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Abstract— We consider the following problem: given two
mathematical system models, one of which could represent
accurately a physical system and the other an approximation
of the system, what passivity properties of the system can
be inferred from studying only the approximate model. Our
results show that an excess of passivity (whether in the form
of input strictly passive, output strictly passive or very strictly
passive) in the approximate model guarantees a certain passivity
index for the system, provided that the norm of the error
between the two models is sufficiently small in a suitably defined
sense. Further, we consider QSR dissipative systems and show
that QSR dissipativity has a similar robustness property, even
though the supply rates for the system and its approximation
may be different.

I. INTRODUCTION

Energy dissipation is a fundamental concept in dynamical
systems. Passivity and dissipativity characterize the “energy”
consumption of a dynamical system and form a powerful
tool in many real applications. Passivity is closely related to
stability and exhibits a compositional property for parallel
and feedback interconnections [1], [2], [3]. Passivity-based
control is especially useful in the analysis of complex cou-
pled systems.

In this paper, we are particularly interested in the pas-
sivity of a system as inferred from studying an approximate
model of its dynamical behavior. In physical systems, precise
knowledge of the mathematical model is difficult to obtain.
Moreover, even if such a model were obtainable, the classical
tradeoff between model accuracy and tractability may lead to
the use of a simpler model [4]. A variety of approximation
methods can be used, for analysis, simulation or control
design of the ‘real’ systems [5]. While it is known that under
some conditions, linearization [1], [6] and model reduction
[7], [8] can be performed so as to preserve passivity, the
question of whether passivity of a system can be guaranteed
if a model ‘close’ to it is passive still remains open.

The main contribution of this paper is the establishment of
relationships between passivity levels of two mathematical
system models, one of which could represent accurately a
physical system and the other could represent an approxima-
tion. Of course, the two mathematical models can represent
two different approximations of the same physical system as
well. The approximate model is assumed to have an excess
of passivity, defined as passivity levels (similar to passivity
indices [3]) that characterize how passive it is (how much of
the energy introduced into the system is dissipated). If the
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error between the system and its approximation is “small” in
a suitably defined sense, we show that the passivity levels for
the system can be guaranteed. Since there is a rich theory of
using passivity levels (or indices) to design controls [3], [9],
our results imply that it is possible to use the (hopefully more
tractable) approximate model for control design. An alterna-
tive interpretation of the results is as robustness properties
with respect to model uncertainties [10], [11]. Further, if
the approximate model does not have an excess of passivity,
we assume that it is QSR dissipative and similar robustness
properties can be derived. We apply our results to a particular
approximation method: model reduction of a higher-order
system to obtain a lower-order model which can be used to
facilitate control designs or speed up simulations [5], [7].
Specifically, we consider linear systems and their positive-
real truncations [8] and derive variations in the passivity
levels for the full-order and reduced-order systems. The
works such as [5], [7], [8] focus on how to preserve passivity.
As opposed to these works, we show how passivity levels
vary as a function of the order.

The rest of the paper is organized as follows. Section
II provides background material on passivity and model
reduction preserving passivity. Section III presents the prob-
lem statement. The main results are given in Section IV.
Numerical examples are provided in Section V. Concluding
remarks are given in Section VI.

Notation. The signal space under consideration is either
the standard L2 space or the extended L2 space. The exact
space will be clear from the context. The Euclidean space
of dimension m is denoted by Rm. Denote the truncation
of u(t) up to time T (0 ≤ T < ∞) by uT (t). The
inner product of truncated signals uT (t), yT (t) is denoted
by 〈u, y〉T , where 〈u, y〉T ,

∫ T
0
uT (t)y(t)dt and uT (t)

denotes the transpose of u(t). The L2-induced norm of the
signal uT (t) is denoted by ‖uT (t)‖L2 , where ‖uT (t)‖2L2

,∫ T
0
uT (t)u(t)dt. The H∞ norm of a transfer function G(s) is

denoted by ‖G‖H∞ . For a matrix A ∈ Rn×n, the minimum
eigenvalue of A is denoted by λ(A) and the maximum
eigenvalue by λ(A). Re[A] is the real part of a complex
matrix A. A ≥ 0 denotes that A is positive semi-definite
and A > 0 implies that A is positive definite. The n-
dimensional identity matrix is denoted by In×n or simply
I by omitting the dimensions if clear from the context. The
notation max{a, b} denotes the larger value of a, b ∈ R and
min{a, b} denotes the smaller value of a, b ∈ R.

