
The ACTS Software and its Supervisory Control
Framework

Marian V. Iordache and Panos J. Antsaklis

Abstract—In recent work we have developed software
implementing a supervisory control approach to concurrent
programming. Starting with a specification describing the
concurrency constraints, the software generates automatically
the concurrency control code implementing the specification.
The paper describes the approach with an emphasis on the su-
pervisory control aspects. Included are also results pertaining
to limitations and future extensions of the supervisory control
approach.

I. INTRODUCTION

In recent work we have completed the first fully func-
tional version of a concurrency tool suite (ACTS) for
concurrent programming [1]. In this approach, instead of
writing manually the code that ensures requirements such
as mutual exclusion and fairness, a specification file is
written, describing the coordination requirements. Then,
the coordination code is generated automatically based on
the requirements described in the specification. In order to
generate the code, the specification is processed in three
stages (Figure 1). First, the specification is converted to
a discrete event representation using Petri nets. Second, a
supervisor is designed in accordance with the specification
requirements. The role of the supervisor is to restrict the
operation of the Petri net such that the requirements of
the specification are satisfied. Once the supervisor has been
designed, the coordination code is generated.

In the literature, applications of supervisory control to
software engineering have been proposed also in [2], [3],
[4], [5], [6]. Moreover, certain methods that have been
applied in the context of software engineering are closely
related to supervisory control, as shown in the survey [7].
To our knowledge, our approach differs considerably from
prior work involving methods related to supervisory control.
The most closely related work is as follows. The application
of supervisory control for concurrent programming has been
proposed also in [4], [5]. In comparison with [4], [5], one
difference is that we consider arbitrary synchronizations,
including synchronizations that cannot be implemented (ex-
clusively) by locks1. Moreover, our methods rely on Petri
nets instead of automata. Related is also the work on the

M. V. Iordache is with the School of Engineering & Engineer-
ing Technology, LeTourneau University, Longview, TX 75607, USA
MarianIordache@letu.edu

P. J. Antsaklis is with the Department of Electrical Engineer-
ing, University of Notre Dame, Notre Dame, IN 46556, USA
antsaklis.1@nd.edu

The authors gratefully acknowledge the support of the National Science
Foundation (NSF CNS-0834057).

1A lock is a synchronization mechanism in concurrent programming.

GADARA software [6], [8]. There, Petri net methods are
used to correct programs by inserting code that prevents
potential deadlock situations. However, note that our ap-
proach deals with a different problem, that of generating
the concurrency control code of concurrent programs.

In computer science and engineering there has been a
considerable amount of work on automating concurrent pro-
gramming. We mention here Intel’s Concurrent Collections
for C++ [9], [10] and the work on irregular parallelism, such
as in [11], [12]. While there are various classes of problems
on which our supervisory control approach cannot be as
efficient as other methods, the main benefit of our approach
is the ability to deal with complex coordination constraints.

The contribution of this paper could be described as
follows. The general approach of our work was introduced
in [13]. This paper describes the implementation of the
approach of [13], with emphasis on supervisory control
aspects. Additionally, we consider the performance of con-
ventional supervisory control methods in the context of
software systems and present several new results. To our
knowledge, ACTS is the first software to implement a su-
pervisory control approach to the synthesis of concurrency
control code.

The paper is organized as follows. The software features
are outlined in section II. An example illustrating super-
visory control constraints is included in section III. The
program synthesis procedure is described in section IV. Fi-
nally, theoretical guarantees and limitations are considered
in section V.

II. SOFTWARE FEATURES

The input of the software is a specification describing
the concurrent entities that should be coordinated and the
concurrency constraints. Each user defined entity consists of
a DES description and user code associated with the states
and transitions of the DES. Based on the given specification,
the software generates a program consisting of the user code
and the implementation of the concurrency constraints. The
program is generated in the C language. The concurrent
entities of the program are implemented as processes or
POSIX threads, depending on the user choice.

