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Abstract

We consider the following problem: given two mathematical system models, one representing accurately
a physical system and the other representing its approximation, what passivity properties of the system can
be inferred from studying only the approximate model. Our results show that an excess of passivity (whether
in the form of input strictly passive, output strictly passive or very strictly passive) in the approximate model
guarantees a certain passivity index for the system, at least if the norm of the error between the two models
is sufficiently small. We also consider QSR dissipative systems and show that QSR dissipativity has a similar
robustness property, even though the supply rate for the system and its approximation may be different.

I. INTRODUCTION

Energy dissipation is a fundamental concept in dynamical systems. Passivity and dissipativity char-
acterize the “energy” consumption of a dynamical system and form a powerful tool in many real
applications. Passivity is closely related to stability and exhibits a compositional property for parallel
and feedback interconnections [1], [2], [3]. Passivity-based control is especially useful in the analysis
of complex coupled systems.

It is impossible to precisely describe the behavior of any physical system through mathematical
models. In modeling physical systems, a classical dilemma is the tradeoff between model accuracy and
tractability [4]. A variety of approximation methods are used, for analysis, simulation or control design
of the ‘real’ systems [5]. It is critical that the approximate model preserves properties and features
of interests of the original system, such as stability, Hamiltonian structure or passivity. One example
of approximation is the use of linearization methods. Nonlinear behaviors abound in the real world,
including saturation, backlash and dead zone [6]. Linearized models are often used, because methods
for analysis and control designs are readily available for linear systems [7]. Another example is model
reduction [5]. The need for modeling accuracy may result in large-scale, higher-order and complex
mathematical models. Model reduction methods lead to a lower-order, simpler system, that can be used
to facilitate control designs or speed up simulations [5], [8].

We are particularly interested in the passivity of a system as inferred from studying an approximate
model of its dynamical behavior. It is known that under some conditions, linearization [1], [9] and
model reduction [8], [10] preserve passivity. The main contribution of this paper is the establishment
of relationships between passivity levels of two mathematical system models, one of which could
represent accurately a physical system and the other representing its approximation; Of course, the
two mathematical models can represent two different approximation of the same physical system as
well. The approximate model is assumed to have an excess of passivity, defined as passivity levels
(similar to passivity indices [3]) that characterize how passive it is (how much of the energy introduced
into the system is dissipated). If the error between the system and its approximation is “small” in
some sense, we show that passivity levels for the system can be guaranteed. Since passivity levels (or
indices) are used to design controls for the system [3], [11], these results imply that it is possible to use
the simpler approximate model for control design. Also, we derive conditions under which the system
remains passive if the approximate model is passive. These results may be interpreted as robustness
properties with respect to model uncertainties [12], [13]. If the approximate model does not have an
excess of passivity, we consider the case when the approximation is QSR dissipative. In this case, it is
shown that if the error between the system and its approximation is “small”, the system will be QSR
dissipative as well but for a different supply rate.

As a particular case, we consider linear systems and their positive-real truncations [10] and derive
variations in the passivity levels for the full-order and reduced-order systems. There exist various
procedures for model reduction preserving passivity [8]. The works such as [5], [8], [10] focus on
how to preserve passivity instead of studying the variations in the passivity levels caused by model
reduction. However, our results show how passivity levels vary as a function of the order.

The rest of the paper is organized as follows. Section II provides background material on passivity
and model reduction preserving passivity. Section III presents the problem statement. The main results
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are given in Section IV. Discussions of results in the discrete-time domain are presented in Section V.
Numerical examples are provided in Section VI. Concluding remarks are given in Section VII.

Notation. The signal space under consideration is L2 space or the extended L2 space. The Euclidean
space of dimension m is denoted by Rm. Denote the truncation of u(t) up to time T (0 ≤ T < ∞)
by uT (t). The inner product of truncated signals uT (t), yT (t) is denoted by 〈u, y〉T , where 〈u, y〉T ,∫ T
0
uT (t)y(t)dt and uT (t) denotes the transpose of u(t). The L2-induced norm of a signal u is denoted

by ‖u‖T , where ‖u‖2T ,
∫ T
0
uT (t)u(t)dt. The H∞ norm of a transfer function G(s) is denoted by

‖G‖H∞ . For a complex matrix A ∈ Cn×n, the minimum eigenvalue of A is denoted by λ(A) and the
maximum eigenvalue by λ(A). Re[A] is the real part of a complex matrix A. A ≥ 0 denotes that A is
positive semi-definite and A > 0 implies that A is positive definite. The identity matrix is denoted by
I and the dimensions are omitted when it is clear from context. The notation max{a, b} denotes the
larger value of a, b ∈ R and min{a, b} denotes the smaller value of a, b ∈ R.

II. PRELIMINARIES

A. Passivity
Definition 1 ([1], [14]): Consider a system Σ with input u and output y where u(t), y(t) ∈ Rm. It

is called
• passive, if there is a constant β ≤ 0 such that

〈u, y〉T ≥ β.

• input strictly passive (ISP), if there exist ν > 0 and a constant β ≤ 0 such that

〈u, y〉T ≥ β + ν〈u, u〉T . (1)

• output strictly passive (OSP), if there exist ρ > 0 and a constant β ≤ 0 such that

〈u, y〉T ≥ β + ρ〈y, y〉T . (2)

• very strictly passive (VSP), if there exist ρ > 0 and ν > 0 and a constant β ≤ 0 such that

〈u, y〉T ≥ β + ρ〈y, y〉T + ν〈u, u〉T . (3)

In all cases, the inequality should hold for ∀u(t), ∀T ≥ 0 and the corresponding y(t).
A few remarks about the definitions.
1) The constant β is related to the initial conditions and plays an important role in the stability

analysis of the system [14].
2) The notation 〈u, y〉T denotes the externally supplied energy to the system during the interval [0, T ].