II. PRELIMINARIES

Definition 1 ([1], [12]): Consider a system Σ with input
u and output y where u(t), y(t) ∈ Rm. It is said to be



• passive, if there exists a constant β ≤ 0 such that

〈u, y〉T ≥ β.

• input strictly passive (ISP), if there exist constants ν >
0 and β ≤ 0 such that

〈u, y〉T ≥ β + ν〈u, u〉T . (1)

• output strictly passive (OSP), if there exist constants
ρ > 0 and β ≤ 0 such that

〈u, y〉T ≥ β + ρ〈y, y〉T . (2)

• very strictly passive (VSP), if there exist constants ρ >
0, ν > 0 and β ≤ 0 such that

〈u, y〉T ≥ β + ρ〈y, y〉T + ν〈u, u〉T . (3)

• finite-gain L2 stable, if there exist constants κ > 0 and
β ≤ 0 such that

〈y, y〉T ≤ −β + κ2〈u, u〉T . (4)

In all cases, the inequality should hold for ∀u(t), ∀T ≥ 0
and the corresponding y(t).

The constant β is related to the initial condition of the
system Σ and plays an important role in the stability analysis
of Σ [12]. The inner product 〈u, y〉T may be interpreted
as the externally supplied energy to Σ during the interval
[0, T ] [1], [13]. The above definitions can be viewed as
special cases of QSR-dissipative systems [2], [14], defined
as systems for which there exist Q = QT , R = RT and S,
such that ∀u(t), ∀T ≥ 0 and the corresponding y(t),

r(u, y) , 〈y,Qy〉T + 2〈y, Su〉T + 〈u,Ru〉T ≥ 0. (5)

The function r(u, y) is called the supply rate for Σ.
If a system Σ is ISP for ν > 0, it is also ISP for ν − ε,

where 0 ≤ ε < ν. Analogously, if Σ is OSP for ρ > 0, it
is also OSP for ρ− ε, where 0 ≤ ε < ρ [3]. Finally, if Σ is
VSP for (ρ, ν), i.e. (3) holds, it is also VSP for (ρ−ε, ν−ε),
where 0 ≤ ε < min{ρ, ν} (see [15] for a complete proof). A
positive value of ρ or ν can thus be interpreted as an excess
of passivity and these two values (called passivity levels)
characterize ‘how passive’ Σ is. If ρ or ν is negative, we say
Σ has a shortage of passivity. This intuition is captured by
the concept of passivity indices [3].

Definition 2: For a system Σ with input u and output y
where u(t), y(t) ∈ Rm,
• the input feedforward passivity index (IFP) is the largest
ν > 0 such that (1) holds for ∀u and ∀T ≥ 0,

• the output feedback passivity index (OFP) is the largest
ρ > 0 such that (2) holds for ∀u and ∀T ≥ 0.

The two indices are denoted by IFP(ν) and OFP(ρ), respec-
tively.

Note the fact that a system has IFP(ν) and OFP(ρ) does
not necessarily imply that the system is VSP for (ρ, ν). In
other words, (3) may not hold for the passivity indices ρ and
ν. A necessary condition for ρ and ν to be VSP is given by
ρν ≤ 1

4 , ρ > 0, ν > 0 (see [15] for a complete proof). As a
result, for VSP, it may not make sense to define the largest

ρ > 0 and the largest ν > 0 (simultaneously) such that (3)
holds for ∀u and ∀T ≥ 0. We thus use the notion of passivity
levels. Consider the system Σ,
• any ν̃ ∈ (0, ν] is a passivity level of Σ if Σ has IFP(ν);
• any ρ̃ ∈ (0, ρ] is a passivity level of Σ if Σ has OFP(ρ);
• any (ρ̃, ν̃) are passivity levels of Σ if Σ is VSP for (ρ, ν)

such that 0 < ρ̃ ≤ ρ, 0 < ν̃ ≤ ν.
Consider a linear time-invariant system with transfer func-

tion G(s), a minimal state-space realization is given by

ẋ = Ax+Bu,

y = Cx+Du, (6)

where {A,B} is controllable and {A,C} is observable.
The following result is useful to test whether system (6) is
passive.

