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Abstract 
A new  comparison  sensitivity  matrix  is  derived for 

a  generalized  plant  where  the  controlled  and  measured 
variables  are  not  necpssaril).  the  same.  It  contains  a 
const,ant. term, r;hich  imposes  a  constraint  on  sensitivity 
r rdu r t . i on  ?.hat ('an be overcome  when  the  controlled  and 
m r a s o v d  variables  are  related  appropriately.  Its  rela- 
t ion to  exogenous  signal  attenuation  is  also  shohn. 

Introduction 
The ro le  of  feedback  in  reducing  the  sensitivity  of 

a linear control  system  to  plant  parameter  \-ariations  is 
well horn [ 1-71. In  multivariable  systems,  comparison 
sensitivity  is  related  to  the  inverse  of  the  return  dif- 
ference  matrix  (when  the  loop  is  broken  at  the  "output") 
and  it ran be used  to  introduce  a  measure  of  feedback 
performance [3-7] .  Most  of  these  results  consider  the 
case  \;here  all  the  controlled  variables  of  the  plant  are 
measured.  In [ 7 1 ,  a plant-sensor  configuration  is  con- 
sidered.  When  the  controlled  and  measured  \-ariables  are 
not.  necessari1)-  the same,  the  relat.ionship  between  sen- 
sitivitJ-  and  the  return  difference  matrix  needs  to be 
rw\-aluat,td.  In  fact,  in [ 8 ]  it  is  stdated  xithout  proof 
that feedhack  ran be used to  reduce  the  sensitivity  of  a 
control  system to plant  parameter  variations  only  if  all 
the  controlled  Lariahles are measured;  it  is  assumed 
that.  the  measured  variables  include  the  controlled  vari- 
ables.  Hpre,  we  derive  a  net;  comparison  sensitivity 
matrix  \;hen  the  plant's  controlled  and  measured  varia- 
bles are not  necessarily  the  same.  It  contains  a  con- 
stzmt term unless the  controlled  and  measured  variables 
are related;  for  example,  the  controlled  and  measured 
variables  coincide or are  related  by  a  sensor.  The  con- 
st.ant  term  imposes  a  constraint  on  sensitivity  reduction 
t.hat can be overcome  h-hen  the  controlled  and  measured 
\ariables are  relat.ed  appropriately. 

Problem  Formulation 
In [ 3 ] ,  the  scalar  concept  of  a  sensitivity  func- 

tion  was  generalized  to  the  multivariable  case. A line- 
ar relation  was  derived  hetk-een  the  errors,  due  to  plant 
]ammeter xrariations,  in  the  response  of  the  controlled 
variables  to  the  command  input  in  a  feedback and an 
"equivalent"  open-loop  system.  In [ 3 ] ,  the  controlled 
( y ) and  measured ( y  ) variables  coincide.  Here,  simi- 
lar  results  are  derived r;hen  the  controlled  and  measured 
variables  are  not  necessarily  the  same.  The  same  ap- 
proach  as  in [ 3 ]  is used  to  compare  the  response  of  the 
system Z ( S  ,S ) in  Figure 1 and  of  the  open  loop  system 
in  Figure 2 ,  leading  to  a r o n p r l s o n  sensi  t I v i  t y  matrix, 
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when y f y  I c m  
Consider  the  linear,  time-invariant,  finite  dimen- 

sional  multivariable  system Z(Sp,Sc),  

FIGURE 1. The compensated  system Z ( S  S ) ,  

where S and Sc denote  the  plant  and  controller,  respec- 
tively.  Assume  that  the  plant  and  controller  are  con- 
trollable  and  observable.  Let  an  input-output  descrip- 
tion  of  the  plant be 
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fect  the  plant,  but  are  not  manipulated  by  the  control- 
ler (for example, nonmeasurable  disturbances  and  initial 
conditions);  u  is  the  vector  of  control  inputs;  and P. . 

1J 
I i ,,j=l,2)  are prolwr transfer  rrntrices.  The  control u 
is  given t>y u C[yt rt ] t ,  \;here  denotes  transpose, 

C= [-C C ] is  the  transfer  matrix  of  the  controller, y r 
and r is  the  vector  of  command  inputs. 

This  general  plant mdel is  useful  because  it  uni- 
fies  the  study  of  plants  &here J- f y  and  where  exoge- 

nous  signals  are  present.  It  has  been  used  recently  in 
the  formulation  and  analysis of multi-0bjectix.e  control 
problems  in  [9-131. 

In  the  fol1or;ing  it  is  assumed  that  an  internally 
stabilizing  controller C exists  and it has  been  found. 
So that  the  compensated  system  in  Figure 1 is  internally 
stable. 

m' 
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?bin  Results 
Let  Tcr  and Tm represent  the  transfer  matrices 

from r to  y  and ym, respectively.  For  the  feedback 
sy-stem  in  Figure 1 ,  we  have 

T = Pll(ItC P )-ICr and 

T = P21(ItC P ) Cr. 
m1 y 11 

Cl- I y 11 

( 2 )  

1 3 )  

Note  that  the  subscript  refers  to  quantities  of  the 
feedback  system  in  Figure 1; ( J  refers  to  quantities  of 
the  open-loop  system  in  Figure 2 .  