Each entity is described as a state machine in which the
states and transitions are associated with user code. Each
state of the state machine represents a stage of execution.
Thus, the code associated with a state of the state machine
defines the operations of a stage of execution. Moreover,
the code associated with transitions is used in order to

Jaehyun
CDC '12



DES model
DES and ConcurrentSupervisory

Control

SC specs

TranslationSpecification
Code
Generationsupervisor Program

Fig. 1. The program synthesis approach.

determine which transition to fire when there is a choice.
The state machines may have source and sink transitions.
A source (sink) transition represents process/thread creation
(termination).

Note that we view state machines as a special class of
Petri nets in which each transition has at most one input
place and at most one output place. Each state machine
represents the structure of a concurrent entity (a process or a
thread). Each token represents a concurrent entity. The place
containing the token denotes the stage of execution of the
entity. Any number of identical entities may be associated
with the same state machine. The number of tokens of a
state machine represents the number of entities associated
with the state machine.

Arbitrary synchronizations between state machine transi-
tions can be created by listing the transitions with the same
label. Two or more transitions with the same label are not
synchronized when they belong to the same state machine.

Specifications may declare also uncontrollable and/or
unobservable transitions. It is possible to declare also a
list of transitions that should be live. This constrains the
supervisory control methods to guarantee liveness for the
specified transitions. Concurrency constraints can be ex-
pressed by means of inequalities of the form

∑
liµi +

∑
hiqi +

∑
civi ≤ d (1)

where the coefficients d, li, hi, and ci represent integer
constants, µi is the marking of the place i, qi is a variable
denoting whether a transition ti is fired (the element i of
the firing vector), and vi indicates how many times ti has
fired (the element i of the Parikh vector). The constraint (1)
requires that all reachable states satisfy

∑
liµi+

∑
civi ≤ d

and that a transition tj is fired only if hj ≤ d −
∑

liµi −∑
civi (where µi and vi are the values before tj is fired).
The specification may describe also state machines that

are not associated with a concurrent entity. These can
be used to express P-type language constraints. They are
called supervisor components, since they are incorporated
in the supervision policy generated by the software. For
instance, the example of section III introduces the Petri
net of Figure 3 as a supervisory component in order to
describe constraints that cannot be expressed by inequalities
(1) alone.

Note that specifications are written in a custom specifica-
tion language. For syntax details we refer the reader to [1].

o

t 2t 1

pa

t

Fig. 3. Additional net used to express the fairness constraint.

III. EXAMPLE

Consider a problem involving three thread types: readers,
writers, and inserters, where the threads work on a shared
region of memory. Assume five readers, three deleters, and
three inserters with the state machine structure shown in
Figure 2. Assume also that pc, p′c, and p′′c denote critical
states of the three thread types. The constraint that only
one inserter thread may be in the critical section could be
written as µ′′

c ≤ 1 where µ′′

c denotes the marking of the
place p′′c . Moreover, the requirement that only one deleter
may be in the critical section and no reader or inserter may
be in the critical section at the same time could be written
as

µ′

c ≤ 1 ∧ (µ′

c = 0 ∨ µc + µ′′

c = 0) (2)

Note that ∧ denotes conjunction (logic “and”) and ∨ denotes
disjunction (logic “or”). Thus, (2) requires µ′

c ≤ 1 and either
of µ′

c = 0 or µc + µ′′

c = 0. Since the maximum number of
readers and inserters in the critical section is six, (2) can
be written more compactly as

6µ′

c + µc + µ′′

c ≤ 6 (3)

Now, if readers are continuously present in the critical
section, no deleter can enter because of constraint (3). A
possible fairness constraint would be to limit the number
of readers that can enter the critical section while a deleter
is waiting. This constraint can be expressed by means of an
additional place pa and three additional transitions t1, t2,
and to (Figure 3) as follows.

• Synchronize t1 and t2 with tv. This means that when
tv fires, either t1 or t2 must be fired.