For instance, 〈u, y〉 is the instantaneous power by viewing u as the voltage and y as the current
[1], [6].

3) VSP is referred to input-output strict passivity in [15], [16].
4) The above definitions can be viewed as special cases of QSR-dissipative systems [2], [17], defined

as systems for which there exist Q = QT , R = RT and S, such that ∀u(t), ∀T ≥ 0 and the
corresponding y(t),

r(u, y) , 〈y,Qy〉T + 2〈y, Su〉T + 〈u,Ru〉T ≥ 0. (4)

The function r(u, y) is called the supply rate for Σ. It is clear that Σ is ISP for ρ if Q = 0, S =
0.5I, R = −ρI . If Q = −νI, S = 0.5I, R = 0, Σ is OSP for ν. If Q = −νI, S = 0.5I, R = −ρI ,
Σ is VSP for (ρ, ν).

5) Definition 1 is the input-output description with the benefits of abstraction [18]. The definitions
based on state models can be found in [14], [17]. The relations between the two descriptions are
studied in [18], [1].
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6) Clearly, if a system Σ is ISP for ν > 0, it is also ISP for ν− ε, where 0 ≤ ε < ν. Analogously, if
Σ is OSP for ρ > 0, it is also OSP for ρ− ε, where 0 ≤ ε < ρ [3]. Finally, if Σ is VSP for (ρ, ν),
it is also VSP for (ρ − ε, ν − ε), where 0 ≤ ε < min{ρ, ν} (see Lemma 2 in the Appendix). A
positive value of ρ or ν can thus be interpreted as an excess of passivity and these two values
(called passivity levels) characterize ‘how passive’ Σ is. If ρ or ν is negative, we say Σ has a
shortage of passivity. This intuition is captured by the concept of passivity indices [3].

Definition 2: For a system Σ with input u and output y where u(t), y(t) ∈ Rm,
• the input feedforward passivity index (IFP) is the largest ν > 0 such that (1) holds for ∀u and
∀T ≥ 0,

• the output feedback passivity index (OFP) is the largest ρ > 0 such that (2) holds for ∀u and
∀T ≥ 0.

The two indices are denoted by IFP(ν) and OFP(ρ), respectively.
Note the fact that a system has IFP(ν) and OFP(ρ) does not necessarily imply that the system is VSP

for (ρ, ν). In other words, the system may not have IFP(ν) and OFP(ρ) simultaneously. A necessary
condition for ρ and ν to be VSP is given by ρν ≤ 1

4
, ρ > 0, ν > 0 (see Lemma 3 in the Appendix). As a

result, for VSP, it may not make sense to define the largest ρ > 0 and the largest ν > 0 (simultaneously)
such that (3) holds for ∀u and ∀T ≥ 0, since a large ρ corresponds to a small ν from the constraint
ρν ≤ 1

4
. To get around this difficulty, we define the notion of passivity levels in the following consistent

manner. Consider a system Σ,
• any ν̃ ∈ (0, ν] is a passivity level of Σ if Σ has IFP(ν);
• any ρ̃ ∈ (0, ρ] is a passivity level of Σ if Σ has OFP(ρ);
• any (ρ̃, ν̃) are passivity levels of Σ if Σ is VSP for (ρ, ν) such that 0 < ρ̃ ≤ ρ, 0 < ν̃ ≤ ν.

B. Model Reduction Preserving Passivity
Model reduction preserving passivity is an effective approximation technique when dealing with

large-scale systems, such as power grid and circuit interconnect [10], [19]. We are mostly interested in
truncated balancing realization (TBR) for model reduction that preserves passivity, so-called positive-real
TBR (PR-TBR for short) [8], [10].

For linear time invariant system with transfer function G(s), a state space realization is given as

ẋ = Ax+Bu, (5)
y = Cx+Du.

We assume {A,B} is controllable and {A,C} is observable. The following result, namely the positive
real lemma, is useful to test whether (5) is passive.

Lemma 1 ([6]): (5) is passive if and only if there exist matrices P = P T > 0, L,W , such that

PA+ ATP = −LTL, (6)

PB = CT − LTW,
W TW = D +DT .

The dual equations of (6), obtained by setting A→ AT , B → CT , C → BT , are given as

AX +XAT = −KKT , (7)

XCT = B −KJT ,
JJT = D +DT ,

where X = XT ≥ 0, K, J are the dual set of P,L,W .
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The non-negative matrices P and X are used as the basis for the PR-TBR procedure (see Algorithm
1 in the Appendix). P and X are analogous to the observability grammian Wo and the controllability
grammian Wc, where

AWc +WcA
T = −BBT ,

ATWo +WoA = −CCT .

Wc and Wo are the basis for TBR procedure but do not guarantee passivity of the reduced model in
general [8], [10] except for the following special case. The eigenvalues of the product WcWo are called
Hankel singular values and are used to establish upper bounds on the error between the transfer functions
of the full-order system (denoted by G) and its reduced-order approximation (denoted by Ga). If we
denote σi as the ith Hankel singular values (σ1 ≥ σ2 ≥ ...σn ≥ 0, and n is the order of G), then we
obtain

‖G−Ga‖H∞ ≤ 2
n∑

j=r+1

σi,

where 0 ≤ r < n is the order of the reduced-order approximation Ga. It is obvious that the larger the
order r is, the smaller the error is.

