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Abstract

When network induced delays are considered in the event-triggered control literature, they are typically delays from the
plant to the network controller and a tight bound on the admissible delays is usually imposed based on the analysis of
inter-event time to guarantee stability of the event-triggered control systems. In this paper, we introduce a framework for
output feedback based event-triggered networked control systems(NCSs). The triggering condition is derived based on
passivity theorem which allows us to characterize a large class of output feedback stabilizing controllers. The proposed
set-up enables us to consider network induced delays both from the plant to the network controller and from the
network controller to the plant. We also take quantization of the transmitted signals in the communication network into
consideration and we show that finite-gain L2 stability can be achieved in the presence of time-varying (or constant)
network induced delays with bounded jitters, without requiring that the network induced delays are upper bounded by
the inter-event time.
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1. Introduction

Feedback control laws nowadays are typically imple-
mented on digital platforms since microprocessors offer
many advantages. In such an implementation, the control
task consists of sampling the output of the plant, comput-
ing and implementing new actuation signals. Tradition-
ally, the control task is executed periodically; this allows
the closed-loop system to be analyzed and the controller to
be designed using the well-developed theory on sampled-
data systems (cf. Jury, 1958; Ragazzini & Franklin, 1958;
Aström et al., 1990). However, the control strategy ob-
tained based on this approach is conservative in the sense
that resource usage (i.e., sampling rate, CPU time) is more
frequent than necessary to ensure a specified performance
level, since stability is guaranteed in the worst case scenar-
ios under sufficiently fast periodic execution of the control
action. To overcome this drawback, several researchers
suggested the idea of event-triggered control. In the litera-
ture, the triggering mechanism is referred to as Lebesgue
sampling (Aström & Bernhardsson, 2002), dead-band con-
trol (Otanez et al., 2002), level-crossing sampling (Kof-
man & Braslavsky, 2006), event-based-sampling (Aström,
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2008), event-driven sampling (Heemels et al., 2008), state-
triggered sampling (Tabuada, 2007) and self-triggered sam-
pling (Wang & Lemmon, 2009) with slightly different mean-
ings. In all cases, the control signal is kept constant until
violation of a triggering condition on certain signals of the
plant triggers re-computation of the control signals. The
possibility of reducing the number of re-computations, and
thus of transmissions, while guaranteeing desired level of
performance makes event-triggered control very appealing
in networked control systems(NCSs).

Although the advantages of event-triggered control are
significant, there are still problems that need to be ad-
dressed before event-triggered control can be fruitfully ap-
plied to NCSs. Most of the results on event-triggered con-
trol are obtained under the assumption that the feedback
control law provides input-to-state stability(ISS) in the
sense of (Sontag, 1989) with respect to some signal novelty
errors of the plant (cf. Tabuada, 2007; Wang & Lemmon,
2009; Anta & Tabuada, 2010). The ISS framework pro-
vides insight into the triggering condition by exploring the
relation between stabilization and the current full-state in-
formation. However, in many control applications, the full
state information is not available for measurement, so ex-
tensions to event-triggered output feedback based control
are important. Early work on event-triggered control using
dynamic output feedback based controllers in Kofman &
Braslavsky (2006) does not include a thorough analysis of
the minimum time between two subsequent events, the so-
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called inter-event time. A recent work on output feedback
based event-triggered control scheme with guaranteed L∞-
gain for linear time-invariant control system is reported
in Donkers et al. (2010), where the event-triggered con-
trol system is modeled as an impulsive system and linear
matrix inequalities are applied to study the stability and
performance of the event-triggered control systems. This
framework cannot be easily extended to nonlinear control
systems, and the triggering mechanism requires synchro-
nization between the event-detector and the network con-
troller. In Yu & Antsaklis (2011a), a static output feed-
back based event-triggered control scheme is introduced for
stabilization of passive and output feedback passive(OFP)
NCSs, where the triggering condition and the static out-
put feedback gain are derived based on the output feed-
back passivity indices of the plant. The results in Yu &
Antsaklis (2011a) only apply to passive and output feed-
back passive systems.

Although the above work on output feedback based
event-triggered control have recently appeared in the lit-
erature in addition to the ISS framework, robustness issues
with respect to the imperfect communication networks still
have not been addressed. In particular, most of the work
on event-triggered control for NCSs assume that the net-
work induced delay is upper bounded by the inter-event
time so that stability of the NCS can be guaranteed. How-
ever, in real time NCSs, the network induced delay is usu-
ally unknown, and it is very likely having network induced
delay larger than the inter-event time. Moreover, in the
presence of external disturbances, the inter-event time im-
plicitly determined by the triggering condition, could be
extremely small. Thus, it is not practical to schedule the
data transmissions at the plant side based on the analysis
of the inter-event time. Another limitation of many exist-
ing work on event-triggered control for NCSs is that only
network induced delays from the plant to the network con-
troller have been considered. However, non-trivial delays
from the network controller to the actuator (which is col-
located with the plant) could also jeopardize the stability
of the event-triggered control system.

In this paper, we propose a dynamic output feedback
based event-triggered control framework for NCSs that al-
lows us to take both signal quantization and network un-
certainties into consideration. The present work applies
to Input Feed-forward Output Feedback Passive(IF-OFP)
systems which are more general than the results reported
in Yu & Antsaklis (2011a), since the plant is not necessar-
ily passive but dissipative. A triggering condition based
on the main passivity theorem is derived which enables us
to characterize a large class of output feedback stabiliz-
ing controllers. A rectified scattering transformation has
been employed in our framework to deal with time-varying
(or constant) network induced delays with bounded jitters
both from the plant to the network controller and from the
network controller to the plant; finite-gain L2 stability of
the event-triggered NCSs is achieved under the proposed
framework. Note that scattering transformation was first