Lemma 1 ([13]): System (6) is passive if and only if there
exist matrices P = PT > 0, L and W , such that

PA+ATP = −LTL,
PB = CT − LTW,

WTW = D +DT . (7)
A special case of system (6) is of relaxation type, i.e.

A = AT , A ≤ 0, BT = C,D ≥ 0. (8)

Relaxed systems play an important role in applications and
examples of such systems include integrated circuits and
mechanical systems where inertial effects may be neglected,
see e.g. [8], [14].

The algorithm for model reduction considered in this paper
preserves passivity, called positive-real truncated balancing
realization (PR-TBR for short), as presented in [8]. The
observability grammian Wo and the controllability grammian
Wc of system (6) can be used as a basis for PR-TBR
procedure when (8) is satisfied. The square roots of the
eigenvalues of the product WcWo are called Hankel singular
values and can be used to establish upper bounds on the
difference between the transfer function of the full-order
system G1 and its reduced order approximation G2. If we
denote σi as the ith Hankel singular value (where σ1 ≥ σ2 ≥
· · · ≥ σn and n is the order of G1), then

‖G1 −G2‖H∞ ≤ 2

n∑
i=r+1

σi, (9)

where r is the order of the reduced order model G2 [5], [7].
Remark 1: There exist various methods for model reduc-

tion (of linear or nonlinear systems), but we do not con-
centrate on that problem. Linear models of relaxation type
and model reduction preserving passivity are used merely as
illustrating examples of our main results.

III. PROBLEM STATEMENT

Consider two system models Σ1 and Σ2 as shown in Fig.
1. One can view Σi as the system we are interested in and
Σj as an approximation of Σi, where i, j ∈ {1, 2} and
j 6= i. A commonly used measure for judging how well
Σj approximates Σi is to compare the outputs for the same
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Fig. 1. Illustration of two systems: Σ1 with input u and output y1 and
Σ2 with input u and output y2 = y1 + ∆y, where u, y1, y2 and ∆y are
of the same dimensions.

excitation function u [5]. We denote the difference in the
outputs by ∆y. Note that in general ∆y will depend on
the exact function u. The error may be due to modeling,
linearization or model reduction or a host of other reasons.
For a ‘good’ approximation, we require that the “worst” case
∆y over all control inputs u be small. More formally, we
say that Σj is a good approximation of Σi if there exists a
positive constant γ > 0 such that

〈∆y,∆y〉T ≤ γ2〈u, u〉T , ∀u and ∀T ≥ 0. (10)

The value of γ obviously reflects how good the approxima-
tion is. In the following analysis, without loss of generality,
we view Σ2 as an approximation of Σ1.

Remark 2: Note that (10) actually requires the ‘error
system’ with input u and output ∆y to be L2 stable. For
stable linear systems with zero initial conditions, Σ1 (resp.
Σ2) is characterized by the transfer function G1 (resp. G2).
Defining ∆G = G1−G2, if ‖∆G‖H∞ ≤ γ, (10) is satisfied.
Thus, γ is an upper bound on the H∞ norm of the difference
in the transfer functions G1 and G2. In particular, if G2 is
a reduced order model of G1 that obtained through the PR-
TBR procedure, from (9), we obtain that the ‘error’ constraint
γ in (10) can be calculated as 2

∑n
i=r+1 σi.

We are now ready to state the problem of interest. Assume
that Σ2 has an excess of passivity, namely Σ2 has IFP(ν)
or OFP(ρ) or is VSP for (ρ, ν). What passivity property
for Σ1 can be inferred from that of Σ2? For the case
when Σ2 does not have an excess of passivity, we assume
it to be (Q2, S2, R2)-dissipative and consider the problem
of obtaining conditions under which Σ1 is (Q1, S1, R1)-
dissipative as well. The problem is summarized as follows.

