlimt→∞ yj(t) = limt→∞ yi(t),
∀(i, j) ∈ E(G), which completes the proof.
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APPENDIX B
PROOF OFTHEOREM 4

Proof: Consider a storage function for the multi-agent system given by V =
∑N

i=1 Vi, whereVi ≥ 0 is the
storage function for agentHi such thatV̇i = uT

i (t)yi(t),∀t ≥ 0. Since all the agents are lossless, then we have

V̇ =
N∑

i=1

∑

j∈Ni

a
[
q(ŷkj

) − q(ŷki
)
]T

yi(t)

=

N∑

i=1

∑

j∈Ni

a
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q(ŷkj

) − q(ŷki
)
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ẽi(t) + q(ŷki
)
]

=
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i=1
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a
[
q(ŷkj

) − q(ŷki
)
]T

ẽi(t) +
N∑

i=1

∑

j∈Ni

a
[
q(ŷkj

) − q(ŷki
)
]T

q(ŷki
)

=
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i=1

∑

j∈Ni

a
[
q(ŷkj

) − q(ŷki
)
]T

ẽi(t) +

N∑
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j∈Ni

aq(ŷkj
)T q(ŷki

) −
N∑

i=1

∑

j∈Ni

aq(ŷki
)T q(ŷki

),

(82)

as the underlying information exchange graph is balanced, we have

N∑

i=1

∑

j∈Ni

aq(ŷki
)T q(ŷki

) = 0.5

N∑

i=1

∑

j∈Ni

aq(ŷki
)T q(ŷki

) + 0.5
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∑

j∈Ni

aq(ŷkj
)T q(ŷkj

), (83)

and therefore, it follows that

V̇ =
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)
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∥∥2

2
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(84)

choose0 < κ < 1 such that1 < 1
1−κ

< β, then we can further get

V̇ ≤
N∑
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j∈Ni

a
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) − q(ŷki
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∥∥2

2
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(85)

so if we can guarantee that

∥∥ei(t)
∥∥

2
≤

∑
j∈Ni

(
1−κ

2 − 1
2β

)
‖q(ŷkj

) − q(ŷki
)‖2

2∑
j∈Ni

∥∥q(ŷkj
) − q(ŷki

)
∥∥

2

, ∀t ≥ 0, (86)
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then we will have

V̇ ≤
N∑
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j∈Ni
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−
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∥∥2

2
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Note that ∑

j∈Ni

∥∥q(ŷkj
) − q(ŷki

)
∥∥2

2
≥ 1

|Ni|
( ∑
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∥∥

2
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,
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j∈Ni

[ (1−κ)
2 − 1

2β

]
‖q(ŷkj
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)
∥∥

2

≥
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(88)

so if
‖ei(t)‖2 ≤

(1 − κ

2
− 1

2β

) 1

|Ni|
∑

j∈Ni

∥∥q(ŷkj
) − q(ŷki

)
∥∥

2
, ∀t ≥ 0, (89)

then (86) holds and so does (87). Note that the triggering condition (48) actually guarantees that (89) is satisfied.
In view of (89), we can further get

N∑

i=1

∑

j∈Ni
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)∥∥q(ŷkj
) − q(ŷki

)
∥∥

2
(90)

sinceẽi(t) = ei(t) + εki
, we can get

N∑

i=1

∑

j∈Ni

‖ẽi(t)‖2 ≤
∑

i=1

∑

j∈Ni

‖ei(t)‖2 +

N∑

i=1

∑

j∈Ni

‖εki
‖2 =

N∑

i=1

|Ni|‖ei(t)‖2 +

N∑

i=1

|Ni|‖εki
‖2

≤
N∑

i=1

∑

j∈Ni

(1 − κ

2
− 1

2β

)∥∥q(ŷkj
) − q(ŷki

)
∥∥

2
+

N∑

i=1

|Ni|‖εki
‖2.

