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ABSTRACT
Temperatures have been recorded every five minutes in a

number of rooms in a student dormitory. The experimental data
are presented as an example of room temperature dynamics in
a large multi-room building. Statistical analyses of the data
have been carried out to provide auto-correlations of individual
room temperatures, its power spectral density, histogram,and
the cross-correlations between the temperatures in neighboring
rooms. A fairly complicated behavior is observed. A parallel,
simplified mathematical model is set up for air and wall temper-
atures in multiple rooms to explain the temperature dynamics.
Each room has an independent heater that switcheson andoff at
certain lower and upper limits, respectively. The governing equa-
tions are based on energy balances with heat exchanges occurring
between the air in a room and the walls surrounding it, and with
the exterior. The instants at which heaters switchon or off are
determined by the temperatures, leading thus to a non-linear set
of equations. The governing equations are non-dimensionalized
to provide the significant non-dimensional groups of the system:
there are two which characterize the problem. Limiting solutions
for large and small values of these groups provide physical expla-
nation for the effect of the walls. Numerical solutions of this set
of first-order ordinary differential equations are easily obtained,
and examples of this are shown. The results show that there are
still other physical effects to be considered before theoryand ex-
periments can be reasonably compared.

∗Address all correspondence to this author.

NOMENCLATURE
A heat transfer area between room air and wall
A∞ heat transfer area between room air and outside
c specific heat
h convective heat transfer coefficient between air and wall
K non-dimensional thermal coupling between rooms
m non-dimensional ratio of thermal capacities of walls and

room air
M mass
Q heating
t time
T temperature
TL lower thermostat temperature
TU upper thermostat temperature
U∞ overall heat transfer coefficient between air and outside

Subscripts and superscripts
a room air
i room number
i± 1

2 wall number
w wall
∞ outside
* dimensional quantity

1 Introduction
Air temperatures in buildings are determined by a number of

dynamical factors: external thermal loading from the sun, heat
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transfer from and to the environment, ventilation from the out-
side, air exchange between rooms and the corridors, presence
of heat sources such as people, computers and electronic ap-
pliances, condensation and evaporation of humidity in the air,
heaters and air-conditioning units in rooms, and heat exchange
between the air and the walls, floors and ceilings. All these
factors are time-dependent so that the resulting temperatures are
also dynamic. In addition, there is a spatial variation of the air
temperature within a given room depending on location, and also
a difference between the temperature of the air and that of the
surrounding walls and building material which is also a function
of position.

With few exceptions, the time variation of room tempera-
tures in a building and their statistics [1] have not been reported
in any detail in the literature. On the other hand, there do not
exist mathematical models of the air temperature that can faith-
fully reproduce the local temperatures in the different rooms [2].
It is important to be able to relate field measurements to models
and thus understand the complete physics of the processes that
determine the dynamics of room temperatures.

2 Experimental motivation
Experimental data, their analysis and a search for an ex-

planatory mathematical model is the main reason behind thisre-
search. Temperature data from the third floor of a four-storied
student dormitory at theUniversity of Notre Dame was collected
in 5 minute intervals for 3.04 days, beginning at 6:00 AM on
March 20, 2010; room heating was on at that time of year. Each
room in the dormitory has a temperature sensor and the data
were recorded at a central location at the university. Thereare
50 rooms on each floor, and the rooms were still in use by stu-
dents during the measurements, with a maximum number of two
students per room. The impact of the continued use of the rooms
by students is thus a contributor to the fluctuations observed in
the time-dependent temperatures measured.

Fig. 1 shows the measured temperatures in every fifth room
of the third floor, though all rooms on that floor were measured.
Tr denotes the instantaneous temperature of a room,Ta the tem-
poral average of the specific room under consideration, while Tv

is the spatial average of all rooms. Anauto-correlation of an in-
dividual room temperature is shown in Fig. 2. It is, of course,
symmetric with respect to the delay. It is interesting to note that
there is a “shoulder” for a delay of about 0.8 days. This suggests
that there is some temperature memory at this delay. There isalso
a negative correlation beyond one day, with the negative peak be-
ing around two days. Apower spectral density of the same room
temperature is in Fig. 3. It is relatively flat up to a frequency
of about 1 day−1, and with two later peaks roughly around 2
and 3 day−1. This is consistent with a 24-hour cycle of thermal
loading from the outside, whereas the other peaks appear to be
influenced by the prevailing thermal control system, perhaps by