Problem 1: Suppose that an approximate model Σ2

1) has IFP(ν); or
2) has OFP(ρ); or
3) is VSP for (ρ, ν); or
4) is (Q2, S2, R2)-dissipative.

What corresponding passivity or QSR-dissipativity properties
can be derived for the system Σ1 based on (10)?

IV. MAIN RESULTS

We begin by considering the case when the approximate
model is ISP and then move on to the cases when the ap-
proximation is OSP, VSP or QSR-dissipative, subsequently.

A. Input Strictly Passive Systems

We have the following result that guarantees a certain
passivity level given the error constraint γ and IFP of the
approximate model.

Theorem 1: Consider Σ1 and Σ2 in Fig. 1. Suppose (10)
is satisfied for some γ > 0. If Σ2 has IFP(ν) and γ < ν,
then Σ1 is ISP for ν̃ = ν − γ.

Proof: From Cauchy-Schwarz inequality and the as-
sumption (10), we obtain

|〈u,∆y〉T | ≤
√
〈u, u〉T

√
〈∆y,∆y〉T ≤ γ〈u, u〉T , (11)

For the system Σ2 with input u and output y2, we have

〈u, y2〉T − ν〈u, u〉T
=〈u, y1〉T − ν〈u, u〉T + 〈u,∆y〉T
≤〈u, y1〉T − ν〈u, u〉T + |〈u,∆y〉T |
≤〈u, y1〉T − (ν − γ)〈u, u〉T .

Now, by assumption, Σ2 is ISP for ν > 0, then

〈u, y2〉T − ν〈u, u〉T ≥ β.

Therefore, defining ν̃ = ν − γ > 0, we obtain 〈u, y1〉T −
ν̃〈u, u〉T ≥ β. This implies Σ1 is ISP for ν̃ > 0.

Note ν̃ does not represent the IFP of Σ1 (Σ1 may have
IFP larger than ν̃). If we are merely interested in determining
whether Σ1 is passive (rather than characterizing the passiv-
ity level of Σ1), we can allow γ to be equal to ν.

Corollary 1: Consider Σ1 and Σ2 in Fig. 1. Suppose (10)
is satisfied for some γ > 0. If Σ2 has IFP(ν) and γ ≤ ν,
then, Σ1 is passive.

Proof: From (11) and γ ≤ ν, we obtain

|〈u,∆y〉T | ≤ γ〈u, u〉T ≤ ν〈u, u〉T .

The following relation holds for Σ1

〈u, y1〉T = 〈u, y2〉T − 〈u,∆y〉T
≥ 〈u, y2〉T − |〈u,∆y〉T |
≥ 〈u, y2〉T − ν〈u, u〉T ≥ β.

Therefore, 〈u, y1〉T ≥ β, i.e. Σ1 is passive.

B. Output Strictly Passive Systems

For OSP systems, we assume along the lines of [3] that
the inverse of Σ2 is causal and L2 stable. For linear system
(6), a necessary condition to satisfy this assumption is that
G(s) has relative degree zero and is minimum phase, i.e. all
the zeros of G(s) have negative real parts. In this case, the
OFP for G(s) is shown to be equivalent to the IFP of the
inverse of G(s), see e.g. [3].

Assumption 1: Consider Σ2 with input u and output y2.
Assume the inverse of Σ2 is causal and stable, i.e. there exist
η > 0, such that ∀y2, ∀T ≥ 0

〈u, u〉T ≤ η2〈y2, y2〉T . (12)
With this assumption, we have the following result.
Theorem 2: Consider Σ1 and Σ2 in Fig. 1. Suppose (10)

holds for some γ > 0 and (12) holds for some η > 0. If Σ2

has OFP(ρ) and γ < ρ, then Σ1 is OSP for ρ̃ = ρ− γ if

1

η2
−
(

1 + 2(ρ− γ)
1

ρ
+ (ρ− γ)γ

)
≥ 0. (13)



Proof: For all ρ > 0, we have the following relation
uT y2 ≤ 1

2ρu
Tu+ ρ

2y
T
2 y2 and thus

uT y2 − ρyT2 y2 ≤
1

2ρ
uTu− ρ

2
yT2 y2.