(91)

Since the underlying information graph is balanced, we have

N∑

i=1

∑

j∈Ni

‖ẽi(t)‖2 =
N∑

i=1

∑

j∈Ni

‖ẽj(t)‖2. (92)

Now, let’s integrate both sides of (87) fromt0 to t, ∀t ≥ t0 ≥ 0, then we will get

V (xt) − V (xt0) ≤
∫ t

t0

N∑

i=1

∑

j∈Ni

aβ

2
‖εki

‖2
2dτ −

∫ t

t0

N∑

i=1

∑

j∈Ni

aκ

2

∥∥q(ŷkj
) − q(ŷki

)
∥∥2

2
dτ, (93)

thus

0 ≤ V (xt) ≤
∫ t

t0

N∑

i=1

∑

j∈Ni

aβ

2
‖εki

‖2
2dτ −

∫ t

t0

N∑

i=1

∑

j∈Ni

aκ

2

∥∥q(ŷkj
) − q(ŷki

)
∥∥2

2
dτ + V (xt0). (94)

Since we can arbitrarily chooset ≥ t0, we can conclude that

N∑

i=1

∑

j∈Ni

aβ

2
‖εki

‖2
2 + V (xt0) ≥

N∑

i=1

∑

j∈Ni

aκ

2

∥∥q(ŷkj
) − q(ŷki

)
∥∥2

2
, ∀t ≥ t0. (95)
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Moreover, since

N∑

i=1

∑

j∈Ni

aκ

2

∥∥q(ŷkj
) − q(ŷki

)
∥∥2

2
≥

N∑

i=1

aκ

2|Ni|
( ∑

j∈Ni

∥∥q(ŷkj
) − q(ŷki

)
∥∥

2

)2

≥ 1

N

( N∑

i=1

√
aκ

2|Ni|
∑

j∈Ni

∥∥q(ŷkj
) − q(ŷki

)
∥∥

2

)2
,

(96)

we have
1

N

( N∑

i=1

√
aκ

2|Ni|
∑

j∈Ni

∥∥q(ŷkj
) − q(ŷki

)
∥∥

2

)2
≤

N∑

i=1

∑

j∈Ni

aβ

2
‖εki

‖2
2 + V (xt0)

=
N∑

i=1

aβ

2
|Ni|‖εki

‖2
2 + V (xt0).

(97)

Taking the square root of both sides of (97) yields
√

aκ

2N

N∑

i=1

1√
|Ni|

∑

j∈Ni

‖q(ŷkj
) − q(ŷki

)‖2 ≤
N∑

i=1

√
|Ni|

√
aβ

2
‖εki

‖2 +
√

V (xt0). (98)

Let Nm = maxi{|Ni|}, then (98) also implies

1√
Nm

√
aκ

2N

N∑

i=1

∑

j∈Ni

‖q(ŷkj
) − q(ŷki

)‖2 ≤
N∑

i=1

√
|Ni|

√
aβ

2
‖εki

‖2 +
√

V (xt0), or

N∑

i=1

∑

j∈Ni

‖q(ŷkj
) − q(ŷki

)‖2 ≤
√

βNNm

κ

N∑

i=1

√
|Ni|‖εki

‖2 +

√
2NNm

aκ

√
V (xt0). (99)

Since
∥∥q(ŷkj

) − q(ŷki
)
∥∥

2
=

∥∥yj(t) − ẽj(t) − yi(t) + ẽi(t)
∥∥

2
≥

∥∥yj(t) − yi(t)
∥∥

2
− ‖ẽi(t)‖2 − ‖ẽj(t)‖2, replace it

into (99), we can get

N∑

i=1

∑

j∈Ni

‖yj(t) − yi(t)‖2 ≤
√

βNNm

κ

N∑

i=1

√
|Ni|‖εki

‖2 +

√
2NNm

aκ

√
V (xt0)

+

N∑

i=1

∑

j∈Ni

‖ẽi(t)‖2 +

N∑

i=1

∑

j∈Ni

‖ẽj(t)‖2,

(100)

in view of (91) and (92), we get

N∑

i=1

∑

j∈Ni

‖yj(t) − yi(t)‖2 ≤
√

βNNm

κ

N∑

i=1

√
|Ni|‖εki

‖2 +

√
2NNm

aκ

√
V (xt0)

+

N∑

i=1

∑

j∈Ni

(
1 − κ − 1

β

)∥∥q(ŷkj
) − q(ŷki

)
∥∥

2
+

N∑

i=1

2|Ni|‖εki
‖2.