• Require q2 ≤ µ′

v, expressing that t2 may not fire when
µ′

v = 0 (i.e. when no deleter is waiting).
• Require 3q1 + 3qo ≤ 3− µ′

v + 3µ′

c, expressing that t1
and to may not fire when a deleter is waiting and no
deleter is in the critical section.



THREE INSERTERSFIVE READERS THREE DELETERS

t’’d

p’’c

t’’c

p’d

p’v

t’v t’d

p’c

t’c

pd

pv

t v t d

pc

t c

p’’d

p’’v

t’’v

Fig. 2. The example of section III.

• Require µa ≤ 5, which will limit to 5 the number of
reader threads that can enter the critical section while
a deleter thread is waiting.

Note that transitions are fired as soon as enabled. Thus, to
will remove all tokens of pa as soon as it is allowed to
fire. The supervisor enforcing the constraints is shown in
Figure 4.

IV. PROGRAM SYNTHESIS AND OPERATION

The synthesis process is outlined in Figure 1. In the first
stage the specification is parsed. As already mentioned, each
concurrent entity of the specification corresponds to a state
machine and is represented by a token of that state machine.
Multiple tokens of the same state machine represent entities
of the same type, that is, identical entities executed concur-
rently. Now, in the supervisory control setting, the plant is
a Petri net (PN) representing the parallel composition of
the state machines describing the execution stages of the
concurrent entities. The conventional parallel composition
algorithm is used [14] in which the PN transitions represent
the possible synchronizations between the state machine
transitions with the same label. For instance, in Figure 4,
note that tv,1 and tv,2 are the synchronizations of tv with
t1 and t2, respectively.

Supervisory control is applied to the PN representing
the parallel composition of the state machines. Note that
the transitions of the PN may not be the same as the
transitions of the state machines. Thus, the q and v terms
of the specifications (1) are converted to account for the
different transitions of the PN. For instance, in the context
of section III, if a constraint involved qv or vv , then qv (vv)
would be replaced by qv,1 + qv,2 (vv1

+ vv,2), since firing
tv in its state machine corresponds to firing either tv,1 or
tv,2 in the PN. Now, the supervisory control methods are
applied first in order to enforce the constraints (1). Then, if
the specification requests explicitly T -liveness enforcement,
the T -liveness enforcement procedure of [14] is applied.
The end result of the supervisory control stage is a PN
representing the supervisor.

The last stage of the synthesis process (Figure 1) consists
of the code generation. In this stage the program imple-
menting the specification is generated. This stage relies

on the state machine representation of each concurrent
entity and the supervisor determined in the previous stage.
First, the state machine transitions are classified into several
categories. A transition is controlled if there are instances
in which it should be (temporarily) disabled. There are two
types of situations in which a transition t may have to
be disabled: when t participates in a synchronization with
transitions of other state machines and/or when firing t is
not permitted by the supervisor. For instance, in section III,
in view of Figure 4, it is clear that tv , t′v, and t′′v are
controlled. Moreover, a transition that is not controlled is
said to be observed if the supervisor should be notified
when it fires. For instance, referring to the same example,
note that tc is not controlled. However, its firing affects the
marking of a supervisor place. Thus, tc is observed.

In code generation, each state machine is converted to
a thread or a process (depending on the specification), in
which the instructions consist of the user code associated
with places and transitions and of communication code. The
communication code allows a coordinator process (corre-
sponding to the supervisor) to coordinate the execution of
the concurrent entities. An entity will ask permission to
fire a transition t if t is controlled or if t participates in a
synchronization. An entity will notify the coordinator that
a transition t was fired if t is observed. Now, a place of
a state machine may have several output transitions. Then,
the choice of the next transition is made as follows. The
fireable transitions are first ranked (the ranking is random if
the user code does not rank the transitions). If the transition
of highest rank is not controlled or synchronized with other
transitions, it is fired immediately. Otherwise, the list of
possible next transitions is sent to the coordinator. When
the coordinator selects the next transition, the entity fires
the transition immediately and continues with the user code
of the next place.