A special case of (5) is of the relaxation type, i.e.

A = AT , A ≤ 0, BT = C,D ≥ 0. (8)

Relaxation systems [10], [17] play an important role in applications; examples include integrated circuits
and mechanical systems in which inertial effects may be neglected. It can be verified that P = I is a
solution to (6), i.e. V (x) = 1

2
xTx is a storage function for (8), where

V̇ (x)− uTy = xT (Ax+Bu)− uT (Cx+Du)

= xTAx− uTDu
≤ −uTDu ≤ 0.

Therefore, the system (8) is passive. If D > 0, the above inequality actually shows that the system is
ISP for

ρ ≥ λ(D) > 0.

Furthermore, the reduced model of (8) obtained through Algorithm 1 will also be ISP for ρ̃ ≥ λ(D) > 0.
Remark 1: Positive real balancing for nonlinear systems has been studied in [20]. Besides, there exist

various approaches to reduce model order, but we do not concentrate on that problem. Model reduction
of linear systems are used merely as ‘examples’ to illustrate our main results in Section IV.

III. PROBLEM STATEMENT

Consider two system models Σ1 and Σ2 as shown in Fig. 1. One can view Σi as the system we
are interested in as it describes some behavior of interest and Σj as an approximation of Σi, where
i, j ∈ {1, 2} and j 6= i. A commonly used measure for judging how well Σj approximates Σi is to
compare the outputs for the same excitation function u [5]. We denote the difference in the outputs by
∆y. The error may be due to modeling, linearization or model reduction, etc. For a ‘good’ approximation,
we require that the “worst” case ∆y over all control inputs u be small. Thus, Σj is a good approximation
of Σi if there exists a positive constant γ > 0 such that

‖∆y‖T ≤ γ‖u‖T , ∀u and ∀T ≥ 0. (9)

The value of γ obviously constrains how good the approximation is. In the following analysis, without
loss of generality, we view Σ2 as an approximation of Σ1.
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Fig. 1. Illustration of two systems: Σ1 with input u and output y1 and Σ2 with input u and output y2 = y1 + ∆y.
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Fig. 2. Problem Statement

Remark 2: For stable linear systems, Σ1 (resp. Σ2) is characterized by the transfer function G1 (resp.
G2). Defining ∆G = G1 −G2, we obtain from (9) that

‖∆G‖H∞ ≤ γ.

In this case, γ is an upper bound on the H∞ norm of the error in the transfer functions G1 and G2.
We are now ready to state the problem of interest (see Fig. 2). Assume that Σ2 has an excess of

passivity, namely Σ2 has IFP(ν) or OFP(ρ) or is VSP for (ρ, ν). What passivity property for Σ1 can
be inferred from that of Σ2? For the case when Σ2 does not have an excess of passivity, we assume
it to be (Q2, S2, R2)-dissipative and consider the problem of obtaining conditions under which Σ1 is
(Q1, S1, R1)-dissipative as well. The problem is summarized as follows.

Problem 1: Suppose that an approximate model Σ2

• has IFP(ν); or
• has OFP(ρ); or
• is VSP for (ρ, ν); or
• is (Q2, S2, R2)-dissipative.

The aim is to derive the corresponding passivity property for the system Σ1 based on conditions on γ
in (9), such that

1) Σ1 has ISP level (ν̃); or
2) Σ1 has OSP level (ρ̃); or
3) Σ1 is VSP for (ρ̃, ν̃); or
4) Σ1 is (Q1, S1, R1)-dissipative.

IV. MAIN RESULTS

In this section, we present our main results. We begin by considering the case when the approximate
model is ISP and then move on to the cases when the approximation is OSP, VSP or QSR-dissipative.
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A. Input Strictly Passive Systems
We have the following result that guarantees a certain passivity level given the error constraint γ and

an IFP level for the approximate model.
Theorem 1: Consider Σ1 and Σ2 in Fig. 1. Suppose (9) is satisfied for some γ > 0. If Σ2 has IFP(ν)

and γ < ν, then Σ1 will be ISP for ν̃ = ν − γ.
Proof: From Cauchy-Schwarz inequality and the assumption (9), we obtain

|〈u,∆y〉T | ≤
√
〈u, u〉T

√
〈∆y,∆y〉T ≤ γ〈u, u〉T , (10)

For the system Σ2 with input u and output y2, we have

〈u, y2〉T − ν〈u, u〉T
=〈u, y1〉T − ν〈u, u〉T + 〈u,∆y〉T
≤〈u, y1〉T − ν〈u, u〉T + |〈u,∆y〉T |
≤〈u, y1〉T − (ν − γ)〈u, u〉T .

Now, by assumption, Σ2 is ISP for ν > 0, then

〈u, y2〉T − ν〈u, u〉T ≥ β.

Therefore, defining ν̃ = ν − γ > 0, we obtain 〈u, y1〉T − ν̃〈u, u〉T ≥ β. This implies Σ1 is ISP for
ν̃ > 0.

Note ν̃ does not represent the IFP of Σ1 (Σ1 may have IFP larger than ν̃). By viewing ∆y as model
uncertainties that are not captured by the approximation Σ2, the results can be interpreted as robustness
properties [3]. The following result regarding robust passivity is less restrictive than Theorem 1.