(101)

In view of (99), (101) further yields

N∑

i=1

∑

j∈Ni

‖yj(t) − yi(t)‖2 ≤
N∑

i=1

[
(2 − κ − 1

β
)

√
βNNm

κ

√
|Ni| + 2|Ni|

]
‖εki

‖2

+
(
2 − κ − 1

β

)
√

2NNm

aκ

√
V (xt0), ∀t ≥ t0.

(102)

(102) implies that the output synchronization error in the multi-agent system is bounded by the quantization errors
of agents’ latest transmitted output information by the time t. The proof is completed.
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APPENDIX C
PROOF OFTHEOREM 5

Proof: Based on Lemma 1, chooseVi(xi) =
∫ xi

0 q(σ)dσ as the storage function for each agent, then we have
V̇i = ui(t)q(yi(t)), ∀t ≥ 0. Consider a storage function for the multi-agent system given byV =

∑N
i=1 Vi, then

we have

V̇ =

N∑

i=1

ui(t)yi(t) =

N∑

i=1

∑

j∈Ni

a
[
q(ŷkj

) − q(ŷki
)
][

εi(t) + q(ŷki
)
]

=

N∑

i=1

∑

j∈Ni

a
[
q(ŷkj

) − q(ŷki
)
]
εi(t) +

N∑

i=1

∑

j∈Ni

a
[
q(ŷkj

) − q(ŷki
)
]
q(ŷki

)

=

N∑

i=1

∑

j∈Ni

a
[
q(ŷkj

) − q(ŷki
)
]
εi(t) +

N∑

i=1

∑

j∈Ni

aq(ŷki
)q(ŷkj

) −
N∑

i=1

∑

j∈Ni

aq(ŷki
)2,

(103)

as the underlying information exchange graph is balanced, we have

N∑

i=1

∑

j∈Ni

aq(ŷki
)2 = 0.5

N∑

i=1

∑

j∈Ni

aq(ŷki
)2 + 0.5

N∑

i=1

∑

j∈Ni

aq(ŷkj
)2,

and therefore it follows that

V̇ =

N∑

i=1

∑

j∈Ni

a
[
q(ŷkj

) − q(ŷki
)
]
εi(t) −

N∑

i=1

∑

j∈Ni

0.5a
∥∥q(ŷkj

) − q(ŷki
)
∥∥2

2

≤
N∑

i=1

∥∥εi(t)
∥∥

2

∥∥ ∑

j∈Ni

a
[
q(ŷkj

) − q(ŷki
)
]∥∥

2
−

N∑

i=1

∑

j∈Ni

0.5a
∥∥q(ŷkj

) − q(ŷki
)
∥∥2

2
,

(104)

so if we can guarantee that

‖εi(t)‖2 ≤
∑

j∈Ni
0.5a

∥∥q(ŷkj
) − q(ŷki

)
∥∥

2∥∥∑
j∈Ni

a
[
q(ŷkj

) − q(ŷki
)
]∥∥

2

=

∑
j∈Ni

0.5
∥∥q(ŷkj

) − q(ŷki
)
∥∥

2∥∥∑
j∈Ni

[
q(ŷkj

) − q(ŷki
)
]∥∥

2

, ∀t ≥ 0, (105)

then we will haveV̇ ≤ 0, ∀t ≥ 0. Note that the triggering condition (49) actually guarantees that (105) is satisfied.
Moreover, we can rewrite (103) as

V̇ =
N∑

i=1

∑

j∈Ni

a
[
q(ŷkj

) − q(ŷki
)
]
q(yi(t))

=

N∑

i=1

∑

j∈Ni

a
[
q(yj(t)) − εj(t) − q(yi(t)) + εi(t)

]
q(yi(t))

=
N∑

i=1

∑

j∈Ni

a
[
q(yj(t)) − q(yi(t))

]
−

N∑

i=1

∑

j∈Ni

a
[
εj(t) − εi(t)

]
q(yi(t))

= −q(Y )T Lq(Y ) + ẼT Lq(Y ),

(106)

whereY = [y1, y2, . . . , yN ]T , Ẽ = [ε1, ε2, . . . , εN ]T , q(·) acts component wise on the vectorY , andL is the graph
Laplacian of the underlying information exchange graph. Since under the triggering condition, we haveV̇ ≤ 0, in
view of (106), based on LaSalle’s Invariance Principle and assumptionA1, V̇ ≤ 0 also implies that

lim
t→∞

[
q(yi(t)) − q(yj(t))