Σ2 is assumed to be OSP for ρ > 0, thus

1

2ρ
〈u, u〉T −

ρ

2
〈y2, y2〉T ≥ 〈u, y2〉T − ρ〈y2, y2〉T ≥ β,

and therefore 〈y2, y2〉T ≤ 1
ρ2 〈u, u〉T −

2β
ρ . From Cauchy-

Schwarz inequality, (10) and the fact β ≤ 0, we obtain

|〈y2,∆y〉T | ≤
√
〈∆y,∆y〉T

√
〈y2, y2〉T (14)

≤ γ

ρ

√
〈u, u〉T

√
〈u, u〉T − 2βρ

≤ γ

ρ
(〈u, u〉T − 2βρ) =

γ

ρ
〈u, u〉T − 2βγ.

Together with (11), if we define a , ρ− γ > 0, we obtain

Φ ,γ〈y2, y2〉T − 〈u,∆y〉T + 2a〈∆y, y2〉T − a〈∆y,∆y〉T
≥γ〈y2, y2〉T − |〈u,∆y〉T | − 2a|〈∆y, y2〉T | − aγ2〈u, u〉T

≥γ〈y2, y2〉T −
(
γ + 2a

γ

ρ
+ aγ2

)
〈u, u〉T + 4aβγ.

If (13) is satisfied, from assumption (12), we obtain

γ〈y2, y2〉T −
(
γ + 2a

γ

ρ
+ aγ2

)
〈u, u〉T

≥
[

1

η2
−
(

1 + 2a
1

ρ
+ aγ

)]
γη2〈y2, y2〉T ≥ 0.

Thus, Φ ≥ 4aβγ. For Σ1 with y1 = y2 −∆y,

〈u, y1〉T − (ρ− γ)〈y1, y1〉T
=〈u, y2〉T − ρ〈y2, y2〉T + Φ ≥ β + 4aβγ , β̄,

for all functions u, all T ≥ 0 and β̄ ≤ 0. Therefore, for
γ < ρ, Σ1 is OSP for ρ̃ = ρ− γ.

Note that Σ1 may have OFP larger than ρ̃. If we are merely
interested in passivity of Σ1, we have the following result.

Corollary 2: Consider Σ1 and Σ2 in Fig. 1. Suppose (10)
holds for some γ > 0 and (12) holds for some η > 0. If Σ2

has OFP(ρ) and γη2 ≤ ρ, then, Σ1 is passive.
Proof: From (11) and the assumption (12), we obtain

|〈u,∆y〉T | ≤ γ〈u, u〉T ≤ γη2〈y2, y2〉T .

Thus, the following relation holds if γη2 ≤ ρ,

〈u, y1〉T = 〈u, y2〉T − 〈u,∆y〉T
≥ 〈u, y2〉T − ρ〈y2, y2〉T − |〈u,∆y〉T |+ ρ〈y2, y2〉T
≥ β + (ρ− γη2)〈y2, y2〉T ≥ β.

Therefore, 〈u, y1〉T ≥ β, i.e. Σ1 is passive.

C. Very Strictly Passive Systems

We have the following result.
Theorem 3: Consider Σ1 and Σ2 in Fig. 1. Suppose (10)

holds for some γ > 0. Suppose Σ2 is VSP for (ρ, ν), where
ρ > γ, ν > γ. Then, Σ1 is VSP for (ρ− γ, ν − γ) if

ν2 − 2(ρ− γ)

ρ
− (ρ− γ)γ ≥ 0. (15)

Proof: We use the relation uT y2 − νuTu ≤ 1
2ν y

T
2 y2 −

ν
2u

Tu. Σ2 is assumed to be ISP for ν > 0, thus

1

2ν
〈y2, y2〉T −

ν

2
〈u, u〉T ≥ 〈u, y2〉T − ν〈u, u〉T ≥ β,

and therefore 〈y2, y2〉T ≥ ν2〈u, u〉T +2βν. Also, Σ2 is OSP
for ρ > 0, thus (14) is satisfied. Together with (10) and (11),
if we define a = ρ− γ > 0, ψ = 2a〈y2,∆y〉T −〈u,∆y〉T −
a〈∆y,∆y〉T , we obtain

|ψ| ≤ |〈u,∆y〉T |+ 2a|〈y2,∆y〉T |+ a〈∆y,∆y〉T

≤
(
γ + 2a

γ

ρ
+ aγ2

)
〈u, u〉T − 4aβγ.