Corollary 1: Consider Σ1 and Σ2 in Fig. 1. Suppose (9) is satisfied for some γ > 0. If Σ2 has IFP(ν)
and γ ≤ ν, then, Σ1 will be passive.

Proof: From (10) and γ ≤ ν, we obtain

|〈u,∆y〉T | ≤ γ〈u, u〉T ≤ ν〈u, u〉T .

The following relation holds for Σ1

〈u, y1〉T = 〈u, y2〉T − 〈u,∆y〉T
≥ 〈u, y2〉T − |〈u,∆y〉T |
≥ 〈u, y2〉T − ν〈u, u〉T ≥ β.

Therefore, 〈u, y1〉T ≥ β, i.e. Σ1 is passive.

B. Output Strictly Passive Systems
Computing OFP of a system is more difficult then IFP because of the feedback loops involved. For

linear systems, we assume along the lines of [3] that Σ2 is minimum phase so that the inverse of Σ2,
denoted by Σ−12 , is causal and stable (i.e. all the poles of Σ−12 are with negative real parts).

Assumption 1: Consider Σ2 with input u and output y2. Assume the inverse of Σ2 is causal and
stable, i.e. there exist η > 0, such that ∀y2, ∀T ≥ 0 [16]

‖u‖T ≤ η‖y2‖T . (11)
Note that Assumption 1 is not necessary, however, OFP can be conveniently computed in this way.

For linear systems, the OFP for G(s) is shown to be equivalent to the IFP of the inverse of G(s),
denoted by G−1(s).
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Theorem 2: Consider Σ1 and Σ2 in Fig. 1. Suppose (9) holds for some γ > 0 and (11) holds for
some η > 0. If Σ2 has OFP(ρ) and γ < ρ, then Σ1 will be OSP for ρ̃ = ρ− γ if

1

η2
−
(

1 + 2(ρ− γ)
1

ρ
+ (ρ− γ)γ

)
≥ 0. (12)

Proof: We use the relation from [6] that

uTy2 − ρyT2 y2 ≤
1

2ρ
uTu− ρ

2
yT2 y2.

Σ2 is assumed to be OSP for ρ > 0, thus
1

2ρ
〈u, u〉T −

ρ

2
〈y2, y2〉T ≥ 〈u, y2〉T − ρ〈y2, y2〉T ≥ β,

and therefore 〈y2, y2〉T ≤ 1
ρ2
〈u, u〉T − 2β

ρ
. From Cauchy-Schwarz inequality, (9) and the fact β ≤ 0, we

obtain

|〈y2,∆y〉T | ≤
√
〈∆y,∆y〉T

√
〈y2, y2〉T (13)

≤ γ

ρ

√
〈u, u〉T

√
〈u, u〉T − 2βρ

≤ γ

ρ
(〈u, u〉T − 2βρ) =

γ

ρ
〈u, u〉T − 2βγ.

Together with (10), if we define a , ρ− γ > 0, we obtain

Φ ,γ〈y2, y2〉T − 〈u,∆y〉T + 2a〈∆y, y〉T − a〈∆y,∆y〉T
≥γ〈y2, y2〉T − |〈u,∆y〉T | − 2a|〈∆y, y2〉T | − aγ2〈u, u〉T

≥γ〈y2, y2〉T −
(
γ + 2a

γ

ρ
+ aγ2

)
〈u, u〉T + 4aβγ.

If (12) is satisfied, from assumption (11), we obtain

γ〈y2, y2〉T −
(
γ + 2a

γ

ρ
+ aγ2

)
〈u, u〉T

≥
[

1

η2
−
(

1 + 2a
1

ρ
+ aγ

)]
γη2〈y2, y2〉T ≥ 0.

Thus, Φ ≥ 4aβγ. For Σ1 with y1 = y2 −∆y,

〈u, y1〉T − (ρ− γ)〈y1, y1〉T
=〈u, y2〉T − ρ〈y2, y2〉T + Φ ≥ β + 4aβγ , β̄,

for all functions u, all T ≥ 0 and β̄ ≤ 0. Therefore, for γ < ρ, Σ is OSP for ρ̃ = ρ− γ.
Note that Σ may have OFP larger than ρ̃. The following result is immediate regarding robust passivity.
Corollary 2: Consider Σ1 and Σ2 in Fig. 1. Suppose (9) holds for some γ > 0 and (11) holds for

some η > 0. If Σ2 has OFP(ρ) and γη2 ≤ ρ, then, Σ1 will be passive.
Proof: From (10) and the assumption (11), we obtain

|〈u,∆y〉T | ≤ γ〈u, u〉T ≤ γη2〈y2, y2〉T .

Thus, the following relation holds if γη2 ≤ ρ,

〈u, y1〉T = 〈u, y2〉T − 〈u,∆y〉T
≥ 〈u, y2〉T − ρ〈y2, y2〉T − |〈u,∆y〉T |+ ρ〈y2, y2〉T
≥ β + (ρ− γη2)〈y2, y2〉T ≥ β.