applied in the literature of telecommunication to achieve
stability independently of time delays provided that the
plant and the controller are both passive (cf. Anderson &
Spong, 1989; Lozano et al., 2002). It was then applied
to networked control systems for output strictly passive
systems (cf. Chopra & Spong, 2007; Chopra, 2008). The
more general scattering transformation was examined in
the work of Hirchea et al. (2009), for IF-OFP systems.
The basic idea of applying scattering transformation in
all of these work is to preserve the passive or dissipative
properties of the original systems through the communi-
cation network in the presence of network induced delays.
However, in all of those previous work, continuous or peri-
odic communication between the plant and the controller
is assumed, and quantization of the transmitted data is
not considered. Thus, how to use scattering transforma-
tion to deal with network induced delays when the data
transmission between the plant and the network controller
is event-based remains as an interesting problem. Part of
our results have appeared in Yu & Antsaklis (2011b) and
Yu & Antsaklis (2011c), without considering quantization
effects of the transmitted signals in the communication
network. The work presented in this paper are important
extensions on applying event-triggered control to NCSs,
especially when signal quantization has to be taken into
account and when the delays in the communication net-
work could be larger than the inter-event time implicitly
determined by the triggering condition.

The rest of this paper is organized as follows: we first
introduce some background on passive and dissipative sys-
tems in Section 2; the problem is stated in Section 3; an
event-triggering condition to achieve L2 stability of the
NCSs derived based on the passivity theorem without con-
sidering network induced delays is presented in Section 4;
analysis on the corresponding inter-event time is provided
in Section 5; we discuss our proposed framework in Section
6; finally, Section 7 summarizes the main results.

2. Background Material

We first introduce some basic concepts on passive and
dissipative systems. Consider the following control system,
which could be linear or nonlinear:

Hp :

{
ẋp = fp(xp, up)

yp = hp(xp, up)
(1)

where xp ∈ Xp ⊂ R
n, up ∈ Up ⊂ R

m and yp ∈ Yp ⊂ R
m

are the state, input and output variables, respectively, and
Xp, Up and Yp are the state, input and output spaces,
respectively. The representation φp(t, t0, xp0, up) is used
to denote the state at time t reached from the initial state
xp0 at the time t0 under the control up.

Definition 1. (Supply Rate (Willems, 1972)) The supply
rate ωp(t) = ωp(up(t), yp(t)) is a real valued function de-
fined on Up×Yp, such that for any up(t) ∈ Up and xp0 ∈ Xp
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and yp(t) = hp(φp(t, t0, xp0, up), up), ωp(t) satisfies

∫ t1

t0

|ωp(τ)|dτ < ∞. (2)

Definition 2. (Dissipative System(Willems, 1972)) Sys-
tem Hp with supply rate ωp(t) is said to be dissipative if
there exists a nonnegative real function Vp : Xp → R

+,
called the storage function, such that, for all t1 ≥ t0 ≥ 0,
xp0 ∈ Xp and up ∈ Up,

Vp(xp1) − Vp(xp0) ≤
∫ t1

t0

ωp(τ)dτ, (3)

where xp1 = φp(t1, t0, xp0, up) and R
+ is a set of nonneg-

ative real numbers. If Vp is C1, then we have V̇p ≤ ωp(t),
∀t ≥ 0.

Passive systems are special cases of dissipative systems as
defined below.

Definition 3. (Passive System (Willems, 1972)) System
Hp is said to be passive if there exists a storage function
Vp such that

Vp(xp1) − V (xp0) ≤
∫ t1

t0

uT
p (τ)yp(τ)dτ. (4)

If Vp is C1, then

V̇p ≤ uT
p (t)yp(t), ∀t ≥ 0. (5)

Definition 4. (IF-OFP systems (Sepulchre et al., 1997))
System Hp is said to be Input Feed-forward Output Feed-
back Passive(IF-OFP) if it is dissipative with respect to
the supply rate

ωp(up, yp) = uT
p yp − ρpy

T
p yp − νpu

T
p up, ∀t ≥ 0, (6)

for some ρp, νp ∈ R.

For the rest of this paper, we will denote an m−inputs
m−outputs dissipative system with supply rate (6) by IF-
OFP(νp, ρp)

m and we will call (νp, ρp) the passivity indices
of the system.

Theorem 1. (Passivity Theorem(Khalil, 2002)) Consider
a well-posed feedback interconnection as shown in Figure
1, and suppose each feedback component satisfies the in-
equality

V̇i ≤ uT
i yi − ρiy

T
i yi − νiu

T
i ui, for i = 1, 2, (7)

for some storage function Vi. Then, the closed-loop map
from ω = [ωT

1 , ωT
2 ]T to y = [yT

1 , yT
2 ]T is finite-gain L2

stable if
ρ1 + ν2 > 0, ρ2 + ν1 > 0. (8)

Figure 1: Feedback Interconnection of Two IF-OFP Sys-
tems

Lemma 1. (Matiakis et al., 2006) Without loss of gen-
erality the domain of ρp, νp in IF-OFP system (6) is Ω =
Ω1 ∪ Ω2 with Ω1 = {ρp, νp ∈ R|ρpνp < 1

4}, Ω2 = {ρp, νp ∈
R|ρpνp = 1

4 ; ρp > 0}.

3. Problem Statement

We consider the control system given in (1). We as-
sume Hp is IF-OFP(νp, ρp)

m with a C1 storage function
Vp. Based on Theorem 1, we know that if we design an
IF-OFP(νc, ρc)

m controller with a C1 storage function Vc

such that ρc + νp > 0, ρp + νc > 0, then the closed-loop
system is finite-gain L2 stable.

In real time NCSs, the implementation of the feedback
control law on an embedded processor is typically done by
sending the value of the plant’s output yp(t) at time instant
tk (for k = 0, 1, 2, . . .) to the network controller through
the communication network; the transmitted output in-
formation of the plant arrives at the controller at time
instant tk + ∆k, where ∆k ≥ 0 represents the network in-
duced delay from the plant to the network controller; the
controller computes the control action based on the re-
ceived information of the plant and sends the control laws
back to the actuator (located at the plant side) through
the communication network. In event-triggered NCSs, new
output information is sent to the network controller only
when the output novelty error ẽp(t) = yp(t)−yp(tk) (where
yp(tk) denotes the last output information sent to the net-
work controller at the event time tk) in the event-detector
(which is usually embedded hardware in the sampler) sat-
isfies a triggering condition. So transmission of plant’s
information is essentially scheduled by “demand”. A trig-
gering condition based on the stabilizing control action is
derived to guarantee stability of the NCS.