The coordinator process waits for messages from the
concurrent entities. When a firing request is received, the
request is placed into a queue. When a firing notification
is received, the program updates the marking of the su-
pervisor. After a firing notification or a firing request, the
program searches the queue for requests that can be granted.
A request may be granted if the transition is supervisor



2

3
3

3

6

6

5

vt’’

vp’’p

ot

v,1t
vt’ dt’

vp’

v,2t

ap
cp

ct

dt

dp

ct’

cp’ d

v

p’’p’

ct’’

cp’’

dt’’

d

Fig. 4. Supervision in the reader, deleter, and inserter example. A bidirectional arrow between a place p and a transition t represents a pair of arcs
(p, t) and (t, p) of equal weight. A number inside of a place indicates the number of tokens.

enabled. Additionally, for transitions participating in syn-
chronizations, a request to fire a transition is granted when
there is a synchronization involving that transition such that
for all transitions t in the synchronization there are W (p, t)
waiting entities that can fire t, where W (p, t) denotes the
weight of the input arc of t. Requests in the queue are
examined in the order they are received. If a firing request
can be granted, the supervisor marking and the queue are
updated and notification messages are sent to all involved
entities. Due to transition synchronizations, more than one
entity may be involved in a transition firing.

When the generated program begins its execution, it
starts a number of entities in accordance with the initial
marking given in the specification. Entities can be created
or terminated also during the execution of the program:
when entities fire sink transitions they terminate and when
source transitions are fired new entities are created. Unless
terminated by the user, the program terminates when all
entities terminate.

V. GUARANTEES AND LIMITATIONS

There are several kinds of limitations. First, from a pro-
gramming perspective, the latency of concurrency control
could be considerable. This would mean that specifications
should be written such as to avoid executing the con-
currency control code extremely often. Second, the time
required to generate the code could be considerable, due
to the computational complexity of supervisory control
methods. While specifications (1) on a fully controllable
and observable system involve low polynomial complexity,
the computational complexity can be increased dramatically
by the presence of uncontrollable and/or unobservable tran-
sitions. Moreover, the software includes an implementation
of the T -liveness enforcement procedure of [14]. While
this procedure can be applied to arbitrary PNs, it does not
have guaranteed convergence and some of its operations
can have exponential complexity (such as the identification
of minimal siphons). Thus, the T -liveness procedure is

not applied unless the user requests it in the specification.
Finally, there are also limitations due to the difference
between the supervisory control contexts of conventional
PNs and PNs representing software systems. We address
this issue in the remaining part of the paper.

A PN representing a program is a high level Petri net
(HPN), since the fireable transitions are determined not only
by the marking but also by the user code associated with
places and transitions. Let W (p, t) denote the weight of an
arc (p, t) from a place p to a transition t. Given a transition
t, the number of input places of t represents the number of
types of concurrent entities that are synchronized by means
of t. Thus, each place p ∈ •t represents an execution stage
for a different type of entities. Now, a place p ∈ •t may
have other output transitions besides t. Then, it is possible
to encounter a situation in which all places p ∈ •t have at
least W (p, t) tokens and yet t is not fireable. This would
happen when some of the tokens of the places p ∈ •t
correspond to entities that do not attempt to fire t but some
other transitions of p•. Thus, in the HPN, a transition t is
enabled if for each place p ∈ •t, at least W (p, t) entities
can fire t. For a place p with multiple output transitions, if
the user code determines the choice of the next transition,
the choice is said to be deterministic. If the user code does
not describe how to select the next transition, the choice is
nondeterministic.

In our approach, supervisory control methods are applied
to the underlying PN of an HPN without accounting for the
user code associated with its places and transitions. On the
positive side, this simplifies considerably the supervisory
control problem. On the negative side, supervisors designed
this way may have certain performance limitations when
applied to the HPNs.

Proposition 5.1 A supervisory policy enforcing a set of
constraints (1) on the underlying PN will enforce the
constraints also when applied to the HPN.