Therefore, 〈u, y1〉T ≥ β, i.e. Σ1 is passive.
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C. Very Strictly Passive Systems
We have the following result.
Theorem 3: Consider Σ1 and Σ2 in Fig. 1. Suppose (9) holds for some γ > 0. Suppose Σ2 is VSP

for (ρ, ν), where ρ > γ, ν > γ. Then, Σ1 is VSP for (ρ− γ, ν − γ) if

ν2 − 2(ρ− γ)

ρ
− (ρ− γ)γ ≥ 0. (14)

Proof: We use the relation uTy2 − νuTu ≤ 1
2ν
yT2 y2 − ν

2
uTu. Σ2 is assumed to be ISP for ν > 0,

thus
1

2ν
〈y2, y2〉T −

ν

2
〈u, u〉T ≥ 〈u, y2〉T − ν〈u, u〉T ≥ β,

and therefore 〈y2, y2〉T ≥ ν2〈u, u〉T + 2βν. Also, Σ2 is OSP for ρ > 0, thus (13) is satisfied. Together
with (9) and (10), if we define a = ρ− γ > 0, ψ = 2a〈y,∆y〉T − 〈u,∆y〉T − a〈∆y,∆y〉T , we obtain

|ψ| = |〈u,∆y〉T |+ 2a|〈y,∆y〉T |+ a〈∆y,∆y〉T

≤
(
γ + 2a

γ

ρ
+ aγ2

)
〈u, u〉T − 4aβγ.

Thus, the following relation holds

γ〈u, u〉T + γ〈y2, y2〉T + ψ

≥γ(1 + ν2)〈u, u〉T + 2βνγ − |ψ|

≥
[
γ(1 + ν2)− (γ + 2a

γ

ρ
+ aγ2)

]
〈u, u〉T + 2βνγ + 4aβγ

=γ

(
ν2 − 2a

ρ
− aγ

)
〈u, u〉T + 2βνγ + 4aβγ.

We assume that ν2 − 2a
ρ
− aγ ≥ 0 from (14), thus

γ〈u, u〉T + γ〈y2, y2〉T + ψ ≥ 2βνγ + 4aβγ.

For Σ1 with input u and output y1 = y2 −∆y, we have

〈u, y1〉T − (ν − γ)〈u, u〉T − (ρ− γ)〈y1, y1〉T
=〈u, y2〉T − ν〈u, u〉T − ρ〈y2, y2〉T

+ γ〈u, u〉T + γ〈y2, y2〉T + ψ

≥〈u, y2〉T − ν〈u, u〉T − ρ〈y2, y2〉T + 2βνγ + 4aβγ.

Σ2 is assumed to be VSP for (ρ, ν) and therefore

〈u, y2〉T − ν〈u, u〉T − ρ〈y2, y2〉T ≥ β.

Defining β̄ = β + 2βνγ + 4aβγ ≤ 0, we have

〈u, y1〉T − (ν − γ)〈u, u〉T − (ρ− γ)〈y1, y1〉T ≥ β̄.

Thus, for γ < ρ, γ < ν, Σ1 is VSP for (ρ− γ, ν − γ).
Σ1 is VSP for (ρ, ν) implies that ρ is a passivity level for OSP and ν is a passivity level for ISP. The

OFP for Σ1 is larger than ρ and the IFP is larger than ν in general.
Corollary 3: Consider Σ1 and Σ2 in Fig. 1. Suppose (9) holds for some γ > 0. If Σ2 is VSP for

(ρ, ν) and ρν2 + ν − γ ≥ 0, then, Σ1 will be passive.
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Proof: Σ2 is ISP for ν, it has been shown that 〈y2, y2〉T ≥ ν2〈u, u〉T + 2βν. From (10), we obtain

χ ,− |〈u,∆y〉T |+ ρ〈y2, y2〉T + ν〈u, u〉T
≥ (ρν2 + ν − γ)〈u, u〉T + 2βρν.

Thus, if ρν2+ν−γ ≥ 0, we obtain χ ≥ 2βρν. Σ2 is VSP for (ρ, ν), thus 〈u, y2〉T−ρ〈y2, y2〉T−ν〈u, u〉T ≥
β. For Σ1 with input u and output y1, we have

〈u, y1〉T = 〈u, y2〉T − 〈u,∆y〉T
≥ 〈u, y2〉T − ρ〈y2, y2〉T − ν〈u, u〉T + χ

≥ β + 2βρν , β̄.

Thus, 〈u, y1〉T ≥ β̄ and β̄ ≤ 0, i.e. Σ1 is passive.
Remark 3: It can be verified that the above results hold when Σ1 and Σ2 exchange places. In other

words, it does not really matter whether we view Σ1 as an approximation of Σ2 or Σ2 as an approximation
of Σ1. In practice, however, a simple model is usually used as an approximation of a complex system,
e.g. linearized model vs. nonlinear model and lower-order model vs. higher-order model.

Remark 4: Theorem 1-3 relate passivity levels between Σ1 and Σ2 for ISP, OSP and VSP systems. It is
worth stressing that these results are applicable to any approximation methods and any system structure
in general. In particular, if we consider linear systems and PR-TBR as a particular approximation
approach, then the error γ in (9) is characterized by the Hankel singular values, and the results in
Theorem 1-3 provide a tool to trade off the error as a function of variations in the passivity levels for
the full-order system Σ1 (or Σ2) and the reduced-order system Σ2 (or Σ1).