Figure 2: Event-Triggered Control NCSs (actuator is assumed
to be collocated with the plant)
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In most of the event-triggered NCS’s results presented
in the literature (cf. Tabuada, 2007, Mazo & Tabuada,
2008, Wang & Lemmon, 2009, Yu & Antsaklis, 2011a),
only network induced delays (∆k as shown in Figure 2)
from the plant to the network controller have been consid-
ered and a bound on the admissible network induced delays
is usually imposed based on the analysis of the inter-event
time, while the network induced delays from the network
controller to the actuator (∆̃ as shown in Figure 2) are ne-
glected. As we have discussed in Section 1, it is not very
practical to schedule the data transmissions at the plant
side based on the inter-event time because of the uncer-
tainties of the network induced delays. Moreover, network
induced delay from the controller to the actuator should
not be neglected for stability analysis.

In this paper, we propose a framework for output feed-
back based event-triggered NCSs to address the problems
just mentioned above. We summarize the problems inves-
tigated in the present paper as follows:

1. If the plant is IF-OFP(νp, ρp)
m, what should be the

output feedback stabilizing controller and accord-
ingly, what is the event-triggering condition? Is the
condition shown in Theorem 1 still sufficient to guar-
antee finite-gain L2 stability of event-triggered con-
trol system?

2. Can we estimate the lower bound on the inter-event
time [tk+1− tk] implicitly determined by the trigger-
ing condition?

3. If we consider delay and quantization effects of the
transmitted signals in the communication network,
can we still achieve finite-gain L2 stability of the
event-triggered control system when the network in-
duced delays could be larger than the inter-event
times?

4. Triggering Condition

In this section, we derive a triggering condition to achieve
finite-gain L2 stability of the event-triggered NCSs with an
ideal network model being assumed.

Theorem 2. Consider the event-triggered control system
shown in Figure 2, where the plant is IF-OFP(νp, ρp)

m

with a C1 storage function Vp, while the controller is IF-
OFP(νc, ρc)

m with a C1 storage function Vc; νc + ρp > 0
and νp + ρc > 0. Assume that the network induced delays

∆k ≡ 0 and ∆̃ ≡ 0. If the event time tk is explicitly
determined by the time whenever

‖ẽp(t)‖2 >
δ

ζ

[√

β(ρp + νc) +
ν2

c

ζ2
− |νc|

ζ

]
‖yp(t)‖2, ∀t ≥ 0,

(9)
where ẽp(t) = yp(t) − yp(tk), for t ∈ [tk, tk+1],

ζ =
[ 1

4α(νp + ρc)
+ |νc| − νc

] 1
2

, (10)

δ ∈ (0, 1] and 0 < α, β < 1, then the event-triggered
control system shown in Figure 2 is finite gain L2 stable
from ω(t) = [ωT

1 (t), ωT
2 (t)]T to y(t) = [yT

p (t), yT
c (t)]T .

Proof. Consider a storage function for the event-triggered
control system given by V = Vc +Vp, with up(t) = ω1(t)−
yc(t), and uc(t) = ω2(t) + yp(tk) for t ∈ [tk, tk+1), we have

V̇ ≤ ωT
1 (t)yp(t) − νpω

T
1 (t)ω1(t) + 2νpω

T
1 (t)yc(t)

+ ωT
2 (t)yc(t) − νcω

T
2 (t)ω2(t) − 2νcω

T
2 (t)

[
yp(t) − ẽp(t)

]

− yT
c (t)yp(t) − (νp + ρc)y

T
c (t)yc(t) − ρpy

T
p (t)yp(t)

+ [yp(t) − ẽp(t)]
T yc(t) − νcy

T
p (tk)yp(tk),

(11)
since 2νcω

T
2 (t)ẽp(t) ≤ |νc|ωT

2 (t)ω2(t) + |νc|ẽT
p (t)ẽp(t), we

can further get

V̇ ≤ ωT (t)

[
1 2νp

−2νc 1

]
y(t) − ωT (t)

[
νp 0
0 νc − |νc|

]
ω(t)

− (νp + ρc)y
T
c (t)yc(t) − ẽp(t)yc(t) + |νc|ẽT

p (t)ẽp(t)

− ρpy
T
p (t)yp(t) − νcy

T
p (tk)yp(tk).

(12)
Let

A =

[
1 2νp

−2νc 1

]
, B =

[
νp 0
0 νc − |νc|

]
, (13)

and since yp(tk) = yp(t) − ẽp(t), we can get

V̇ ≤ ωT (t)Ay(t) − ωT (t)Bω(t) − (νp + ρc)y
T
c (t)yc(t)

− ẽT
p (t)yc(t) + |νc|ẽT

p (t)ẽp(t) − ρpy
T
p (t)yp(t)

− νcy
T
p (t)yp(t) + 2νcẽ

T
p (t)yp(t) − νcẽ

T
p (t)ẽp(t),

(14)
if we choose 0 < α, β < 1 and let

C =

[
(1 − β)(ρp + νc) 0

0 (1 − α)(νp + ρc)

]
, (15)

then we can get

V̇ ≤ ωT (t)Ay(t) − ωT (t)Bω(t) − yT (t)Cy(t)

−
∥∥
√

α(νp + ρc)yc(t) +
1

2
√

α(νp + ρc)
ẽp(t)

∥∥2

2

− β(ρp + νc)‖yp(t)‖2
2 + 2νcẽ

T
p (t)yp(t)

+

(
1

4α(νp + ρc)
+ |νc| − νc

)
‖ẽp(t)‖2

2,

(16)

thus

V̇ ≤ ωT (t)Ay(t) − ωT (t)Bω(t) − yT (t)Cy(t)

+

(
1

4α(νp + ρc)
+ |νc| − νc

)
‖ẽp(t)‖2

2

− β(ρp + νc)‖yp(t)‖2
2 + 2νcẽ

T
p (t)yp(t).