]
= 0, ∀(i, j) ∈ E(G). (107)
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Further more, since

1

N

N∑

i=1

ẋi(t) =
1

N

N∑

i=1

ui(t) =
1

N

N∑

i=1

∑

j∈Ni

a
[
q(ŷkj

) − q(ŷki
)
]

=
1

N

N∑

i=1

∑

j∈Ni

a
[
q(xj(t)) − q(xi(t))

]
− 1

N

N∑

i=1

∑

j∈Ni

a
[
εj(t) − εi(t)

]
,

(108)

under assumptionA1, we have

1

N

N∑

i=1

∑

j∈Ni

a
[
q(xj(t)) − q(xi(t))

]
= 0, and

1

N

N∑

i=1

∑

j∈Ni

a
[
εj(t) − εi(t)

]
= 0,

thus 1
N

∑N
i=1 ẋi(t) = 0 and 1

N

∑N
i=1 xi(t) =

∑N
i=1 xi(0) = 0, ∀t ≥ 0. In view of (107), we can further conclude that

the state of each agent will converge to a value around their initial average asymptotically. The proof is completed.

APPENDIX D
PROOF OFTHEOREM 6

Proof: With Tij andTji being constant and finite, one can verify that
∫ t

0
‖υ+

ji(τ)‖2
2dτ ≤

∫ t

0
‖υ+

ij(τ)‖2
2dτ and

∫ t

0
‖υ−

ij(τ)‖2
2dτ ≤

∫ t

0
‖υ−

ji(τ)‖2
2dτ.

Since ∫ t

0
‖υ+

ij(τ)‖2
2dτ =

ni∑

ki=0

δ(t − tki
)‖q(M11ŷki

)‖2
2 ≤

ni∑

ki=0

∫ tki+1

tki

‖q(M11ŷki
)‖2

2dτ,

whereδ(·) is the Dirac delta function,ni is the number of scattering variables sent from agenti to agentj during
the time interval[0, t]. Similarly, one can get

∫ t

0
‖υ−

ji(τ)‖2
2dτ =

nj∑

kj=0

δ(t − tkj
)‖q(M11ŷkj

)‖2
2 ≤

nj∑

kj=0

∫ tkj+1

tkj

‖q(M11ŷkj
)‖2

2dτ,

wherenj is the number of scattering variables sent from agentj to agenti during the time interval[0, t]. Let’s
denote ∫ t

0

∥∥υ̃+
ij(τ)

∥∥2

2
dτ =

ni∑

ki=0

∫ tki+1

tki

∥∥q(M11ŷki
)
∥∥2

2
dτ,

∫ t

0

∥∥υ̃−
ji(τ)

∥∥2

2
dτ =

nj∑

kj=0

∫ tkj+1

tkj

∥∥q(M11ŷkj
)
∥∥2

2
dτ,

let n̂i denote the number of scattering variables received by agentj during the time interval[0, t], then we have

∫ t

0

∥∥υ+
ji(τ)

∥∥2

2
dτ =

n̂i∑

ki=0

δ(t − tki
− Tij)

∥∥q(M11ŷki
)
∥∥2

2
. (109)

Note that due to the delayTij from agenti to agentj, we haven̂i < ni. Since υ̃+
ji(t) holds the last sample of

υ+
ji(t), we have

υ̃+
ji(t) = q(M11ŷki

), for t ∈ [tki
+ Tij , tki+1 + Tij],

therefore ∫ t

0

∥∥υ̃+
ji(τ)

∥∥2

2
dτ =

n̂i∑

ki=0

∫ tki+1+Tij

tki
+Tij

∥∥q(M11ŷki
)
∥∥2

2
dτ =

n̂i∑

ki=0

∫ tki+1

tki

∥∥q(M11ŷki
)
∥∥2

2
dτ.
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Similarly, sinceυ̃−
ij(t) holds the last sample ofυ−

ij(t), we have

υ̃−
ij(t) = q(M11ŷkj

), for t ∈ [tkj
+ Tji, tkj+1 + Tji],

therefore ∫ t

0

∥∥υ̃−
ij(τ)

∥∥2

2
dτ =

n̂j∑

kj=0

∫ tkj+1+Tji

tkj
+Tji

∥∥q(M11ŷkj
)
∥∥2

2
dτ =

n̂j∑

kj=0

∫ tkj+1

tkj

∥∥q(M11ŷkj
)
∥∥2

2
dτ.