nighttime setback.Histograms of the room temperature and its
time derivative are shown in Fig. 4. The ordinates are normal-
ized to make the areas under the curves unity. The probability
density of the temperature in Fig. 4(a) seems to be tri-modal, a
behavior that is also observed for many of the other rooms; the
temperature spends more time at low, medium or high, and less
at the ranges in between. It is interesting to see also that the time
derivative of the temperature, as Fig. 4(b) shows, is much more
in the negative range than it is in the positive; the room heats
relatively quickly but then cools slowly. Thecross-correlation
between two neighboring rooms is in Fig. 5. It is high for delays
of −2, 1 and 1.5 days; notice also that there is a strong negative
cross-correlation for zero delay.

The purpose of the present work is to see if some headway
can be made into understanding the dynamic behavior of the tem-
peratures through mathematical models that capture the funda-
mental physical processes that determine the local temperatures
in the building.

3 Mathematical model of n rooms

Though the air temperature determines the comfort level, the
walls store heat. The presence of the walls and their interaction
with room air thus strongly affects the dynamics of thermal en-
ergy in a building, even though it is only the air that is generally
heated. It is important to include both air and wall and to under-
stand the effect of heat transfer between them [3,4].

First-order lumped parameter models have been postulated
for the analysis of temperature oscillations in rooms [5,6]. How-
ever, these studies have not taken the presence of walls intoac-
count. The configuration of the rooms in the dormitory that was
experimentally studied is the reason for the in-line model that is
developed here. Many multiroom buildings share a similar ar-
rangement of rooms making this much more practical than mod-
els that have been analyzed previously, such as the ring config-
uration [5, 6]. A paper parallel to the present includes the effect
of the walls for a ring configuration [4], while this is for an in-
line geometry. The configuration is important because the ring
has rotational symmetry, while the in-line has ends that must be
considered to be different from the intermediate rooms. Though
buildings are usually much more complicated than this, an in-line
geometry allows some general conclusions to be reached.

We will consider a line ofn rooms in which each room has a
heater that, due to a thermostat, goeson or off depending on the
temperature of the air in the room. Though the cooling problem
is similar, we will assume that there is only heating. A little
hysteresis, i.e. a dead band, is built into the thermostat inthe
form of a difference in temperatures at which the heater goeson
and that at which it goesoff.
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FIGURE 1: Measured and average temperatures during the interval [◦F]. The room number is indicated on the ordinate of each trace.
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FIGURE 2: Auto-correlation for Room 1 temperature.

3.1 Without walls
A schematic of the rooms is shown in Fig. 6(a). The di-

mensional air temperature in roomi is T ∗
i (t

∗), wheret∗ is di-
mensional time; integer subscripts are used for the air. There is
convective heat transfer from the air in each room to the next.
There is also heat exchange from each room air to the exterior
which is at temperatureT∞.
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FIGURE 3: Power spectral density for Room 1 temperature.

The end rooms are special in that they interact with only
one other room. For the intermediate rooms, however, energy
balance gives

Maca
dT ∗

i

dt∗
= Q∗

i +U∞A∞ (T∞ −T ∗
i )

+hA
(

T ∗
i−1−T ∗

i

)

+hA
(

T ∗
i+1−T ∗

i

)

, (1a)
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FIGURE 4: Histograms for Room 1 with 10 bins.

whereMa is the mass of the air,ca is the specific heat of air
at constant pressure,h andA are the heat transfer coefficient and
area for convective heat transfer between the rooms, respectively,
andU∞ andA∞ are the overall heat transfer coefficient and area
for heat exchange with the outside, respectively. The heat input
in each room isQ∗

i (t
∗), where

Q∗
i =

{

Q∗ heateron

0 heateroff
. (1b)

The limits of operation of the thermostat must also be prescribed.
It has an upper limitT ∗

U at which the heater switchesoff, and a
lower limit T ∗

L at which it comeson.
The unknowns in Eqs. (1) areT ∗

i (t
∗) and Q∗

i (t
∗) for i =

1,2, . . . ,n, with initial conditionsT ∗
i (0) andQ∗

i (0). It must be
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FIGURE 5: Cross-correlation between Rooms 1 and 2 tempera-
tures.
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FIGURE 6: n rooms.

emphasized that the equations are nonlinear because the instants
at which the heater switches fromon to off, or vice versa, are not
a priori known, but depend onT ∗

i (t
∗).