(17)

4



We can further obtain

V̇ ≤ ωT (t)Ay(t) − ωT (t)Bω(t) − yT (t)Cy(t)

+

(
1

4α(νp + ρc)
+ |νc| − νc

)
‖ẽp(t)‖2

2

+ 2νcẽ
T
p (t)yp(t) +

ν2
c

1

4α
(

νp+ρc

) + |νc| − νc

‖yp(t)‖2
2

−
[
β(ρp + νc) +

ν2
c

1
4α(νp+ρc)

+ |νc| − νc

]
‖yp(t)‖2

2,

(18)

and one can verify that if

‖ẽp(t)‖2 ≤ 1

ζ

[√

β(ρp + νc) +
ν2

c

ζ2
− |νc|

ζ

]
‖yp(t)‖2, ∀t ≥ 0,

(19)
we have

V̇ ≤ ωT (t)Ay(t)−ωT (t)Bω(t)−yT (t)Cy(t), ∀t ≥ 0. (20)

Let c = min{(1−α)(νp +ρc), (1−β)(ρp + νc)}, a = ‖A‖2,
and b = ‖B‖2, we can get

V̇ ≤ −c‖y(t)‖2
2 + a‖ω(t)‖2‖y(t)‖2 + b‖ω(t)‖2

2

= − 1

2c

(
a‖ω(t)‖2 − c‖y(t)‖2

)2

+
a2

2c
‖ω(t)‖2

2

− c

2
‖y(t)‖2

2 + b‖ω(t)‖2
2 ≤ k2

2c
‖ω(t)‖2

2 −
c

2
‖y(t)‖2

2,

(21)

where k2 = a2 +2bc. Integrating (21) over [0, τ ] and using
V (x) ≥ 0, then taking the square root, we arrive at

‖yτ‖L2
≤ k

c
‖ωτ‖L2

+

√
2V (0)

c
, (22)

where yτ and ωτ denote the truncated signals of y(t) and
ω(t). Note that the triggering condition (9) ensures that
(19) is satisfied, which completes the proof.

Remark 1. Since ‖ẽp(t)‖2 = ‖yp(t) − yp(tk)‖2, we have
‖ẽp(t)‖2 ≥ ‖yp(tk)‖2−‖yp(t)‖2, thus ‖yp(t)‖2 ≥ ‖yp(tk)‖2−
‖ẽp(t)‖2, for t ∈ [tk, tk+1). Based on this, if we define

σo =
1

ζ

[√

β(ρp + νc) +
ν2

c

ζ2
− |νc|

ζ

]
, (23)

then one can verify that a sufficient condition for (19) to
be satisfied is given by

‖ẽp(t)‖2 ≤ σo

1 + σo

‖yp(tk)‖2, for t ∈ [tk, tk+1), ∀k. (24)

So an alternative triggering condition to (9) is given by

‖ẽp(t)‖2 >
δσo

1 + σo

‖yp(tk)‖2, for t ∈ [tk, tk+1), ∀k, (25)

with some δ ∈ (0, 1]. This is a more conservative triggering
condition compared with (9) which will be used later for
the analysis of the inter-event time.

Remark 2. In view of (9) and (22), one can see that
both the triggering condition and the achievable L2 gain
are related to the passivity indices of the plant and the
controller. In general, with larger values of νc + ρp and
νp +ρc, we can obtain a larger triggering threshold σo and
a smaller L2 gain, which implies a better performance of
the event-triggered control system with respect to attenu-
ation of external disturbances.

5. Analysis of The Inter-Event Time

The triggering condition (9) in Theorem 2 explicitly
determines when a new output information of the plant
should be sent to the network controller for control ac-
tion update to ensure finite-gain L2 stability of the event-
triggered control system when an ideal network model is
assumed. Another problem that needs to be addressed is
how often is the data transmitted in the communication
network under the triggering condition? This problem is
not easy in general, especially when the dynamics of the
plant are highly nonlinear and only output information
can be measured to generate the control action. More-
over, in the presence of external disturbances, the “Zeno”
inter-event time may be unavoidable. The following propo-
sition provides a way to estimate the lower bound on the
inter-event time under the triggering condition derived in
Section 4, where we assume that the output of the plant
being a memoryless function belonging to a bounded sector
of the state. One should be aware that while our analy-
sis is similar to Tabuada (2007), there are other ways in
the literature to estimate the inter-event time based on
different assumptions, see Wang & Lemmon (2009), Anta
& Tabuada (2010). Hence, it is possible to derive a less
conservative result by taking different approaches under
different assumptions. But here, based on the assump-
tions adopted in the following proposition, the impact of
the disturbances on the inter-event time can be shown ex-
plicitly.

We assume that the plant is IF-OFP(νp, ρp)
m with dy-

namics given by

Hp :

{
ẋp = fp(xp, up)

yp = hp(xp),
(26)

and the controller is IF-OFP(νc, ρc)
m with dynamics given

by

Hc :

{
ẋc = fc(xc, uc)

yc = hc(xc, uc).
(27)

Note we assume that there is no feed-through at the output
of the plant. This usually corresponds to the case when the
relative degree of the plant is greater than 0 and νp ≤ 0,
see Sepulchre et al. (1997).