Proof: Apart from restricting transition firing, user



code has no effect on the operation of the PN. Then, the
set of reachable states (µ, v) of the HPN is a subset of the
set of reachable set of the underlying PN. Therefore, if the
reachable states of the underlying PN satisfy the constraints
(1), the reachable states of the HPN will satisfy them also.

Proposition 5.2 Assuming no uncontrollable transitions and
no unobservable transitions, a least restrictive supervisory
policy enforcing a set of constraints (1) on the underlying
PN will be least restrictive also when applied to the HPN.

Proof: Since the least restrictive supervisory policy
disables a transition t only when firing t would break one of
the constraints (1), it remains least restrictive when applied
to the HPN.

In the presence of uncontrollable and/or unobservable
transitions, a supervisory policy may be too restrictive
unless deterministic choice is modeled in the underlying
PN. This could be seen on the following examples. Consider
the PN shown in Figure 5(a). Assume that the choice
between firing t2 or t3 is deterministic. Assume also that
t3 is unobservable and controllable, all other transitions are
controllable and observable, and the supervision objective
is µ2 ≤ 1. If the supervisor cannot know which of t2 or t3
is chosen to fire, the least restrictive supervisory policy is
v1 ≤ v2 + v4 + 1, requiring that once t1 has been fired, t1
may not be fired again until either t2 or t4 fire. However, if
the choice to fire t2 or t3 is known, the supervisory policy
is too restrictive, for it will not allow t1 to fire when there
is one concurrent entity in the stage p1 (that is, µ1 = 1) and
the entity waits for permission to fire t2. Now, considering
the same example with t3 uncontrollable and observable,
the least restrictive policy is v1 ≤ v2 + v4 + 1. However, as
before, if the choice to fire t2 or t3 is known, the supervisory
policy is too restrictive, for it will not allow t1 to fire
when there is one concurrent entity in the stage p1 (that
is, µ1 = 1) and the entity waits for permission to fire t2.

A possible approach to the modeling of deterministic
choice has appeared in [15]. The approach is described by
the following algorithm.

1) Let D be the set of places with deterministic choice.
2) For all arcs (p, t) with p ∈ D do:

a) Let p′ and t′ be a new place and a new transition.
b) p′• = {t}, •p′ = {t′}, W (p′, t) = W (p, t), and

W (t′, p′) = 1.
c) p• = (p • \{t}) ∪ {t′} and W (p, t′) = 1.
d) Note that the block of code associated with the

place p contains a request to fire t. This request
to fire t is replaced with a request to fire t′.

In the algorithm above note that (p, t′) is deterministic and
(p′, t) is nondeterministic. Note also that the transitions t′

are uncontrollable to the supervisory control algorithms.
PNs obtained using the algorithm above will be called nor-
mal. Normal PNs represent deterministic choice explicitly.

As shown above, in the presence of uncontrollable and/or
unobservable transitions, if deterministic choice is not mod-

eled explicitly in the underlying PN of an HPN, then a least
restrictive supervisory policy of the PN may not be least
restrictive in the HPN. We show now that even if the under-
lying PN is normal, a least restrictive supervisory policy of
the PN may be suboptimal in the HPN. The reason for this is
that the user code could implement the supervisory control
specification in a less restrictive fashion, since it may not
be subject to the same constraints as the supervisory control
methods applied to the underlying Petri net. Two situations
that could make user code solutions more permissive are as
follows. First, it may be that some of the transitions declared
as uncontrollable and/or unobservable in the specification
are not truly uncontrollable and unobservable, and thus
the user code could control and observe them. This could
happen when certain transitions are declared uncontrollable
or unobservable in order to prevent the supervisor from
delaying their execution. Second, a situation in which
the user code may have more control options than the
supervisor is when a place p outputs several uncontrollable
transitions. While neither the supervisor nor the user code
could disable uncontrollable transitions, the user code might
be able to select the uncontrollable transition that will be
fired2. For instance, consider the constraint µ3 ≤ 1 on the
PN of Figure 5(b). Assuming that the place p1 involves
deterministic choice, the PN is not normal, since choice
is not represented explicitly. Assuming also all transitions
observable, t2 and t3 uncontrollable, and t1, t4, and t5
controllable, the least restrictive supervisory policy would
be to disable t1 when µ3 ≥ 1. However, user code could
ensure that the concurrent entities synchronize themselves
such that an entity will select t2 (and not t3) when µ3 ≥ 1.
Thus, in the context of the HPN, the user code policy would
be less restrictive, since it would allow the sequence t1t2t3
when µ3 ≥ 1. Note that this permissiveness issue is not
eliminated by applying the normalization algorithm to the
PN, since the transitions modeling deterministic choice are
uncontrollable.