3.2 With walls
Fig. 6(b) shows a schematic of a line of rooms with walls

between them. The line of rooms ends on either side in walls, and
these end walls interact with only one room. The dimensional
wall temperatures on either side of an intermediate roomi are
T ∗

i− 1
2

andT ∗
i+ 1

2
. Fractional subscripts are used for the walls.
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From an energy balance for an intermediate room

Maca
dT ∗

i

dt∗
= Q∗

i +U∞A∞ (T∞ −T ∗
i )

+hA
(

T ∗
i− 1

2
−T ∗

i

)

+hA
(

T ∗
i+ 1

2
−T ∗

i

)

, (2a)

Q∗
i =

{

Q∗ heateron

0 heateroff
. (2b)

Energy balance for the walls gives

Mwcw

dT ∗
i+ 1

2

dt∗
= hA

(

T ∗
i −T ∗

i+ 1
2

)

+hA
(

T ∗
i+1−T ∗

i+ 1
2

)

. (2c)

4 Non-dimensional equations
The dependent and independent variables in Eqs. (1) are

non-dimensionalized for the purpose of generalization. There
are two time scales of interest, one for the wall and another for
the air. The smaller one, that of the air, has been chosen as the
characteristic time. The temperature is scaled by the heat gained
from the outside and the heater rate, as these are the most sig-
nificant contributors to the change in internal energy. Thus, the
following independent and dependent variables

t =
U∞A∞

Maca
t∗, (3a)

Ti =
U∞A∞

Q∗
(T ∗

i −T∞) , (3b)

Qi =
Q∗

i

Q∗
, (3c)

are defined. Eqs. (1) become

dTi

dt
= Qi −Ti +K (Ti−1−Ti)+K (Ti+1−Ti) , (4a)

Qi =

{

1 heateron

0 heateroff
, (4b)

For Eqs. (2), an additional non-dimensional variable

Ti+ 1
2
=

U∞A∞

Q∗

(

T ∗
i+ 1

2
−T∞

)

, (5)

is needed, so that they become

dTi

dt
= Qi −Ti +K

(

Ti− 1
2
−Ti

)

+K
(

Ti+ 1
2
−Ti

)

, (6a)

Qi =

{

1 heateron

0 heateroff
, (6b)

m
dTi+ 1

2

dt
= K

(

Ti −Ti+ 1
2

)

+K
(

Ti+1−Ti+ 1
2

)

, (6c)

Appropriate initial conditionsTi(0), Ti+ 1
2
(0), andQi(0) must be

prescribed for each dynamical system.
The only non-dimensional group in Eq. (4) is

K =
hA

U∞A∞
, (7a)

while Eqs. (6) have the additional group

m =
Mwcw

Maca
. (7b)

5 Non-dimensional groups
The groupK, Eq. (7a), represents the ratio of the thermal

resistance between the air in the room and the outside to thatbe-
tween the air and the walls. The value depends greatly on the
geometry of the design, the materials used, and the prevailing
wind and atmospheric conditions. Nonetheless, one has to have
some idea for the value ofK to search for solutions in that range.
The two areas,A andA∞, may go from being roughly equal to
A being much larger thanA∞. The convective heat transfer co-
efficient h is generally small because it is mostly due to natural
convection.U∞ is affected by insulation in the outer walls which
tends to reduce its value, and by the winds blowing on the exte-
rior which will increase it. The other groupm, Eq. (7b), is the
ratio of the heat capacity of a wall compared to that of the airin
the room.

To get an idea of the numerical values of the non-
dimensional groups, let the volume of air = 27 m3 per room, the
mass of each wall = 6210 kg. We also takeA = 9 m2, A∞ = 24
m2, andcw = 0.75 kJ/kg·K. This givesm = 142.4. The two heat
transfer coefficients, one internal and the other external,are much
more problematic [3, 7–13]. There are some values availablein
the literature for this, but the numbers obviously depend strongly
on other factors. If we takeh = 5 W/m2·K, U∞ = 10 W/m2·K,
we getK = 0.188. The heat rateQ∗ provided by the heater is
another value that must be chosen. Assuming that the heater,if
it is alwayson, can produce maximum air and wall temperatures
of T ∗

i,max = T ∗
i+ 1

2 ,max
= (40+ T∞)

◦C, thenQ∗ = 9.6 kW. If we

take T ∗
U = 20 ◦C andT ∗

L = 10 ◦C, then their non-dimensional
counterparts areTU = 0.44 andTL = 0.22.