Proposition 1. Consider the event-triggered control sys-
tem shown in Figure 2, where the plant is IF-OFP(νp, ρp)

m

and the controller is IF-OFP(νc, ρc)
m. Assume that the
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network induced delays are negligible (∆k ≡ 0 and ∆̃ ≡ 0).
Let the following assumptions be satisfied:

1) fp(xp, up) : R
np × R

np → R
np is locally Lipschitz

continuous in xp on a compact set Sx ⊂ R
np with

Lipschitz constant Lx;
2) ‖fp(xp, up) − fp(xp, 0)‖2 ≤ Lu‖up‖2 for all xp ∈ Sx

with some nonnegative constant Lu;
3) hp(xp) : R

np → R
np belongs to a sector (K1, K2),

with K1x
T
p xp ≤ xT

p hp(xp) ≤ K2x
T
p xp, where K1 ∈

R, K2 ∈ R and K1K2 > 0;
4)

∥∥∂hp

∂xp

∥∥
2
≤ γp, where γp > 0;

5) νp + ρc > 0, ρp + νc > 0, ρc > 0, xc(t0) = 0;
6) supt≥0 ‖ω1(t)‖2 ≤ d1 and supt≥0 ‖ω2(t)‖2 ≤ d2, where

d1, d2 > 0.

Then for any initial condition xp(0) in a compact set S0 ⊂
Sx, the inter-event time {tk+1 − tk} implicitly determined
by the triggering condition (25) is lower bounded by

τk =
1

C2
ln

(
1 +

C3

C1

)
, (28)

where C1 =
(Lxζp+LuΓc)‖yp(tk)‖2+Lu(d1+Γcd2)

Lxζp
, C2 = γpLxζp

and C3 = δσo

1+σo
‖yp(tk)‖2, with ζp = max{ 1

|K1| ,
1

|K2|} and

Γc =
√

1+2ρc|νc|
ρ2

c
.

Proof. Since ẽp(t) = yp(t) − yp(tk) for t ∈ [tk, tk+1), we
can get for t ∈ [tk, tk+1)

d

dt
‖ẽp(t)‖2 ≤ ‖ ˙̃ep(t)‖2 = ‖ẏp(t)‖2 = ‖ḣp(xp)‖2

=
∥∥∥

∂hp

∂xp

fp(xp, 0) +
∂hp

∂xp

[
fp(xp, up) − fp(xp, 0)

]∥∥∥
2

≤ γpLx‖xp(t)‖2 + γpLu‖up(t)‖2

= γpLx‖xp(t)‖2 + γpLu‖ω1(t) − yc(t)‖2

≤ γpLx‖xp(t)‖2 + γpLud1 + γpLu‖yc(t)‖2.

(29)

Since xc(t0) = 0, with ρc > 0, one can prove that

‖ycτ‖L2
≤

√
1 + 2ρc|νc|

ρ2
c

‖ucτ‖L2
, ∀τ ≥ t0. (30)

Thus, we can further obtain

d

dt
‖ẽp(t)‖2 ≤ γpLx‖xp(t)‖2 + γpLud1 + γpLuΓc‖uc(t)‖2

= γpLx‖xp(t)‖2 + γpLud1 + γpLuΓc‖yp(tk) + ω2(t)‖2.

(31)
Since hp(xp) belongs to the sector (K1, K2), one can verify
that ‖xp(t)‖2 ≤ ζp‖yp(t)‖2, and we have

d

dt
‖ẽp(t)‖2 ≤ γpLxζp‖yp(t)‖2 + γpLud1

+ γpLuΓc‖yp(tk)‖2 + γpLuΓc‖ω2(t)‖2

= γpLxζp‖ẽp(t) + yp(tk)‖2 + γpLud1

+ γpLuΓc‖yp(tk)‖2 + γpLuΓc‖ω2(t)‖2

≤ γpLxζp‖ẽp(t)‖2 + γp(Lxζp + LuΓc)‖yp(tk)‖2

+ γpLu(d1 + Γcd2),
(32)

so the evolution of ‖ẽp(t)‖2 during the time interval [tk, tk+1)
is bounded by the solution to

d

dt
φ(t) = γpLxζpφ(t) + γp(Lxζp + LuΓc)‖yp(tk)‖2

+ γpLu(d1 + Γcd2),
(33)

with initial condition φ(tk) = 0. Hence the time for ‖ẽp(t)‖2

to evolve from 0 to δσo

1+σo
‖yp(tk)‖2 is lower bounded by the

solution to φ(tk + τk) = δσo

1+σo
‖yp(tk)‖2. Then we can get

the τk given in (28).

Remark 3. One can see that when d1 = d2 = 0 (no ex-
ternal disturbance inputs), then we have

τk =
1

γpLxζp

ln
(
1 +

δσo

1+σo
Lxζp

Lxζp + LuΓc

)
> 0, (34)

and in this case we can obtain a common lower bound of
the inter-event time. Moreover, a larger triggering thresh-
old σo results in a larger τk. Since σo is related to the
passivity indices of the plant and the controller, the inter-
actions between the triggering condition, the passivity in-
dices and the inter-event time are implicitly revealed here.
However, when the external disturbances ω1, ω2 cannot
be neglected, τk could be extremely small when yp(t) ap-
proaches the origin, and we may get “Zeno” inter-event
time.

Remark 4. Although the triggering condition derived in
Theorem 1 and the analysis of the inter-event time shown
in Proposition 1 are all obtained with an ideal network
model being assumed, stability of the event-triggered NCSs
can still be guaranteed as long as the network induced de-
lays are upper bounded by the inter-event time implicitly
determined by the triggering condition. This is one of the
reasons that most of the work in the literature are trying
to get a larger common lower bound on the inter-event
time and impose such bound on the admissible network
induced delays. However, as discussed above, in the pres-
ence of external disturbances, the inter-event time could
be very small, thus it is usually difficult to obtain a desir-
able common lower bound on the inter-event time and it
is also impractical to impose such bound on the network
induced delays.

6. Signal Quantization and Time-varying Network

Induced Delays

The analysis on the inter-event time shown in the pre-
vious section reveals the main problems that are concerned
when applying event-triggered control to networked con-
trol systems: stability of the event-triggered control sys-
tem may not be guaranteed if the network induced delays
are larger than the inter-event time, and it is conservative
to impose an upper bound on the admissible network in-
duced delays based on the analysis of the inter-event time.
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In this section, we consider quantization of the transmitted
signals in the network and delays both from the plant to
the network controller and from the network controller to
the plant. We introduce a set-up which guarantees finite-
gain L2 stability of the event-triggered control system in
the presence of time-varying (or constant) network induced
delays with bounded jitters.