Proposition 5.3 If the HPN has uncontrollable and/or un-
observable transitions, a least restrictive supervisory policy
enforcing a set of constraints (1) on the underlying PN may
not be least restrictive when applied to the HPN.

In the following we will distinguish between deadlock
prevention and liveness enforcement as follows. A supervi-
sor preventing deadlock ensures that a PN does not reach
a state from which no transition is enabled. A supervisor
enforcing T -liveness ensures that for every transition t ∈ T
and for every reachable state there is an enabled firing
sequence that includes t.

Note that if the underlying PN of an HPN is not normal,
a supervision policy preventing deadlock or enforcing T -
liveness in the PN may not prevent deadlock in the HPN.
Indeed, consider the PN of Figure 6. Assume that all

2Note that [16] describes a class of applications in which transitions
may not be disabled due to uncontrollability and yet it is possible to select
which uncontrollable transition will be fired.



(b)(a)

t 1

t 4 t 5

t 2 t 3

t

1

p2 p3

p

1

t 2 t 3

p1

p2

t 4

Fig. 5. PNs illustrating permissiveness issues.

2

t 6

p1 p2

p3

p4

t 1t 2 t 3

t 4
t 5

Fig. 6. PN illustrating deadlock issues.

transitions are controllable and observable and that p4 is the
only place involving deterministic choice. Note that the PN
is not normal. A supervisory policy for deadlock prevention
or liveness enforcement would ensure that µ1 ≤ 1 and
µ2 ≤ 1. However, such a policy does not prevent deadlock
in the HPN, since it will allow reaching a state in which
p2 and p4 have each one token and the user code of place
p4 selects the transition t6. This would be a deadlock state,
since the supervisor will continuously disable t6, which is
the only transition that the HPN can fire.

Proposition 5.4 If the underlying PN of an HPN is not nor-
mal, a supervisory policy preventing deadlock or enforcing
T -liveness in the underlying PN may not prevent deadlock
in the HPN.

Provided that the user code is correct, a deadlock pre-
vention policy for a normal PN will prevent deadlock also
in the HPN.

Proposition 5.5 Consider an HPN in which the underlying
PN is normal. Assuming that for all HPN places the
execution of the user code takes a finite amount of time,
a supervisory policy preventing deadlock in the underlying
PN will prevent deadlock also in the HPN.

Proof: In the HPN, deadlock implies that no user code
is executed and all entities wait for permission to fire certain
transitions. Since the underlying PN is normal, for any place
p, the set of transitions enabled by p is the same in the

HPN and its underlying PN. Thus, a deadlock in the HPN
corresponds to a deadlock in its underlying PN. It follows
that any supervisory policy preventing deadlock in the PN
will prevent deadlock also in the HPN.

Under the assumptions of Proposition 5.5, a T -liveness
enforcing supervisor of the underlying PN will prevent
deadlock in the HPN. However, it would be useful to
guarantee not only the absence of total deadlock but also
that from any reachable state, any transition in the set T
can eventually be fired. As indicated in [15], additional
assumptions are needed in order to guarantee that all
transitions of interest can eventually be fired. Extensions
of the results of [15] could be obtained in future work.

The 2011 version of the software does not implement
the transformation to normal PNs. Thus, Proposition 5.4
describe a limitation of the software as well as a direction
of future work.