Sinceni ≥ n̂i andnj ≥ n̂j, we have
∫ t

0

∥∥υ̃+
ij(τ)

∥∥2

2
dτ −

∫ t

0

∥∥υ̃+
ji(τ)

∥∥2

2
dτ +

∫ t

0

∥∥υ̃−
ji(τ)

∥∥2

2
dτ −

∫ t

0

∥∥υ̃−
ij(τ)

∥∥2

2
dτ ≥ 0.

Moreover, based on the scattering transformation (52) and (53), we have

υ̃−
ij(t) = q(M21ŷki

) + aM22

[
yjs(t) − q(M21ŷki

)
]
, for t ∈ [tki

, tki+1)

υ̃+
ji(t) = q(M21ŷkj

) + aM22

[
yis(t) − q(M21ŷkj

)
]
, for t ∈ [tkj

, tkj+1),
(110)

therefore ∫ t

0

∥∥υ̃−
ij(τ)

∥∥2

2
dτ =

ni∑

ki=0

∫ tki+1

tki

∥∥∥q(M21ŷki
) + aM22

[
yjs(τ) − q(M21ŷki

)
]∥∥∥

2

2
dτ

=

ni∑

ki=0

∫ tki+1

tki

[
(1 − 2aM22 + a2M2

22)
∥∥q(M21ŷki

)
∥∥2

2

− (2a2M2
22 − 2aM22)q

T (M21ŷki
)yjs(τ) + a2M2

22

∥∥yjs(τ)
∥∥2

2

]
dτ.

(111)

Similarly, we can get
∫ t

0

∥∥υ̃+
ji(τ)

∥∥2

2
dτ =

nj∑

kj=0

∫ tkj+1

tkj

[
(1 − 2aM22 + a2M2

22)
∥∥q(M21ŷkj

)
∥∥2

2

− (2a2M2
22 − 2aM22)q

T (M21ŷkj
)yis(τ) + a2M2

22

∥∥yis(τ)
∥∥2

2

]
dτ.

(112)

With M11 = M21, we have
∫ t

0

∥∥υ̃+
ij(τ)

∥∥2

2
dτ −

∫ t

0

∥∥υ̃+
ji(τ)

∥∥2

2
dτ +

∫ t

0

∥∥υ̃−
ji(τ)

∥∥2

2
dτ −

∫ t

0

∥∥υ̃−
ij(τ)

∥∥2

2
dτ

=

ni∑

ki=0

∫ tki+1

tki

[
(2aM22 − a2M2

22)
∥∥q(M21ŷki

)
∥∥2

2
+ (2a2M2

22 − 2aM22)q
T (M21ŷki

)yjs(τ)

− a2M2
22

∥∥yjs(τ)
∥∥2

2

]
dτ +

nj∑

kj=0

∫ tkj+1

tkj

[
(2aM22 − a2M2

22)
∥∥q(M21ŷkj

)
∥∥2

2

+ (2a2M2
22 − 2aM22)q

T (M21ŷkj
)yis(τ) − a2M2

22

∥∥yis(τ)
∥∥2

2

]
dτ,

(113)

with aM22 = 2, we can further obtain

Vij =

∫ t

0

∥∥υ̃+
ij(τ)

∥∥2

2
dτ −

∫ t

0

∥∥υ̃+
ji(τ)

∥∥2

2
dτ +

∫ t

0

∥∥υ̃−
ji(τ)

∥∥2

2
dτ −

∫ t

0

∥∥υ̃−
ij(τ)

∥∥2

2
dτ

=
ni∑

ki=0

∫ tki+1

tki

[
4qT (M21ŷki

)yjs(τ) − 4
∥∥yjs(τ)

∥∥2

2

]
dτ

+

nj∑

kj=0

∫ tkj+1

tkj

[
4qT (M21ŷkj

)yis(τ) − 4
∥∥yis(τ)

∥∥2

2

]
dτ,

(114)
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consider a storage function for the multi-agent system given by

V = M11

N∑

i=1

Vi +
a

8

∑

(i,j)∈E(G)