If  no  uncertainty  is  present  (this  also  implies  no 
exogenous simals), it  is knom that  the  transfer  matri- 
ces  in ( 2 )  and ( 3 )  can be attained  using  the  open-loop 
configurat.ion: 

-1 

r M 
sc 

P 2 

FIWRE  2, Open-loop  compensation r;ith wz0. 
here it  is  assumed  that y and  y  are  equal  to y 

and y respectively,  the  outputs  of  the  feedback  system 
Cl 

in  Figure 1. It  is  easily  verified  that  an  appropriate 

value  for  the  open-loop  controller M is  M=(I+CSPll)  Cr. 
To derive  the  comparison  sensitivity  matrix  one 

compares  the  responses  of  the  feedback  system  in  Figure 
1 and  of  the  open-loop  system  in  Figure  2.  For  this, 
let  the errors betrceen  the  nominal I ' )  and  true  transfer 
matrices  for  the  feedback  and  open-loop ( 2 )  configu- 
rations be: 

c2 m2 

m1 

-1 

k l ]  = 1 and 11: 1 = lmz - - To T2 1.  ( 4 )  

A convenient kay to  derive  the  desired  result is to con- 
crl crl crz cr2 

sider an augmented  output  signal [y,, yml . Using  then 
an  approach  similar  to  the  one  in [ 3 ] ,  the  following 
relation  can be derived  [ll]: 

t t t  
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[ :..j C1 = ;.I, c2 s; = 1 21 Y 

E 
O 1 .  (5) 

-PO c (ItP;lcy)-l I 
This  transfer  matrix  is  the Gomwrison sensitivity E- 
- trix  when y f y  . 

Observe  that  the  relation  between  the  feedback and 
open-loop  errors  for T has  the  form  of  the  usual  sen- 

sitivity  matrix So=(ItPo C )-I, as of course  should  be 
expected.  However,  the  control  designer  is  really  in- 
terested  in  Tcr  and  the  relation  between  the  errors  in 
this  case. From (5), the  difference Ec -Ec  is  linearly 
related  to E , the  open-loop  error  in T For special 
cases  of S p ,  there  is a relation  between E 
(see  remarks  below),  but,  in  general, E depends  on 
both  open-loop  errors: E and  Ec . 
Remark 1 : hxen yc=ym, then P 11 =P 21 and E, =E , giving 

c m  

m r  

1 11 y 

1 2  
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c2 and Em2 
Cl 
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2 c2 
=(I-PO c (ItPo c )-l~c =(ItPo c )-l~c . so the corn- , 11Y  11Y 2 11Y 2 

parison  sensitivity  matrix  in (5) reduces  to  the usual 
one  when y =Y as  expected. 
Remark  2:  Consider y =H y where H corresponds  to  the m s c' 
transfer  matrix  of a sensor, as in,  for  example, [ 71. 

c 'm' 

Then Pll=HsPZ1 and assuming P ; ~ = H ~ P ~ ~ ,  gives 

E C1 (ItP~lCyHs)-lEc . 
Remark  3:  When y - ym (s proper  and  stable),  then 
PZ1=QmPl1, and  assuming P%~=Q,P;~, gives E 

%(ItP;lCy)-lEm , where  Ec,=$mEm2.  This  is  the  case 
considered  in [81 with  Q,,,=[I, 01. 

C - i  

CI 

2 

... 

The  comparison  sensitivity  matrix  derived  here as 
well  as  the  classical  one,  is  in  terms  of  true  plant  pa- 
rameters;  this  makes it unsuitable  for  direct  use  in 
control  systems  design  [14]. Some ways to amend this 
shortcnming  have  appeared  in  14-7,141.  Specifically,  in 
[6,7], particular  representations  of  the  plant  parameter 
uncertalnties  are  used. As a consequence,  the  compari- 
son  sensitivity  matrix can be  written  in  terms  of  these 
representations,  and a new  relation  between  Tc and To 
can be  derived,  which can be  quite  simple  if  appropriate 

C1 

uncertainty  representations  are  used  [7].  The  problem 
is  then  reduced  to  obtaining bounds on  the  size  of  the 
plant  parameter  variations.  In  [7],  characterizations 
of  the  controlled  output  and  the  control  input  sensiti- 
vity  to  plant and some compensator  parameter  variations 
are  given. A similar  approach  is  taken  in [113 to  give 
sensitivity  matrices  in  terms  of  the  nominal  parameters. 