Consider the set-up for event-triggered networked con-
trol system as shown in Figure 3. The plant Hp is IF-
OFP(νp, ρp)

m with a C1 storage function Vp; the network
controller Hc is IF-OFP(νc, ρc)

m with a C1 storage func-
tion Vc; T1(t) represents the network induced delay from
the network controller to the plant, and T2(t) represents
the network induced delay from the plant to the network
controller; the “ZOH” block denotes the zero-order holder;
the “ED” block represents the “event-detector”, which
samples the output of the plant with adequately fast sam-
pling rate; whenever ED detects that a specific triggering
condition of the plant is satisfied, it will send the output
information of the plant at that event time to the ZOH;
the “DB” block represents the dead-band control so that
the signal υr(t) can only be transmitted when

‖υr(t) − υr(tk)‖2 = δσo‖υr(t)‖2, with ‖υr(t)‖2 ≥ ∆min,

(35)
where ∆min is some lower bound on the dead-band de-
signed for practical application; Qc and Qp are passive
memoryless quantizers such that

Qc: acu
2
Qc(t) ≤ uQc(t)yQc(t) ≤ bcu

2
Qc(t),

Qp: apu
2
Qp(t) ≤ uQp(t)yQp(t) ≤ bpu

2
Qp(t),

(36)

for some bc > ac ≥ 0 and bp > ap ≥ 0, where uQc(t) and
yQc(t) = qc

(
uQc(t)

)
denote the input and the quantized

output of Qc, uQp(t) and yQp(t) = qp

(
uQp(t)

)
denote the

input and the quantized output of Qp; if uQc(t) and uQp(t)
are vectors, then qc(·) and qp(·) function component wise
on the input vectors. M is a local controller implemented
at the plant side such that
[
υr(t)
ur(t)

]
= M

[
ũc(t)
ỹc(t)

]
=

[
M11Im 0
M21Im M22Im

] [
ũc(t)
ỹc(t)

]
, (37)

where Im ∈ R
m×m is the identity matrix and M11, M21,

M22 are chosen such that

M2
11 =

1
4ρc

− νc

1
2ρc

+ |νc|
, M2

21 =
b2
c

2(1 − D1)ρ2
c

M2
22 =

2b2
c

1 − D1
, M21M22 < 0.

(38)

The implementation of M is also illustrated in Figure 3.

Proposition 2. Consider the event-triggered networked
control system as shown in Figure 3. Let the following
conditions be satisfied:

1) the controller is designed such that νc + ρp > 0 and
ρc + νp > 0, with ρc > 0 and ρcνc < 1

4 ;

Figure 3: Proposed Set-up for Event-Triggered NCSs With
Quantization and Time-varying Delays

2) 0 ≤
∣∣dT1(t)

dt

∣∣ ≤ D1 < 1, 0 ≤
∣∣dT2(t)

dt

∣∣ ≤ D2 < 1;

3) the holder at the controller side yields

uc(t) =
1

(1 + δσo)bp

√
1 + D2

qp

(
υr(tk)

)
, (39)

for t ∈
[
tk + T2(tk), tk+1 + T2(tk+1)

)
, ∀k.

If the event time tk is explicitly determined by the time
whenever

‖ẽp(t)‖2 > δσo‖yp(t)‖2, when ‖yp(t)‖2 ≥ ∆min

M11
, (40)

with δ ∈ (0, 1] and σo as defined in (23), then the event-
triggered control system is finite-gain L2 stable from ω(t)
to yp(t).

Proof. Since the controller Hc is IF-OFP(νc, ρc)
m such

that

V̇c ≤ uT
c (t)yc(t) − ρcy

T
c (t)yc(t) − νcu

T
c (t)uc(t), (41)

with ρc > 0, we can get

V̇c(t) ≤
( 1

2ρc

+ |νc|
)
‖uc(t)‖2

2 −
ρc

2
‖yc(t)‖2

2, (42)

integrating both sides of (42) from t0 to t (∀t ≥ t0 ≥ 0),
we can get

∆Vc = Vc(t) − Vc(t0)

≤
( 1

2ρc

+ |νc|
) ∫ t

t0

‖uc(τ)‖2
2dτ − ρc

2

∫ t

t0

‖yc(τ)‖2
2dτ.

(43)
For Qp, with qp(·) functioning component wise on the
input vector υr(tk), one can verify that ‖qp(υr(tk))‖2 ≤
bp‖υr(tk)‖2. Since

υ̂r(t) =

{
0, for t ∈ (tk + T2(tk), tk+1 + T2(tk+1)), ∀k

qp(υr(tk)), for t = tk + T2(tk), ∀k

(44)
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under condition 3), choose t =
∑N

k=0

[
tk+1−tk+T2(tk+1)−

T2(tk)
]
, we can further obtain

∫ t

t0

‖uc(τ)‖2
2dτ

=

N∑

k=0

tk+1 − tk + T2(tk+1) − T2(tk)

(1 + δσo)2b2
p(1 + D2)

‖qp(υr(tk))‖2
2,

(45)

under condition 2), we have

∫ t

t0

‖uc(τ)‖2
2dτ ≤

N∑

k=0

(1 + D2)(tk+1 − tk)

(1 + δσo)2b2
p(1 + D2)

‖qp(υr(tk))‖2
2

=

N∑

k=0

tk+1 − tk

(1 + δσo)2b2
p

‖qp(υr(tk))‖2
2

≤
N∑

k=0

tk+1 − tk

(1 + δσo)2
‖υr(tk)‖2

2.