D. Extension to QSR-dissipative Systems
In this section, we extend the results to QSR-dissipative systems, for which the system may be not

passive or have a shortage of passivity.
Theorem 4: Consider Σ1 and Σ2 in Fig. 1. Suppose (9) holds for some γ > 0. Let Σ2 be (Q2, S2, R2)-

dissipative and assume S1 − S2 = 0, Q1 −Q2 > 0, R1 −R2 > 0. If there exists a ξ > 0 such that

λ(R1 −R2)−
γ2

ξ
− 2λ1γ − b ≥ 0, (15)

λ(Q1 −Q2)− ξλ2 ≥ 0,

where b = 2 max{0, λ(−Q1)γ
2}, and

λ1 ,
√
λ(ST1 S1) ≥ 0, λ2 ,

√
λ(QT

1Q1) ≥ 0,

then Σ1 is (Q1, S1, R1)-dissipative.
Proof: From Cauchy-Schwarz inequality, we obtain

|〈S1u,∆y〉T | ≤
√
λ(ST1 S1)γ〈u, u〉T = λ1γ〈u, u〉T .

Also, for some ξ > 0, the following relation holds

2〈Q1y2,∆y〉T ≤
γ2

ξ
〈u, u〉T + ξλ2〈y2, y2〉T .

Define the supply rate for Σi as ri(u, yi) , 〈yi, Qiyi〉T + 2〈yi, Siu〉T + 〈u,Riu〉T , then

r1 =r2 + 〈y2, (Q1 −Q2)y2〉T + 〈u, (R1 −R2)u〉T
− 2〈y2, Q1∆y〉T + 〈∆y,Q1∆y〉T − 2〈∆y, S1u〉T
≥r2 + (λ(Q1 −Q2)− ξλ2) ‖y2‖2T

+

(
λ(R1 −R2)−

γ2

ξ
− 2λ1γ

)
‖u‖2T + 〈∆y,Q1∆y〉T .
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Since Σ2 is (Q2, S2, R2)-dissipative, r2 ≥ 0. Two cases are possible. If Q1 > 0, we have b =
0, 〈∆y,Q1∆y〉T ≥ 0. Thus, from (15), we obtain r1 ≥ r2 ≥ 0. If Q1 ≤ 0, we have b = λ(−Q1)γ

2 and
from (9),

〈∆y,Q1∆y〉T ≥ −λ(−Q1)γ
2〈u, u〉T .

If (15) holds, we obtain r1 ≥ r2 ≥ 0. In summary, r1 ≥ 0 if (15) is satisfied and thus Σ1 is (Q1, S1, R1)-
dissipative.

Remark 5: (1). Similar arguments can be developed when S1 − S2 = 0, Q1 −Q2 > 0, R1 − R2 > 0
does not hold. However, the analysis is more involved. (2). When Si = 1/2I , Qi > 0 or Ri > 0
(i = 1, 2) indicates the system has a shortage of passivity.

V. DISCUSSIONS IN THE DISCRETE-TIME SETTING

In this section, we consider the same problem (i.e. Problem 1) in the discrete-time domain. In
this case, the signal space under consideration is `2 space or the extended `2 space. The set of
time instants is Z = {0, 1, 2, ...}. The inner product of truncated signals uT (k), yT (k) is defined as
〈u, y〉T ,

∑T
0 u

T (k)y(k) where 0 ≤ T < ∞. The `2-induced norm of a signal u is denoted by ‖u‖T ,
where ‖u‖2T ,

∑T
0 u

T (k)u(k).
The definitions of passivity in the discrete-time domain can be found in e.g. [21], [22], [23]. In fact,

we can apply Definition 1 as well if we use the time instant k and the inner product introduced above.
Analogously, we can define passivity indices and passivity levels of a discrete-time system Σ as in the
continuous-time domain.

To study Problem 1 in the discrete-time setting, similar arguments in the continuous-time domain can
be developed. In fact, the results derived in this paper (Lemma 2-3, Theorem 1-4 and Corollary 1-3),
apply to discrete-time domain. The only difference is that in discrete-time setting, the time instants are
integers and the inner product is defined as summations.

VI. NUMERICAL EXAMPLES

In this section, we consider numerical examples to illustrate our results. In the following examples,
Σ1 is considered to be a linear system of relaxation type (denoted by G) and Σ2 is an approximation
of Σ1 (denoted by Ga) obtained from the PR-TBR procedure (e.g. in [10]).

Example 1 (ISP): Consider the following relaxation system

ẋ =

(
−1.62 −1.522
−1.522 −4.18

)
x+

(
−3.876
−2.01

)
u,

y =
(
−3.876 −2.01

)
x+ 0.5u,

which is a minimal realization of

Ga(s) =
0.5s2 + 21.96s+ 47.85

s2 + 5.8s+ 4.456
.

This second-order system is obtained from the PR-TBR procedure (see Algorithm 1). We have shown
that Ga(s) is ISP for ρ ≥ D = 0.5. In fact, the IFP(ρ) for Ga (defined in [3]) can be computed as

ρ = min
w∈R

Re[Ga(jw)] = 0.5.