Vij

= M11

N∑

i=1

Vi +

N∑

i=1

ni∑

ki=0

∫ tki+1

tki

a
∑

j∈Ni

[
qT (M21ŷki

)yjs(τ) −
∥∥yjs(τ)

∥∥2

2

]
dτ,

(115)

whereVi is the storage function for agenti such thatV̇i = uT
i (t)yi(t), ∀t ≥ 0. For t ∈ [tki

, tki+1], let

ei(t) = M11yi(t) − q(M11ŷki
),

êi(t) = M11

[
yi(t) − ŷki

]
,

εki
= M11yki

− q(M11ŷki
),

(116)

and one can see thatei(t) = êi(t) + M11ŷki
− q(M11ŷki

) = êi(t) + εki
, for t ∈ [tki

, tki+1]. So

M11

N∑

i=1

Vi =

N∑

i=1

ni∑

ki=0

∫ tki+1

tki

M11a
∑

j∈Ni

[
yjs(τ) − q(M21ŷki

)
]T 1

M11

[
ei(τ) + q(M11ŷki

)
]
dτ

=

N∑

i=1

ni∑

ki=0

∫ tki+1

tki

a
∑

j∈Ni

[
yjs(τ) − q(M21ŷki

)
]T [

ei(τ) + q(M11ŷki
)
]
dτ

(117)

with 0 < β < 1, we can get

V̇ = M11

N∑

i=1

V̇i +
a

8

∑

(i,j)∈E(G)

V̇ij

=
N∑

i=1

a
∑

j∈Ni

[
yjs(t) − q(M21ŷki

)
]T [

ei(t) + q(M11ŷki
)
]

+

N∑

i=1

∑

j∈Ni

a
[
qT (M21ŷki

)yjs(t) −
∥∥yjs(t)

∥∥2

2

]

=
N∑

i=1

∑

j∈Ni

a
[
yjs(t) − q(M21ŷki

)
]T

ei(t) −
N∑

i=1

∑

j∈Ni

a
∥∥q(M21ŷki

) − yjs(t)
∥∥2

2

=

N∑

i=1

∑

j∈Ni

a
[
yjs(t) − q(M21ŷki

)
]T

[êi(t) + εki
] −

N∑

i=1

∑

j∈Ni

a
∥∥q(M21ŷki

) − yjs(t)
∥∥2

2

(118)

thus

V̇ ≤
N∑

i=1

∑

j∈Ni

a
∥∥yjs(t) − q(M21ŷki

)
∥∥

2

∥∥êi(t)
∥∥

2
+

N∑

i=1

∑

j∈Ni

a
∥∥yjs(t) − q(M21ŷki

)
∥∥

2

∥∥εki

∥∥
2

−
N∑

i=1

∑

j∈Ni

a
∥∥q(M21ŷki

) − yjs(t)
∥∥2

2

≤
N∑

i=1

∑

j∈Ni

a
∥∥yjs(t) − q(M21ŷki

)
∥∥

2
‖êi(t)‖2 +

N∑

i=1

∑

j∈Ni

a

2β

∥∥εki

∥∥2

2

+

N∑

i=1

∑

j∈Ni

aβ

2

∥∥yjs(t) − q(M21ŷki
)
∥∥

2
−

N∑

i=1

∑

j∈Ni

a
∥∥q(M21ŷki

) − yjs(t)
∥∥2

2
,

(119)
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choose0 < γ < 1, then we have

V̇ ≤
N∑

i=1

∑

j∈Ni

a
∥∥yjs(t) − q(M21ŷki

)
∥∥

2
‖êi(t)‖2 −

N∑

i=1

∑

j∈Ni

a(1 − β

2
)γ

∥∥yjs(t) − q(M21ŷki
)
∥∥2

2

+

N∑

i=1

∑

j∈Ni

a

2β

∥∥εki

∥∥
2
−

N∑

i=1

∑

j∈Ni

a(1 − β

2
)(1 − γ)