For this study we will takeK = 0.1, m = 1, TL = 0.2 and
TU = 0.7. The initial conditions are taken to beTL for all the
rooms,T = TU for the walls, and the heater is initially assumed
to be on.
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6 Specific configurations
6.1 Without walls

Fig. 7(a) shows a single room, for which the governing equa-
tion is

dT1

dt
= Q1−T1. (8)

with unit time constant. This problem is easily solved, and Fig.
8 shows the temperature variation.

T∞

T ∗
1

(a) Single room.

T∞

T ∗
1

T ∗
2

(b) Two rooms.

T∞

T ∗
1 T ∗

2
T ∗

3

(c) Three rooms.

FIGURE 7: Rooms without walls.
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FIGURE 8: Temperature of single room without walls. Dashed
lines are lower and upper bounds of thermostatTL = 0.2 andTU =
0.7, respectively.

Figs. 7(b) and 7(c) show two and three rooms, respectively.
The corresponding equations for these are

dT1

dt
= Q1−T1+K (T2−T1) , (9a)

dT2

dt
= Q2−T2+K (T1−T2) , (9b)

and

dT1

dt
= Q1−T1+K (T2−T1) , (10a)

dT2

dt
= Q2−T2+K (T1−T2)+K (T3−T2) , (10b)

dT3

dt
= Q3−T3+K (T2−T3) , (10c)

respectively.

6.2 With walls
Figs. 9(a), 9(b) and 9(c) show one, two, and three rooms,

respectively, with walls. The governing equations are indicated
below.

6.3 Single room

m
dT1

2

dt
=−T1

2
+K

(

T1−T1
2

)

, (11a)

dT1

dt
= Q1−T1+K

(

T1
2
−T1

)

+K
(

T11
2
−T1

)

, (11b)
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FIGURE 9: Rooms with walls.

m
dT11

2

dt
=−T11

2
+K

(

T1−T11
2

)

. (11c)

6.4 Two rooms

m
dT1

2

dt
=−T1

2
+K

(

T1−T1
2

)

, (12a)

dT1

dt
= Q1−T1+K

(

T1
2
−T1

)

+K
(

T11
2
−T1

)

, (12b)

m
dT11

2

dt
= K

(

T1−T11
2

)

+K
(

T2−T11
2

)

, (12c)

dT2

dt
= Q2−T2+K

(

T11
2
−T2

)

+K
(

T21
2
−T2

)

, (12d)

m
dT21

2

dt
=−T21

2
+K

(

T2−T21
2

)

. (12e)

6.5 Three rooms

m
dT1

2

dt
=−T1

2
+K

(

T1−T1
2

)

, (13a)

dT1

dt
= Q1−T1+K

(

T1
2
−T1

)

+K
(

T11
2
−T1

)

, (13b)

m
dT11

2

dt
= K

(

T1−T11
2

)

+K
(

T2−T11
2

)

, (13c)

dT2

dt
= Q2−T2+K

(

T11
2
−T2

)

+K
(

T21
2
−T2

)

, (13d)

m
dT21

2

dt
= K

(

T2−T21
2

)

+K
(

T3−T21
2

)

, (13e)

dT3

dt
= Q3−T3+K

(

T21
2
−T3

)

+K
(

T31
2
−T3

)

, (13f)

m
dT31

2

dt
=−T31

2
+K

(

T3−T31
2

)

. (13g)

7 Limiting analyses
7.1 No energy storage in walls, m = 0

Takingm = 0 is equivalent to ignoring the heat capacity of
the wall. Forn = 1, Eqs. (11) give

T1
2
=

K
1+K

T1, (14a)

dT1

dt
= Q1−

1+3K
1+K

T1, (14b)

T11
2
=

K
1+K

T1. (14c)

Eq. (14b) is similar to Eq. (8), behaving thus like a single room
without walls but with a time constant of(1+3K)/(1+K). The
wall temperatures algebraically follow the room air temperature.