The original system G(s) given by (16) is of order 8. The Hankel singular values, i.e. the eigenvalues
of the product WcWo, are given by Λ in (17) and ordered as σ1 ≥ σ2 · · · ≥ σ8. Therefore, we have [10]

‖Gr −Ga‖H∞ ≤ 2
8∑

k=3

σk = 0.0803.
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G1 =
0.5s8 + 28.6s7 + 352.2s6 + 1887s5 + 5299s4 + 8295s3 + 7190s2 + 3173s+ 542.9

s8 + 18.5s7 + 133.5s6 + 496.1s5 + 1047s4 + 1290s3 + 911.1s2 + 337.5s+ 50.18
(16)

Λ = diag{4.6357, 0.4834, 0.0375, 0.0023, 3.5× 10−4, 1.9× 10−5, 0, 0}. (17)

A =


−5 0.1 1.2 0 0 1
0.1 −3 0 −0.3 0 −1
1.2 0 −6 −2 0.5 −2
0 −0.3 −2 −4 0.4 0.5
0 0 0.5 0.4 −4 −0.8
1 −1 −2 0.5 −0.8 −8

 , B =


1
2
1
3
2

0.8

 , C = BT , D = 2. (18)
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Fig. 3. The Nyquist Plots of G and Ga in Example 1.

Thus, γ in (9) is given by γ = 0.0803 < 0.5. According to Theorem 1, Σ1 (G) is input strictly passive
for

ν̃ = ν − γ = 0.5− 0.0803 = 0.4197.

This is true because the passivity index for Gr(s) is actually 0.5, which is greater than ν̃ = 0.4197.
The Nyquist plots of G and Ga are given in Figure 3. Figure 3 demonstrates the second-order system

Ga(s) approximates the real system G(s) very well and the IFP for the two systems are both 0.5. If we
use a forth-order approximate model, γ = 8× 10−4, ν = 0.5. Thus, the error in the transfer function is
upper bounded by 8× 10−4. Besides, the passivity level for G is then given by ν− γ = 0.5− 8× 10−4,
very close to its passivity index 0.5.

Example 2 (OSP): Consider the following system

Ga(s) =
1.8s+ 19.37

s+ 4.132
,

which is obtained from the PR-TBR algorithm. It is obvious that G−1a (s) exits and stable. Also, we
have

η = ‖G−1a (s)‖H∞ = 0.5556,

ν = min
w∈R

Re[G−1a (jw)] = 0.213.
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a in Example 2.

The real system G(s) is of order 5 and given through

1.8s5 + 53.56s4 + 590.8s3 + 3034s2 + 7279s+ 6543

s5 + 23s4 + 203.1s3 + 861.7s2 + 1759s+ 1382
,

and the error in the transfer function is given by the Hankle singular values σk (in a decreasing order),
where

‖G−Ga‖H∞ ≤ 2
5∑

k=2

σk = 0.0461.

For γ = 0.0461 < ν, (12) holds because

1

η2
−
(

1 + 2(ν − γ)
1

ν
+ (ν − γ)γ

)
= 0.6695 > 0.

From Theorem 2, we can conclude that G is OSP for

ν̃ = ν − γ = 0.213− 0.0461 = 0.1669.

This is true because the OFP for G is given by 0.211, which is larger than ν̃ = 0.1669.
The Nyquist plots of G−1 and G−1a are given in Figure 2. From this figure, we can read the OFP

indices: 0.213 for Ga and 0.211 for G, respectively. If a second-order approximation is used, we can
obtain a smaller error in the transfer function with γ = 0.0015, and for which the passivity level for G
is given by ν̃ = 0.2095 from Theorem 2, which is very close to the OFP for G (0.211).

Remark 6: For linear systems, a higher-order reduced model will result in smaller error in the transfer
function and the passivity level, as indicated by Example 1 and 2. Therefore, there exists a tradeoff
between how simple (i.e. small order) Σ2 is and how accurate Σ2 is.

Example 3 (VSP): The original system G is given by (4). Its second-order approximation is given
by

Ga =
2s2 + 42.06s+ 183.8

s2 + 11.22s+ 26.79
,

which is VSP for (ρ, ν), where ν = 1.2, ρ = 0.01. This can be verified through Π ≤ 0 [23], where Π
is given by [

ATP + PA+ ρCTC PB − (1/2CT − ρCTD)
BTP − (1/2C − ρDTC) νI + ρDTD −D

]
,
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with A,B,C,D as a minimal realization of Ga and P = I .
The error in Ga and G is given by γ = 0.0042. For our choice of ρ, ν, we obtain

ν2 − 2(ρ− γ)/ρ− (ρ− γ)γ = 0.2869 > 0,

therefore (14) is satisfied. According to Theorem 3, the original system G is VSP for (ρ̃, ν̃), where

ν̃ = ν − γ = 1.1958, ρ̃ = ρ− γ = 0.0058.

This can also be verified through Π ≤ 0 by setting P = I and substituting ρ̃, ν̃ for ρ, ν, respectively.
Example 4 (QSR): Consider a simple example, where the original system G is given by C = BT , D =
−1 and

A =


−2 0.1 1.2 0 0
0.1 −1 0 −0.3 0
1.2 0 −4 −2 0.5
0 −0.3 −2 −3 0.4
0 0 0.5 0.4 −1

 , B =


1
2
1
1
2

 .

The reduced-order model Ga is obtained through the standard truncated balanced realization [10], for
which Wc and Wo are the basis for transformation. Ga is given as

Ga(s) =
−s2 + 7.402s+ 21.96

s2 + 3.485s+ 2.139
.

It can be verified that Ga is (Q2, S2, R2)-dissipative for Q2 = 0.1, R2 = 1, S2 = 0.5. This can be done
by testing Π ≤ 0 with P = 0.5I, ρ = −0.1, ν = −1.