(46)
Note that the dead-band control actually guarantees that

‖υr(t) − υr(tk)‖2 ≤ δσo‖υr(t)‖2, for t ∈ [tk, tk+1], ∀k,

(47)
since ‖υr(t)−υr(tk)‖2 ≥ ‖υr(tk)‖2−‖υr(t)‖2, we can con-
clude that

‖υr(tk)‖2 ≤ (1+ δσo)‖υr(t)‖2, for t ∈ [tk, tk+1], ∀k, (48)

thus

∫ t

t0

‖uc(τ)‖2dτ ≤
N∑

k=0

(
tk+1 − tk

) ‖υr(tk)‖2
2

(1 + δσo)2

=

N∑

k=0

∫ tk+1

tk

‖υr(tk)‖2
2

(1 + δσo)2
dτ

≤
N∑

k=0

∫ tk+1

tk

‖υr(τ)‖2
2dτ =

∫ t

t0

‖υr(t)‖2
2dτ.

(49)
For Qc, with qc(·) functioning component wise on the input
vector yc(t), one can verify that ‖qc(yc(t))‖2 ≤ bc‖yc(t)‖2.

Since 0 ≤
∣∣dT1(t)

dt

∣∣ ≤ D1 < 1, one could get

∫ t

t0

‖ur(τ)‖2
2dτ ≤ 1

1 − D1

∫ t

t0

‖qc(yc(τ))‖2
2dτ

≤ b2
c

1 − D1

∫ t

t0

‖yc(τ)‖2
2dτ,

(50)

so

−
∫ t

t0

‖yc(τ)‖2
2dτ ≤ −1 − D1

b2
c

∫ t

t0

‖ur(τ)‖2
2dτ. (51)

Replace (51) into (43) and in view of (49), we can further
get

∆Vc ≤
∫ t

t0

[( 1

2ρc

+|νc|
)
‖υr(τ)‖2

2−
ρc(1 − D1)

2b2
c

‖ur(τ)‖2
2

]
dτ,

(52)

with υr(t) = M11ũc(t), ur(t) = M21ũc(t) + M22ỹc(t), we
can rewrite (52) as

∆Vc ≤
∫ t

t0

{−ρc(1 − D1)M21M22

b2
c

ũT
c (τ)ỹc(τ)

+
[( 1

2ρc

+ |νc|
)
M2

11 −
ρc(1 − D1)M

2
21

2b2
c

]
ũT

c (τ)ũc(τ)

− ρc(1 − D1)M
2
22

2b2
c

ỹT
c (τ)ỹc(τ)

}
dτ,

(53)
with M11, M21, M22 chosen as given in (38), we get

∆Vc ≤
∫ t

t0

[
ũT

c (τ)ỹc(τ)− νcũ
T
c (τ)ũc(τ)− ρcỹ

T
c (τ)ỹc(τ)

]
dτ,

(54)

which implies that the subsystem H̃c : ũc(t) → ỹc(t) shown
in Figure3 is IF-OFP(νc, ρc)

m.
According to Theorem 2, for the feedback intercon-

nection of Hp and H̃c, if we schedule the transmission of
the output measurement yp(t) according to the triggering
condition (9), then the event-triggered control system will
be finite-gain L2 stable. Furthermore, because the grow-
ing rate on the threshold of the dead-band control is the
same as the growing rate on the threshold of the triggering
condition, one can conclude that the data transmission of
υr(t) and the triggering process are actually synchronized.
Thus, whenever a new output information of the plant is
obtained, an updated quantized signal qp

(
υr(tk)

)
will be

sent to the network controller. When ‖υr(t)‖2 < ∆min,
which could be considered as the case when the output of
the plant reaches some safe region for practical applica-
tion, then no more data transmission is needed. The proof
is completed.

Remark 5. Based on the set-up shown in Proposition
2, one can see that system H̃c : ũc(t) → ỹc(t) is IF-
OFP(νc, ρc)

m as the controller Hc : uc(t) → yc(t), so the
networked control system can still be analyzed as a feed-
back interconnection of an IF-OFP(νp, ρp)

m plant with an

IF-OFP(νc, ρc)
m subsystem (H̃c), and the triggering con-

dition derived in Theorem 2 can be directly applied for
event-triggered data transmission in the current set-up.
One can further use the analysis shown in Proposition 1
to estimate the inter-event time.

Remark 6. Let us consider a special case when the net-
work controller is a static output feedback gain matrix

yc(t) = Kuc(t), K ∈ R
m×m, (55)

then we have

‖yc(t)‖2
2 = uT

c (t)KT Kuc(t) ≤ λmax{KT K}‖uc(t)‖2
2,

where λmax{·} denotes the largest eigenvalue of a square
matrix. Choose scalar κ > 0 such that κ2 ≥ λmax{KT K},
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we can obtain

κ‖uc(t)‖2
2 −

1

κ
‖yc(t)‖2

2

≥ κ‖uc(t)‖2
2 −

λmax{KT K}
κ

‖uc(t)‖2
2 ≥ 0.

(56)

In view of the derivation from (43)-(52), we can obtain

0 ≤
∫ t

t0

κ‖υr(τ)‖2
2dτ −

∫ t

t0

1 − D1

b2
cκ

‖ur(τ)‖2
2dτ. (57)

Since υr = M11ũc and ur = M21ũc +M22ỹc, we can obtain

0 ≤
∫ t

t0

−2(1 − D1)M21M22

κb2
c

ũT
c (τ)ỹc(τ)dτ

+

∫ t

t0

[
κM2

11 −
(1 − D1)M

2
21

κb2
c

]
ũT

c (τ)ũc(τ)dτ

−
∫ t

t0

(1 − D1)M
2
22

κb2
c

ỹT
c (τ)ỹc(τ)dτ.

(58)

By choosing M11, M21, M22 according to

M2
11 =

1
4ρc

− νc

κ
, M2

21 =
κb2

c

4(1 − D1)ρc

M2
22 =

κρcb
2
c

1 − D1
, M21M22 < 0,

(59)

where ρc, νc are chosen such that condition 1) in Proposi-
tion 2 is satisfied, we obtain

0 ≤
∫ t

t0

[
ũT

c (τ)ỹc(τ) − νcũ
T
c (τ)ũc(τ) − ρcỹ

T
c (τ)ỹc(τ)

]
dτ.