∥∥yjs(t) − q(M21ŷki
)
∥∥2

2
,

(120)

so of we can guarantee that

∥∥êi(t)
∥∥

2
≤

∑
j∈Ni

(1 − β
2 )γ

∥∥yjs(t) − q(M21ŷki
)
∥∥2

2∑
j∈Ni

∥∥yjs(t) − q(M21ŷki
)
∥∥

2

, ∀t ∈ [tki
, tki+1), i = 1, 2, . . . , N, (121)

then we will have

V̇ ≤
N∑

i=1

∑

j∈Ni

a

2β

∥∥εki

∥∥2

2
−

N∑

i=1

∑

j∈Ni

a(1 − β

2
)(1 − γ)

∥∥yjs(t) − q(M21ŷki
)
∥∥2

2
, ∀t ≥ 0. (122)

Note that
∑

j∈Ni
(1 − β

2 )γ
∥∥yjs(t) − q(M21ŷki

)
∥∥2

2∑
j∈Ni

∥∥yjs(t) − q(M21ŷki
)
∥∥

2

≥
(1− β

2
)γ

|Ni|

( ∑
j∈Ni

∥∥yjs(t) − q(M21ŷki
)
∥∥

2

)2

∑
j∈Ni

∥∥yjs(t) − q(M21ŷki
)
∥∥

2

=
(1 − β

2 )γ

|Ni|
∑

j∈Ni

∥∥yjs(t) − q(M21ŷki
)
∥∥

2

(123)

thus a sufficient condition for (121) to be hold is given by

∥∥êi(t)
∥∥

2
≤ (1 − β

2 )γ

|Ni|
∑

j∈Ni

∥∥yjs(t) − q(M21ŷki
)
∥∥

2
, ∀ t ∈ [tki

, tki+1), i = 1, 2, . . . , N. (124)

Note that the triggering condition (55) actually assures that (124) is satisfied. Now integrating both sides of (122)
from t0 to t, ∀t ≥ t0, then we have

V (xt) − V (xt0) ≤
∫ t

t0

N∑

i=1

∑

j∈Ni

a

2β

∥∥εki

∥∥2

2
dτ −

∫ t

t0

N∑

i=1

∑

j∈Ni

a(1 − β

2
)(1 − γ)

∥∥yjs(τ) − q(M21ŷkj
)
∥∥2

2
dτ,

and

0 ≤ V (xt) ≤ V (xt0) +

∫ t

t0

N∑

i=1

∑

j∈Ni

a

2β

∥∥εki

∥∥2

2
dτ −

∫ t

t0

N∑

i=1

∑

j∈Ni

a(1 − β

2
)(1 − γ)

∥∥yjs(τ) − q(M21ŷkj
)
∥∥2

2
dτ,

thus
∫ t

t0

N∑

i=1

∑

j∈Ni

a(1 − β

2
)(1 − γ)

∥∥yjs(τ) − q(M21ŷkj
)
∥∥2

2
dτ ≤ V (xt0) +

∫ t

t0

N∑

i=1

∑

j∈Ni

a

2β

∥∥εki

∥∥2

2
dτ, (125)

since we can arbitrarily chooset ≥ t0, (125) also indicates that

N∑

i=1

∑

j∈Ni

a(1 − β

2
)(1 − γ)

∥∥yjs(t) − q(M21ŷki
)
∥∥2

2
≤ V (xt0) +

N∑

i=1

∑

j∈Ni

a

2β

∥∥εki

∥∥2

2
, ∀t ≥ t0. (126)
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Moreover, because
N∑

i=1

∑

j∈Ni

a(1 − β

2
)(1 − γ)

∥∥yjs(t) − q(M21ŷki
)
∥∥2

2

≥
N∑

i=1

a(1 − β
2 )(1 − γ)

|Ni|
( ∑

j∈Ni

∥∥yjs(t) − q(M21ŷki
)
∥∥

2

)2

≥ a(1 − β
2 )(1 − γ)

N

( N∑

i=1

1√
|Ni|

∑

j∈Ni

∥∥yjs(t) − q(M21ŷki
)
∥∥

2

)2

(127)

so (126) also implies

a(1 − β
2 )(1 − γ)

N

( N∑

i=1

1√
|Ni|

∑

j∈Ni

∥∥yjs(t) − q(M21ŷki
)
∥∥

2

)2
≤ V (xt0) +

N∑

i=1

∑

j∈Ni

a

2β

∥∥εki

∥∥2

2
, ∀ t ≥ t0

which further indicates √
a(1 − β

2 )(1 − γ)