Thus, the following relation holds

γ〈u, u〉T + γ〈y2, y2〉T + ψ

≥γ(1 + ν2)〈u, u〉T + 2βνγ − |ψ|

≥
[
γ(1 + ν2)− (γ + 2a

γ

ρ
+ aγ2)

]
〈u, u〉T + 2βνγ + 4aβγ

=γ

(
ν2 − 2a

ρ
− aγ

)
〈u, u〉T + 2βνγ + 4aβγ.

We assume that ν2 − 2a
ρ − aγ ≥ 0 from (15), thus

γ〈u, u〉T + γ〈y2, y2〉T + ψ ≥ 2βνγ + 4aβγ.

For Σ1 with input u and output y1 = y2 −∆y, we have

〈u, y1〉T − (ν − γ)〈u, u〉T − (ρ− γ)〈y1, y1〉T
=〈u, y2〉T − ν〈u, u〉T − ρ〈y2, y2〉T

+ γ〈u, u〉T + γ〈y2, y2〉T + ψ

≥〈u, y2〉T − ν〈u, u〉T − ρ〈y2, y2〉T + 2βνγ + 4aβγ.

Σ2 is assumed to be VSP for (ρ, ν) and therefore

〈u, y2〉T − ν〈u, u〉T − ρ〈y2, y2〉T ≥ β.

Defining β̄ = β + 2βνγ + 4aβγ ≤ 0, we have

〈u, y1〉T − (ν − γ)〈u, u〉T − (ρ− γ)〈y1, y1〉T ≥ β̄.

Thus, for γ < ρ, γ < ν, Σ1 is VSP for (ρ− γ, ν − γ).
Σ1 is VSP for (ρ, ν) implies that ρ is a passivity level for

OSP and ν is a passivity level for ISP. The OFP of Σ1 is
larger than ρ and the IFP is larger than ν in general.

Corollary 3: Consider Σ1 and Σ2 in Fig. 1. Suppose (10)
holds for some γ > 0. If Σ2 is VSP for (ρ, ν) and ρν2 +
ν − γ ≥ 0, then, Σ1 is passive.

Proof: Σ2 is ISP for ν, it has been shown that
〈y2, y2〉T ≥ ν2〈u, u〉T + 2βν. From (11), we obtain

χ ,− |〈u,∆y〉T |+ ρ〈y2, y2〉T + ν〈u, u〉T
≥ (ρν2 + ν − γ)〈u, u〉T + 2βρν.



Thus, if ρν2 + ν − γ ≥ 0, we obtain χ ≥ 2βρν. Σ2 is VSP
for (ρ, ν), thus 〈u, y2〉T − ρ〈y2, y2〉T − ν〈u, u〉T ≥ β. For
Σ1 with input u and output y1, we have

〈u, y1〉T = 〈u, y2〉T − 〈u,∆y〉T
≥ 〈u, y2〉T − ρ〈y2, y2〉T − ν〈u, u〉T + χ

≥ β + 2βρν , β̄.

Thus, 〈u, y1〉T ≥ β̄ and β̄ ≤ 0, i.e. Σ1 is passive.
Remark 3: It can be verified that the above results hold

when Σ1 and Σ2 exchange places. In other words, it does not
really matter whether we view Σ1 as an approximation of
Σ2 or Σ2 as an approximation of Σ1. In practice, however,
a simple model is usually used as an approximation of a
complex system, e.g. linearized model vs. nonlinear model
and lower-order model vs. higher-order model.