For n = 2, Eqns. (12) give

T1
2
=

K
1+K

T1, (15a)

dT1

dt
= Q1−

1
2

(

2+5K +K2

1+K

)

T1+
K
2

T2, (15b)

T11
2
=

1
2
(T1+T2) , (15c)

dT2

dt
= Q2−

1
2

(

2+5K +K2

1+K

)

T2+
K
2

T1, (15d)
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T21
2
=

K
1+K

T2. (15e)

Again, Eqs. (15b) and (15d) decouple from the others and be-
come similar to Eqs. (9), but with different time constants.The
wall temperatures also algebraically follow the room air temper-
atures.

For n = 3, Eqns. (13) become

T1
2
=

K
1+K

T1, (16a)

dT1

dt
= Q1−

1
2

(

2+5K +K2

1+K

)

T1+
K
2

T2, (16b)

T11
2
=

1
2
(T1+T2) , (16c)

dT2

dt
= Q2− (1+K)T2+

K
2

T3+
K
2

T1, (16d)

T21
2
=

1
2
(T2+T3) , (16e)

dT3

dt
= Q3−

1
2

(

2+5K +K2

1+K

)

T3+
K
2

T2, (16f)

T31
2
=

K
1+K

T3. (16g)

The room air temperatures equations, Eqs. (16b), (16d) and (16f),
decouple from the rest, and the wall temperatures follow them
algebraically.

Equations forn > 3 follow the same pattern. The room air
temperature equations decouple from the wall temperatures, and
form a system of coupled ODEs. The end rooms are governed by
equations of the form of Eqs. (16b) and (16f), while the interme-
diate rooms are like (16d). The wall temperatures algebraically
follow both neighboring rooms if they are interior walls, but fol-
low their single neighbor if they are at the end.

7.2 Infinitely massive walls, m → ∞
With m → ∞, the wall temperature equations for any wall

shows that

dTi+ 1
2

dt
= 0. (17)

The walls are so massive that their temperatures remain constant
with time, and equal to the initial valuesTi+ 1

2
(0). The room air

temperature equations then become similar to those for a single
room, Eq. (8). For example, taking the middle room in a three-
room building, Eq. (13d) becomes

dT2

dt
= Q2− (1+2K)T2+K

(

T11
2
(0)+T21

2
(0)

)

. (18)

The last term in this equation is a constant, and the problem is
similar to that for a single room without a wall. The temperature
in each room decouples from those of its neighbors.

7.3 No heat exchange with wall, K = 0
AssumingK = 0

dTi

dt
= Qi −Ti, (19a)

m
dTi+ 1

2

dt
= 0. (19b)

Curiously enough, this is basically the same as takingm → ∞
above. The wall temperature is constant in time, while the room
air temperatures decouple from each other.

7.4 Infinite heat exchange with wall, K → ∞
Looking at Eqs. (11), (12) and (13), one can see that in this

limit, one obtains an algebraic set of equations for the roomair
and wall temperatures. There are no dynamics in the tempera-
tures.

8 Simulation results
Numerical results were obtained using an an explicit Euler

method with a step size in time of 0.001. Integration was per-
formed up to 50,000 time steps. Only the last 5 time units are
shown to enable the transients in the system to die out. The
steady-state dynamics of the system are strongly dependenton
the parameters and initial conditions chosen. The values ofthe
non-dimensional groups are taken to beK = 0.2,m= 1,TL = 0.2,
TU = 0.7. Initially, the air in all the rooms is atTL with the heater
on, and the walls are atTU . At this stage a comprehensive study
of all possibilities and combinations has not been carried out.

8.1 Single room with walls
Fig. 10 shows the temperature variation of the room air and

that of the two walls. For clarity, the wall temperatures areshown
amplified in the lower figure; the two walls have identical tem-
peratures. The room air and the wall temperatures have the same
frequency, but the latter are much smaller in amplitude. Theex-
istence of temperature oscillations in the wall, however, could in
the long term lead to synchronization of the temperature oscilla-
tion between rooms.

8.2 Two rooms with walls
Fig. 11 shows the temperature variation of two rooms and

that of the three walls.

8 Copyright c© 2012 by ASME
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FIGURE 10: Air and wall temperatures in single room with walls.

8.3 Three rooms with walls
Fig. 12 shows the temperature variation of three rooms and

that of the four walls.