N

N∑

i=1

1√
Nm

∑

j∈Ni

∥∥yjs(t) − q(M21ŷki
)
∥∥

2

≤

√
a(1 − β

2 )(1 − γ)

N

N∑

i=1

1√
|Ni|

∑

j∈Ni

∥∥yjs(t) − q(M21ŷki
)
∥∥

2

≤
√

V (xt0) +
N∑

i=1

∑

j∈Ni

√
a

2β

∥∥εki

∥∥
2
, ∀ t ≥ t0,

(128)

whereNm = maxi{|Ni|}, or we can rewrite (128) as

N∑

i=1

∑

j∈Ni

∥∥yjs(t) − q(M21ŷki
)
∥∥

2
≤

√
NNm

a(1 − β
2 )(1 − γ)

√
V (xt0)

+

N∑

i=1

∑

j∈Ni

√
NNm

β(2 − β)(1 − γ)

∥∥εki

∥∥
2
, ∀ t ≥ t0.

(129)

SinceaM22 = 2, in view of (52), we can conclude that

lim
t→∞

[
yjs(t) − q(M21ŷki

)
]

= lim
t→∞

1

2

[
υ̃−

ij(t) − q(M21ŷki
)
]

where limt→∞ q(M21ŷki
) could be considered as the latest transmitted scattering variable of agenti by the time

t → ∞. Moreover, sincelimt→∞ υ̃−
ij(t) = limt→∞ q(M11ŷkj

), wherelimt→∞ q(M11ŷkj
) could be considered as

the latest transmitted scattering variable of agentj by the timet → ∞, we have

lim
t→∞

[
yjs(t) − q(M21ŷki

)
]

= lim
t→∞

=
1

2

[
q(M11ŷkj

) − q(M21ŷki
)
]
,

replace it into (129), we can further get

lim
t→∞

N∑

i=1

∑

j∈Ni

∥∥q(M11ŷkj
) − q(M21ŷki

)
∥∥

2
≤ 2

√
NNm

a(1 − β
2 )(1 − γ)

√
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+ lim
t→∞

2

N∑

i=1

∑

j∈Ni

√
NNm

β(2 − β)(1 − γ)

∥∥εki

∥∥
2
, ∀ t ≥ t0.

(130)

Note that ∥∥q(M11ŷkj
) − q(M21ŷki

)
∥∥

2
=

∥∥M11yj(t) − ej(t) − M11yi(t) + ei(t)
∥∥

2

≥ M11

∥∥yj(t) − yi(t)
∥∥

2
−

∥∥ej(t)
∥∥

2
−

∥∥ei(t)
∥∥

2
, ∀t ≥ 0,

(131)
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so we can conclude that

lim
t→∞

N∑

i=1

∑

j∈Ni

∥∥yj(t) − yi(t)
∥∥

2
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t→∞
1

M11

N∑
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∑

j∈Ni
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) − q(M21ŷki
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2

+ lim
t→∞

1

M11

N∑
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2
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1

M11
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j∈Ni

∥∥ei(t)
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2
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j∈Ni

√
NNm
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∥∥εki
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2
+ lim
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1

M11

N∑
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2
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1

M11
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∑

j∈Ni
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2
+

2

M11

√
NNm

a(1 − β
2 )(1 − γ)

√
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(132)

because the underlying information exchange graph is balanced, we have
∑N

i=1

∑
j∈Ni

∥∥ej(t)
∥∥

2
=

∑N
i=1

∑
j∈Ni

∥∥ei(t)
∥∥

2
,

where
N∑

i=1

∑

j∈Ni

∥∥ei(t)
∥∥

2
=

N∑

i=1

|Ni|
∥∥ei(t)
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2
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N∑

i=1

|Ni|
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∥∥
2
+

N∑

i=1

|Ni|
∥∥εki

∥∥
2
,

in view of (124), we have

N∑

i=1

∑

j∈Ni

∥∥ei(t)
∥∥

2
≤

N∑
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2
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∥∥εki
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2
,

thus
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t→∞
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(133)

and we can obtain

lim
t→∞
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(134)

which shows that the output synchronization error of the studied multi-agent system is ultimately bounded by the
quantization error of agents’ latest transmitted sampled output information. The proof is completed.
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