(60)

Thus, subsystem H̃c : ũc(t) → ỹc(t) is IF-OFP(νc, ρc)
m

and the event-triggered control approach shown in Propo-
sition 2 still applies.

Remark 7. Traditionally, NCSs are referred to direct type
remote control loops as shown in Figure 2. One may argue
that in our set-up, we need a local controller at the plant
side. But as illustrated in Figure 3, the local controller
M only requires a direct output feedback loop from ũc(t)
to ỹc(t) with gain M21

M22
. The tedious and complex control

action computation can still be done at the network con-
troller(i.e., the network controller could be an adaptive or
optimal controller with its inputs and outputs satisfying
the dissipative inequalities).

Remark 8. In our proposed set-up, instead of obtaining
an upper bound on the admissible network induced delays
based on the triggering condition or based on the past
information of the plant, we consider delays both from
the plant to the controller and from the controller to the
plant, and we have shown that finite-gain L2 stability can
be achieved in the presence of time-varying (or constant)
network induced delays with bounded jitters.

Remark 9. One should notice that the implementation of
the local controller M at the plant side requires the knowl-
edge of the network controller’s passivity indices (ρc, νc),
the parameter bc of quantizer Qc, and the knowledge of the
“jitters” on the network induced delays from the controller
to the plant (D1). The implementation of the “holder” at
the controller side requires the knowledge of the “jitters”
on the network induced delays from the plant to the con-
troller (D2), the information on the triggering threshold
(δσo), and the parameter bp of quantizer Qp.

The following example is provided to illustrate the results
presented in this paper.
Example. Consider the IF-OFP system given by

ẋp1(t) = −3x3
p1(t) + xp1(t)xp2(t)

ẋp2(t) = 0.2xp2(t) + 2up(t)

yp(t) = xp2(t),

(61)

we can see that the system is ZSD but unstable, and we
can only measure xp2. If we choose the storage function
Vp(xp) = 1

4x2
p2(t), we can get

V̇p(xp) = up(t)yp(t) + 0.1y2
p(t), (62)

so in this case ρp = −0.1, νp = 0, and the plant is IF-
OFP(0,-0.1) with respect to xp2.

If we consider an IF-OFP controller, which is given by

ẋc(t) = −3xc(t) + uc(t)

yc(t) = 7xc(t) + uc(t),
(63)

with storage function Vc(xc) = 49
26x2

c(t), we can get

V̇c(xc) = uc(t)yc(t) −
3

13
y2

c (t) − 10

13
u2

c(t), (64)

and in this case ρc = 3
13 , νc = 10

13 . So we have ρc + νp > 0
and νc + ρp > 0. If we choose α = β = 0.9, then the
triggering condition shown in Theorem 2 with δ = 1 is
given by

‖ẽp(t)‖2 > 0.3142‖yp(t)‖2, ∀t ≥ 0. (65)

The external disturbance ω(t) applied to the plant is an
uniformly distributed random signal on the interval [0, 1].
The quantizers used at the plant side and at the con-
troller side are both uniform mid-tread quantizer with
quantization level 1, so in this case one can verify that
ac = ap = 0, and bc = bp = 2 ( other types of quan-
tizers can also be used as long as the input-output map-
ping of the quantizers satisfies (36)). Assume that the
network induced delay from the plant to the controller
is increasing with rate 0.6(T2(0) = 0.5s), and the delay
from the controller to the plant is increasing with rate
0.2(T1(0) = 0.2s), so D1 = 0.2, D2 = 0.6. Based on (38),
choose M11 = 0.3271, M21 = 6.8516, M22 = −3.1623, and
note that the output of the holder in this case should be
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uc(t) = 1
(1+δσo)bp

√
1+D2

qp

(
υr(tk)

)
= 0.3008qp

(
υr(tk)

)
, for

t ∈
[
tk + T2(tk), tk+1 + T2(tk+1)

)
.
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Figure 4: simulation result with time-varying network induced
delays and quantizations: event times and state evolution
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Figure 5: simulation result with time-varying network induced
delays and quantizations: process from yp(t) to uc(t)

The simulation results are shown in Figure 4 and Fig-

ure 5. In Figure 4, σ(t) shows the evolution of
‖ẽp(t)‖2

‖yp(t)‖2
,

{tk+1 − tk} shows the evolution of the inter-event time,
xp1 and xp2 show the evolution of the states of the plant.
The process from yp(t) to uc(t) is shown in Figure 5.

7. Conclusion

In this paper, it is assumed that the plant and the con-
troller are Input Feed-forward Output Feedback Passive(IF-

OFP), and an output feedback based event-triggered con-
trol framework for network control systems(NCSs) is pro-
posed. The contributions of this work are summarized as
follows:

• This framework studies event-triggered control for
network control systems from an I/O perspective
based on the dissipative properties of the plant and
the network controller; the triggering condition is de-
rived based on the passivity theorem, which enables
us to characterize a large class of output feedback
stabilizing controller.

• Signal quantization of the transmitted signals in the
network has been considered and a scattering trans-
formation has been applied to deal with time-varying
(or constant) network induced delays with bounded
jitters. The key idea is to use the limited compu-
tation power at the plant side to implement a local
controller so that the plant and the network con-
troller can still be analyzed as a feedback intercon-
nection of two IF-OFP systems through the commu-
nication networks, while the scheduling of the data-
transmissions at the plant side is event-triggered.

• Network induced delays both from the plant to the
network controller and from the network controller
to the plant have been considered. Finite-gain L2

stability from external disturbance to the plant out-
put is achieved under the proposed set-up.

• This framework is an important extension on apply-
ing event-triggered control to networked control sys-
tems, especially for the cases when the delays in the
network could be larger than the inter-event time
implicitly determined by the triggering conditions.

We believe these problems have not been addressed in the
open literature yet.
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