Remark 4: Theorem 1-3 relate passivity levels between
Σ1 and Σ2 for ISP, OSP and VSP systems. It is worth stress-
ing that these results are applicable to any approximation
methods and any system structure in general. In particular,
if we consider linear systems and PR-TBR as a particular
approximation approach, then the results in Theorem 1-3
provide a tool to trade off the ‘error’ constraint γ in (10)
as a function of variations in the passivity levels for the full-
order system Σ1 (or Σ2) and the reduced-order system Σ2

(or Σ1) (see [15] for more details).

D. Extension to QSR-dissipative Systems

In this section, we extend the results to QSR-dissipative
systems, for which the system may be not passive or have a
shortage of passivity.

Theorem 4: Consider Σ1 and Σ2 in Fig. 1. Suppose (10)
holds for some γ > 0. Let Σ2 be (Q2, S2, R2)-dissipative
and assume S1 − S2 = 0, Q1 − Q2 > 0, R1 − R2 > 0. If
there exists a constant ξ > 0 such that

λ(R1 −R2)− γ2

ξ
− 2λ1γ − b ≥ 0, (16)

λ(Q1 −Q2)− ξλ2 ≥ 0,

where b = 2 max{0, λ(−Q1)γ2}, and

λ1 ,
√
λ(ST1 S1) ≥ 0, λ2 , λ(QT1Q1) ≥ 0,

then Σ1 is (Q1, S1, R1)-dissipative.
Proof: From Cauchy-Schwarz inequality, we obtain

|〈S1u,∆y〉T | ≤
√
λ(ST1 S1)γ〈u, u〉T = λ1γ〈u, u〉T .

Also, for some ξ > 0, the following relation holds

2〈Q1y2,∆y〉T ≤
γ2

ξ
〈u, u〉T + ξλ2〈y2, y2〉T .

Define the supply rate for Σi as ri(u, yi) , 〈yi, Qiyi〉T +
2〈yi, Siu〉T + 〈u,Riu〉T , then

r1 =r2 + 〈y2, (Q1 −Q2)y2〉T + 〈u, (R1 −R2)u〉T
− 2〈y2, Q1∆y〉T + 〈∆y,Q1∆y〉T − 2〈∆y, S1u〉T
≥r2 + (λ(Q1 −Q2)− ξλ2) 〈y2, y2〉T + 〈∆y,Q1∆y〉T

+

(
λ(R1 −R2)− γ2

ξ
− 2λ1γ

)
〈u, u〉T .

Since Σ2 is (Q2, S2, R2)-dissipative, r2 ≥ 0. Two cases are
possible. If Q1 > 0, we have b = 0, 〈∆y,Q1∆y〉T ≥ 0.
Thus, from (16), we obtain r1 ≥ r2 ≥ 0. If Q1 ≤ 0, we
have b = λ(−Q1)γ2 and from (10),

〈∆y,Q1∆y〉T ≥ −λ(−Q1)γ2〈u, u〉T .

If (16) holds, we obtain r1 ≥ r2 ≥ 0. In summary, r1 ≥ 0 if
(16) is satisfied and thus Σ1 is (Q1, S1, R1)-dissipative.

Remark 5: Similar arguments can be developed when
S1 − S2 = 0, Q1 − Q2 > 0, R1 − R2 > 0 does not hold.
However, the analysis is more involved.

V. NUMERICAL EXAMPLES

In this section, we provide a few numerical examples to
illustrate the theoretical results developed in this paper. In
general, Σ1 represents the system we are interested in and
and Σ2 is an approximation of Σ1. We assume zero initial
conditions. For linear systems, the behavior of system Σi
is determined by the corresponding transfer function Gi.
The approximation method we consider here is the PR-TBR
procedure for model reduction (see e.g. [8]) and the system
models are of relaxation type.

Example 1: The original system G1 given by (17) is of
order 8. The Hankel singular values are given by Λ in
(18) and ordered as σ1 ≥ · · · ≥ σ8. Its second-order
approximation is given by

G2 =
0.5s2 + 21.96s+ 47.85

s2 + 5.8s+ 4.456
,

and the IFP(ν) for G2 (defined in [3]) can be computed as

ν = min
w∈R

Re[G2(jw)] = 0.5.