9 Conclusions
The dynamics of temperature variation in an actual build-

ing is observed to be very complicated, and at this stage it is
best studied using statistical tools. Auto-correlations and power-
spectral densities show that there is a spectrum of time scales
and frequencies present in the temperature dynamics. Probabil-
ity density analysis indicates that, on the average, the room heats
more quickly than it cools. Mathematical models of the thermal
dynamics, including heat transfer between room air, the wall, and
the exterior in the presence of thermostatic control with hystere-
sis produces periodic behavior. There are many aspects of the
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FIGURE 11: Air and wall temperatures in two rooms with walls.
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FIGURE 12: Air and wall temperatures in three rooms with walls.

mathematical model that needs to be explored since there are, at
present, major qualitative differences between the measurements
and the theoretical results.

Further work will also have to sweep the range of possi-
ble parameters and initial conditions to see if the non-linear dy-
namical system produces bifurcations or chaotic solutions, and
to determine the effect of variation of the external temperature,
T∞. Experimentally, it will be interesting to place sensors onthe
walls and observe its dynamics.

Acknowledgment
We thank Mr. Richard Warner and Mr. Mark Hummel of the

University of Notre Dame Utilities Department for allowing ac-
cess to the dormitory temperature data. IA thanks the University
for a Balfour-Hesburgh Summer Research Fellowship.

9 Copyright c© 2012 by ASME



REFERENCES
[1] Wu, S., and Sun, J.-Q., 2012. “Multi-stage regression lin-

ear parametric models of room temperature in office build-
ings”. Building and Environment, 56, pp. 69–77.

[2] Wu, S., and Sun, J.-Q., 2012. “A physics-based linear
parametric model of room temperature in office buildings”.
Building and Environment, 50, pp. 1–9.

[3] Luo, C., Moghtaderi, B., Hands, S., and Page, A., 2011.
“Determining the thermal capacitance, conductivity and the
convective heat transfer coefficient of a brick wall by annu-
ally monitored temperatures and total heat fluxes”.Energy
and Buildings, 43(2-3), pp. 379–385.

[4] Sen, M., 2012. “Effect of walls on synchronization of ther-
mostatic room-temperature oscillations”. In Proceedingsof
the Mexican Society of Mechanical Engineers (SOMIM),
Sept. 19-21, 2012, Salamanca, Gto., Mexico.

[5] Cai, W., and Sen, M., 2008. “Synchronization of ther-
mostatically controlled first-order systems”.International
Journal of Heat and Mass transfer, 51(11-12), pp. 3032–
3043.

[6] O’Brien, J., and Sen, M., IMECE2011-63153, 2011. “Tem-
perature synchronization, phase dynamics and oscillation
death in a ring of thermally-coupled rooms”. In Proceed-
ings of the International Mechanical Engineering Congress
and Exposition (IMECE), Nov. 11-17, 2011, Denver, CO,
U.S.A.

[7] Longstaff, R., and Finnigan, J., 1983. “A wind-tunnel
model study of forced convective heat-transfer from a hori-
zontal grain storage shed”.Journal of Stored Products Re-
search, 19(2), pp. 81–87.

[8] Hagishima, A., and Tanimoto, J., 2003. “Field measure-
ments for estimating the convective heat transfer coefficient
at building surfaces”.Building and Environment, 38(7),
pp. 873–881.

[9] Hagishima, A., Tanimoto, J., and Narita, K., 2005. “Inter-
comparisons of experimental convective heat transfer coef-
ficients and mass transfer coefficients of urban surfaces”.
Boundary-Layer Meteorology, 117(3), pp. 551–576.

[10] Emmel, M., Abadie, M., and Mendes, N., 2007. “New ex-
ternal convective heat transfer coefficient correlations for
isolated low-rise buildings”.Energy and Buildings, 39(3),
pp. 335–342.

[11] Palyvos, J., 2008. “A survey of wind convection coefficient
correlations for building envelope energy systems’ model-
ing”. Applied Thermal Engineering, 28(8-9), pp. 801–808.

[12] Shao, J., Liu, J., Zhao, J., Zhang, W., Sun, D., and Fu,
Z., 2009. “A novel method for full-scale measurement of
the external convective heat transfer coefficient for building
horizontal roof”. Energy and Buildings, 41(8), pp. 840–
847.

[13] Defraeye, T., Blocken, B., and Carmeliet, J., 2011. “Con-
vective heat transfer coefficients for exterior building sur-

faces: Existing correlations and CFD modelling”.Energy
Conversion and Management, 52(1), pp. 512–522.

10 Copyright c© 2012 by ASME