The error in the transfer functions is given as γ = 0.0318. From the assumption that Q1 > Q2 = 0.1.
Choose ξ = 0.5, Q1 = 0.2, we obtain Q1 − Q2 − ξQ1 = 0. Also, b = 0 for this example, we can
choose R1 > R2 + 2γ2 + γ = 1.0338 from (15), for instance, R1 = 1.1. According to Theorem 4, G
is (Q1, S1, R1)-dissipative, where Q1 = 0.2, S1 = 0.5, R1 = 1.1. Again, this can be verified through
Π ≤ 0 by setting P = 0.5I, ρ = −0.2, ν = −1.1.

Example 5 (Sector Nonlinearity): Consider a feedback connection as shown in Figure 5, represented
by a linear system and a feedback loop containing a memoryless nonlinearity [6], [15]. This connection
is often used in absolute stability analysis. Here, we are more interested in passivity of the closed-loop
system Σ1 with input u and output y1. We use the linear system Ga(s) with input u and output y2 as
an approximation of Σ1. The simulink model for the two system models is built in Fig. 6.

The linear system is given by

Ga(s) =
2s2 + 9.04s+ 8.48

s2 + 4s+ 3
.

The difference of the outputs for the same input function u(t) = cos(t) + 2 is shown in Fig. 7. The
error γ is upper bounded by 0.3. One can verify that the conditions in Corollary 1-3 are satisfied. Thus,
the nonlinear system Σ1 is passive as well. If we plot the product of uTy, we can see from Fig. 8 that
uTy ≥ 0 for all time t. Therefore, the system Σ1 is passive from Definition 1. (One can verify the
results for other choices of input as well.)

VII. CONCLUDING REMARKS

In this paper, we established conditions under which the passivity properties of a system can be
obtained by analyzing its approximation. The approximate model is assumed to be input/output/very
strictly passive and the results are of the form that if the error between the system and its approximation
is small, the original system has a guaranteed passivity level. The analysis is extended to a general case
when the approximation is QSR dissipative (not necessarily passive). The results may be interpreted as
robustness properties of passivity with respect to model uncertainties. It has also been shown that our
results can be used to derive variations in the passivity levels of a linear system and its reduced-order
approximation.
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IX. APPENDIX

Lemma 2: If a system is VSP for (ρ, ν), then for any 0 ≤ ε < min{ρ, ν}, it is also VSP for
(ρ− ε, ν − ε).
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Proof: First note that for ε ≥ 0,

ε〈u, u〉T ≥ 0, ε〈y, y〉T ≥ 0.

Therefore, we have the following relation

〈u, y〉T − (ρ− ε)〈u, u〉T − (ν − ε)〈y, y〉T
= 〈u, y〉T − ρ〈u, u〉T − ν〈y, y〉T + ε〈u, u〉T + ε〈y, y〉T
≥ 〈u, y〉T − ρ〈u, u〉T − ν〈y, y〉T .

Next, from the definition for VSP systems, we obtain

〈u, y〉T − ρ〈u, u〉T − ν〈y, y〉T ≥ β.

Therefore, for ε < min{ρ, ν}, the following relation holds,

〈u, y〉T − (ρ− ε)〈u, u〉T − (ν − ε)〈y, y〉T ≥ β,

thus the system is VSP for (ρ− ε, ν − ε).
The constraints on ρ and ν for Σ to be VSP are given through the following lemma. A similar

problem is studied in [16] for QSR dissipative systems (4) where Q = −νI,R = −ρI, S = δI . Their
result is based on the eigenvalues of a dissipativity matrix, however, we use a different proof for the
special case of VSP in this paper.

Lemma 3: If a system is VSP for (ρ, ν), where ρ > 0, ν > 0, then ρ, ν satisfy ρν ≤ 1
4
.

Proof: It is equivalent to say, if ρν > 1
4
, the system is not VSP for (ρ, ν). To see this, we use the

following relation

(
√
ρu−

√
νy)T (

√
ρu−

√
νy) ≥ 0.

Therefore, for all u, all T ≥ 0, we have

ρ〈u, u〉T + ν〈y, y〉T − 2
√
ρν〈u, y〉T ≥ 0.

From the above inequality, we can derive that

〈u, y〉T − ρ〈u, u〉T − ν〈y, y〉T

≤ 1

2
√
ρν

(ρ〈u, u〉T + ν〈y, y〉T )− ρ〈u, u〉T − ν〈y, y〉T

=

(
1

2
√
ρν
− 1

)
(ρ〈u, u〉T + ν〈y, y〉T ) .
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If ρν > 1
4
, then 1

2
√
ρν
− 1 < 0, and thus ∀u, ∀T ≥ 0,

〈u, y〉T − ρ〈u, u〉T − ν〈y, y〉T ≤ 0,

and the equality holds only for u = 0, y = 0. Therefore, the system cannot be VSP for (ρ, ν).
A PR-TBR procedure is given in [10] and shown in Algorithm 1 for completeness.
Algorithm 1 ([10]): PR-TBR
1) Solve (6) for P .
2) Solve (7) for X .
3) Compute Cholesky factors P = L1L

T
1 , X = L2L

T
2 .

4) Compute singular value decomposition of UΛV = LT1L2, where Λ is diagonal positive and U, V
have orthonormal columns.

5) Compute the balancing transformations T = L2V Λ−1/2 and T−1 = Λ−1/2UTLT1 .
6) Form the balanced realization Â = T−1AT, B̂ = T−1B, Ĉ = CT .
7) Select the reduced model order and partition Â, B̂, Ĉ conformally.
8) Truncate Â, B̂, Ĉ to form the reduced realization Ã, B̃, C̃.
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