VI. CONCLUSION

The development of concurrent programs can be sim-
plified by generating automatically the concurrency control
code. This paper has presented a supervisory control ap-
proach to the synthesis of the concurrency control code.
The features and algorithms of a software implementation
of this approach were outlined. A formal characterization
of the supervisory control framework was also included as
well as results describing the performance of conventional
methods in the context of software systems.

REFERENCES

[1] “A Concurrency Tool Suite,”
http://www.letu.edu/people/marianiordache/acts

[2] M. Lemmon and K. He, “Supervisory plug-ins for distributed soft-
ware.” in Proceedings of the Workshop on Software Engineering and
Petri Nets, Pezze, M. and Shatz, M., Eds. University of Aarhus,
Department of Computer Science, 2000, pp. 155–172.

[3] M. Lemmon, K. He, and S. Shatz, “Dynamic reconfiguration of
software objects using Petri nets and network unfolding,” in Pro-
ceedings of the IEEE International Conference on Systems, Man,
and Cybernetics, 2000, pp. 3069–3074.

[4] A. Auer, J. Dingel, and K. Rudie, “Concurrency control generation
for dynamic threads using discrete-event systems,” in Proceedings
of the 47th Annual Allerton Conference on Communication, Control,
and Computing, 2009, pp. 927–934.

[5] J. Dingel, K. Rudie, and C. Dragert, “Bridging the gap: Discrete-
event systems for software engineering,” in Proceedings of the Cana-
dian Conference on Computer Science and Software Engineering.
ACM, 2009, pp. 66–71.

[6] T. Kelly, Y. Wang, S. Lafortune, and S. Mahlke, “Eliminating
concurrency bugs with control engineering,” Computer, vol. 42,
no. 12, pp. 52–60, 2009.

[7] M. V. Iordache and P. J. Antsaklis, “Petri nets and programming: A
survey,” in Proceedings of the 2009 American Control Conference,
2009, pp. 4994–4999.

[8] Y. Wang, T. Kelly, M. Kudlur, S. Mahlke, and S. Lafortune, “The
application of supervisory control to deadlock avoidance in concur-
rent software,” in Proceedings of the 9th International Workshop on
Discrete Event Systems, 2008, pp. 287–292.

[9] K. Knobe, “Ease of use with concurrent collections (cnc),” in
Proceedings of the First USENIX conference on Hot topics in
parallelism. USENIX Association, 2009.

[10] Z. Budimlic, A. Chandramowlishwaran, K. Knobe, G. Lowney,
V. Sarkar, and L. Treggiari, “Multi-core Implementations of the Con-
current Collections Programming Model,” in Workshop on Compilers
for Parallel Computing, Jan. 2009.



[11] R. Lublinerman, S. Chaudhuri, and P. Cerny, “Parallel programming
with object assemblies,” in Proceedings of the 24th ACM SIGPLAN
conference on Object oriented programming systems languages and
applications, ser. OOPSLA ’09. ACM, 2009, pp. 61–80.

[12] M. Méndez-Lojo, D. Nguyen, D. Prountzos, X. Sui, M. A. Hassaan,
M. Kulkarni, M. Burtscher, and K. Pingali, “Structure-driven opti-
mizations for amorphous data-parallel programs,” in Proceedings of
the 15th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. ACM, 2010, pp. 3–14.

[13] M. V. Iordache and P. J. Antsaklis, “Concurrent program synthesis
based on supervisory control,” in Proceedings of the 2010 American
Control Conference, 2010, pp. 3378–3383.

[14] ——, “Supervision based on place invariants: A survey,” Discrete
Event Dynamic Systems, vol. 16, pp. 451–492, 2006.

[15] ——, “Limitations of liveness in concurrent software systems,” in
Proceedings of the 49th International Conference on Decision and
Control, 2010.

[16] ——, “Des abstractions for the supervisory control of hybrid sys-
tems,” Transactions of the Institute of Measurement and Control,
vol. 32, no. 5, pp. 468–486, 2010.