In  control  systems  design,  sensitivity  matrices  in 
terms  of  the  nominal  quantities  are  being  used as ex- 
plained  above.  Sensitivity  matrices  in  terms  of  the 
actual  quantities can also be directly  useful as they 
provide  considerable  insight.  Since  we  are  interested 
here  in  the  relation  between  the  feedback  error and open 
loop  error  for T define  the outmt commrison sensiti- 
vity matrix  to  be 

I 

cr 

s; = [-PO c (ItPO c )-I, I]. 21 y 11 y (6) 
Notice  that  the  constant  term  in (6) appears  to  indicate 
that the  feedback  system  in  Figure 1 cannot  perform any 
better  than  the  open  loop  one  in  Figure 2 .  The  perform- 
m e  of  the  feedback and open-loop  systems can be com- 
pared using  the  integral  of  the  quadratic  errors  131 or 
using  the  largest  singular  value  of S: over  the  fre- 

quency band of  interest [6]. In  the  case of scalar sys- 
tems, it is  easily shown that  the  largest  singular  value 
of S i  is  greater  than or equal  to 1 whenever (6) has a 
constant  tern.  Cases  when  the  constant  tern  in (6) dis- 
apears, and the  largest  singular  value  depends  directly 
on  the  return  difference  matrix,  include  the  cases  con- 
sidered  in  the  remarks,  where a relation  between y and 
ym exists.  In  general,  feedback can improve  performance 
only  when  there  is  no  constant  term  in ( 6 ) ,  implying 
that a relation  between y and y is  present. 

C 

m 
Additional  insight  into  the  role of (6) is  gained 

by  considering  its  relation  to  exogenous  signal  attenua- 
tion,  uhich  corresponds  to  minimizing  Tcw,  the  transfer 
matrix  from w to  yc. For the  feedback  system  in  Figure 

1, Tcw=P22-P21Cy(I+P11Cy)-1P12, so that 

p;z 
T:w = S:[ Pi2 1 .  ( 7 )  

This has been  done  in [ 111; it  extends  results  for 
Yc'Ym * 

References 
H. W. Bode,  Network  Analysis and Feedback 
Amplifier  Design,  New  York:  Van  Nostrand.  1945. 
I. M. Horowitz,  Synthesis  of  Feedback  Systems, 
New  York:  Academic,  1963. 
J. B. Cruz and W. R. Perkins, I '  A New  Approach  to 
the  Sensitivity  Problem  in  Multivariable  Feedback 
Design, " IEEE  Transactions  on  Automatic  Control, 
Vol.  AC-9. ~~.216-2233. 1964 , .. 
J. B. Cruz, Jr., Feedback  Systems,  McGraw-Hill, 
New  York,  1972. 
J. B. Cruz, Jr., ed., System  Sensitivity 
Analysis, Doden, Hutchison Ross, Stroudsburg, 
Pa., 1973. 
J. B. Cruz, J. S. Freudenberg,  and D. P. LOOze, 
"A Relationship  Between  Sensitivity and Stability 
of  Multivariable  Feedback  Systems, " 

Transactions  on  Automatic  Control,  Vol.  AC-26, 

M. G. Safonov,  A. J. hub, and G. L. Hartmann, 
"Feedback  Properties  of  Multivariable  Systems: 
The  Role and Use  of  the  Return  Difference 
Matrix," IEEE Transactions  on  AutolIlatic  Control, 

H. Kwakernaak,  "Optimal  Low-Sensitivity  Linear 

pp.66-74,  1981. 

Val. AC-26,  pp.  47-65,  1981. 

Feedback  Systems,"  Automatica,  Vol. 5, pp. 
279-285,  1969. 
L. P e r n e b o ,  "An Algebraic  Theory  for  Design  of 
Controllers  for  Linear  Multivariable  S-vstems - 
Parts I and I1 , " IEEE Transactions  on  Automatic 
Control,  Vol.  AC-26,  pp.  171-193, 1981. 
D. Y. Ohm, J. W.  Howze and S. P. Bhattamharyya, 
"Structural  Synthesis  of  Multivariable  Control- 
lers,"  Autornatica,  Vol.  21, pp. 35-55.  1985. 
0. R. Godlez, "Analysis and Synthesis  of ?tro 
Degrees  of  Freedom  Control  Systems , ' I  Ph.D. 
dissertation,  University  of  Notre Dame. 1987. . ~~~~ ~~~ ~ 

ONR/Honeywell  Workshop,  Advances  in  Multivariable 
Control,  Minneapolis,  Minnesota,  1984. 
C.  N.  Nett,  "Algebraic  Aspects  of  Linear  Control 
System  Stability,"  IEEE  Transactions  on  Automatic 
Control,  Vol.  AC-31,  No. 10, pp. 941-949,  1986. 
J. S. Freudenberg,  D. P. h z e  and J. B. Cruz, 
Jr. , "Robustness  Analysis  using  Singular  Values 
Sensitivities,"  International J ~ ~ r n a l  of  Control, 
Val. 35, NO. 1, pp.  95-116,  1982. 

This  work was supported  in  part  by  the  National  Science 
Foundation  under  Grant ECS 84-05714. 

1152 
Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on August 27, 2009 at 14:33 from IEEE Xplore.  Restrictions apply. 