The error in the transfer functions is given as [8]

‖G1 −G2‖H∞ ≤ 2

8∑
k=3

σk = 0.0803.

Thus, γ = 0.0803 < 0.5. According to Theorem 1, G1 is ISP
for ρ̃ = ρ−γ = 0.5−0.0803 = 0.4197. This is true because
the IFP for G1 is actually 0.5, larger than ρ̃ = 0.4197.

Example 2: The original system G1 is given by

1.8s5 + 53.56s4 + 590.8s3 + 3034s2 + 7279s+ 6543

s5 + 23s4 + 203.1s3 + 861.7s2 + 1759s+ 1382
.

Its first-order approximation is given by

G2 =
1.8s+ 19.37

s+ 4.132
,



G1 =
0.5s8 + 28.6s7 + 352.2s6 + 1887s5 + 5299s4 + 8295s3 + 7190s2 + 3173s+ 542.9

s8 + 18.5s7 + 133.5s6 + 496.1s5 + 1047s4 + 1290s3 + 911.1s2 + 337.5s+ 50.18
(17)

Λ = diag{4.6357, 0.4834, 0.0375, 0.0023, 3.5× 10−4, 1.9× 10−5, 0, 0}. (18)

A =


−5 0.1 1.2 0 0 1
0.1 −3 0 −0.3 0 −1
1.2 0 −6 −2 0.5 −2
0 −0.3 −2 −4 0.4 0.5
0 0 0.5 0.4 −4 −0.8
1 −1 −2 0.5 −0.8 −8

 , B =


1
2
1
3
2

0.8

 , C = BT , D = 2. (19)

whose inverse is causal and stable. We can compute

η = ‖(G2)−1‖H∞ = 0.5556, ρ = 0.213.

The error in the transfer function G1 and G2 is given by
γ = 0.0461. Thus, γ < ρ and (13) holds because

1

η2
−
(

1 + 2(ρ− γ)
1

ρ
+ (ρ− γ)γ

)
= 0.6695 > 0.

From Theorem 2, we can conclude that G1 is OSP for ρ̃ =
ρ− γ = 0.213− 0.0461 = 0.1669. This is true because the
OFP for G1 is given by 0.211, larger than ρ̃ = 0.1669.

Example 3: The original system G1 is given by (19). Its
second-order approximation is given by

G2 =
2s2 + 42.06s+ 183.8

s2 + 11.22s+ 26.79
,

which is VSP for (ρ, ν), where ν = 1.2, ρ = 0.01. This can
be verified through Π ≤ 0 [16], where Π is given by[

ATP + PA+ ρCTC PB − (1/2CT − ρCTD)
BTP − (1/2C − ρDTC) νI + ρDTD −D

]
,

with A,B,C,D as a minimal realization of G2 and P = I .
The error in G1 and G2 is given by γ = 0.0042. For our

choice of ρ, ν, we obtain

ν2 − 2(ρ− γ)

ρ
− (ρ− γ)γ = 0.2869 > 0,

therefore (15) is satisfied. According to Theorem 3, the
original system G1 is VSP for (ρ̃, ν̃), where

ν̃ = ν − γ = 1.1958, ρ̃ = ρ− γ = 0.0058.

This can also be verified through Π ≤ 0 by setting P = I
and substituting ρ̃, ν̃ for ρ, ν, respectively.

Remark 6: Note that a higher-order reduced model will
result in smaller difference in the transfer functions or the
passivity levels. To verify Theorem 4, a simple example is
presented in [15] (not in this paper due to space limitations).

VI. CONCLUDING REMARKS

In this paper, we established conditions under which the
passivity properties of a system can be obtained by analyzing
its approximation. The approximate model is assumed to be
input/output/very strictly passive and the general result states
that if the error between the system and its approximation
is small, the original system has a guaranteed passivity level

as well. The analysis is extended to a general case when the
approximation is QSR dissipative (not necessarily passive).
The results may be interpreted as robustness properties of
passivity with respect to model uncertainties. Our results can
be used to derive variations in the passivity levels of a linear
system and its reduced-order approximation.
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