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Abstract— This paper considers state estimation for multiple
plants across a shared communication network. Each linear
time-invariant plant transmits information through the common
network according to either a time-triggered or an event-
triggered rule. Performance in terms of the communication
frequency and the estimation error covariance is analytically
characterized. The main result is that for the same average
communication rate, event-triggered schemes may perform
worse than time-triggered schemes in terms of the resulting
estimation error covariance when the effect of communication
network is explicitly considered.

I. INTRODUCTION

Event triggered sampling and transmission have emerged
as exciting alternatives to more traditional periodic, or time-
triggered, sampling and transmission [1], [2], [3]. The idea
of event triggered control is being extended is by moving
beyond the assumption that a single process needs to be
estimated or controlled [4], [5], [6]. If multiple processes
are present, then events for various processes can trigger
transmissions for more than one process at the same time.
If the communication medium is shared, this can lead to
congestion, and in turn, delays and packet losses. Realizing
this fact, recent work has considered the interaction of control
architecture and communication strategies in the setting of
event triggered control.

Of particular interest to this paper is the work in [7] that
considers a communication network being shared by a num-
ber of independent control loops. That work uses numerical
methods to compute the control performance under various
multiple access schemes such as TDMA (time division
multiple access), FDMA (frequency division multiple access)
and CSMA (carrier sense multiple access). The effect of
packet loss due to contention of different loops using event
triggered control and sharing a common medium is analyzed
in [8]; however, the analysis is based on an assumption that
the losses for different loops are independent, which does
not hold in general [9]. Moreover, the analysis is limited to
processes described by a single integrator driven by white
noise. A simple ALOHA protocol is used for modeling the
communication networks in [10]. Similar to [8], each loop
is modeled by noisy integrator dynamics. The correlation
among different loops is removed through a particular trig-
gering rule and performance characterization is obtained.
A more sophisticated strategy for conflict resolution when
two plants wish to transmit simultaneously was considered
in [9]. A Markov chain based model was introduced to
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characterize the probability of successful transmission for
each plant in steady state. The key assumption (originating
from [11]) was that the conditional probability of a busy
channel for the attempting node to transmit is independent
for each node. The correlations between various loops and
the need for joint analysis between event trigger and CRM
(collision resolution mechanism) were addressed; however,
no performance analysis of the NCS was provided.

In this paper, we consider multiple plants transmitting
information through a common network. To avoid collisions
when multiple plants wish to transmit in the event triggered
setting, we use CSMA for event trigger based on various
priority rules as in [7]. For the case when the plants transmit
according to a time triggered rule, no collisions are possible
and we use a TDMA (round-robin) transmission schedule.
Performance in terms of the communication rate and the
estimation error covariance are analytically characterized. We
show that simple time triggered scheme can outperform event
triggered scheme when multiple loops share access to the
network. This result may be of interest to designers while
moving from implementing event triggered schemes for a
single plant to a wider array of applications.

The rest of the paper is organized as follows. Section II
presents the problem formulation. Preliminary results of a
single plant in event trigger setting is presented in Section
III. The main results are presented in Section IV. Numerical
illustration is provided in Section V. Concluding remarks are
given in Section VI.

Notation: The n-dimensional real space is denoted by Rn.
The infinity norm of a vector x is denoted by |x|. For an m-
dimensional multivariate Gaussian random variable X with
mean vector µ and covariance R, we denote the general-
ization of the cumulative distribution function F function
as Pr(|X| ≤ x) , F (m,µ,R, x), where the inequality is
interpreted element-wise. Also for the truncated multivariate
Gaussian random variable obtained by truncating X between
the vectors t1 and t2, define the variance by Σ(X, t1, t2).
As with the standard F functions and truncated Gaussian
distributions, evaluation of these generalizations is done
through Gaussian integrals (see, e.g., [12, Equation (16)] for
formulas for the variance of truncated Gaussian distributions)
and is a standard feature in most statistics packages.

II. PROBLEM FORMULATION

Consider the problem setup as shown in Fig. 1 with the
following associated assumptions.

Plant and Sensor: The i-th plant (denoted by Si) is
described by the following discrete linear time-invariant



Fig. 1. Problem setup considered in this paper.

evolution:

xi(k + 1) = Aixi(k) + wi(k),

yi(k) = xi(k), (1)

where xi(k) ∈ Rn denotes the state vector, yi(k) ∈ Rm is
the output vector, wi(k) is the process noise assumed to be
white and Gaussian with zero mean and covariance Rwi

> 0.
For the analytical results in the paper, we will consider n =
m = 1, although the arguments can be easily generalized at
the expense of more notation. The initial condition of the
process xi(0) is assumed to be a Gaussian random vector
with zero mean and covariance Ri(0). The process noise
{wi(k)} and the initial condition xi(0) are assumed to be
mutually independent.

Estimator: At every time k, the ith estimator generates
a minimum mean squared error (MMSE) estimate for the
state xi(k) based on whatever information is available to it.
In a time-triggered architecture, this information is the set of
measurements until time k that have been transmitted across
the network according to a pre-designed periodic schedule.
In an event-triggered architecture, the estimate is calculated
based on any information transmitted by the comparator, as
well as the time steps at which information transmission
occurs. Denote the estimate for state xi(k) held by the ith
estimator as x̂deci (k). Since we assume that the sensors can
observe the states directly, at the ith estimator, we have

x̂deci (k) =

{
xi(k), if the ith packet received,
Aix̂

dec
i (k − 1), otherwise.

where Aix̂deci (k − 1) is the optimal estimate at the estimator
if the estimator did not receive any information at time
k [13].

Comparator: The event-triggered algorithm is imple-
mented at the comparator. We consider a simple level based
scheme. The local event for the ith plant is defined as

| ecompi (k) |> εi, (2)

where ecompi (k),xi(k) − Aix̂deci (k − 1), and the threshold
εi is a given constant.

Communication Network: The communication network
is modeled as satisfying the following assumptions. 1) The
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Fig. 2. Transition graph of the Markov Chain defined for a single plant.

network does not permit simultaneous transmissions and
the transmission delay is less than one time step accord-
ing to the process evolution [9], [10]. 2) The plant sends
information according to an off-line scheduling for time-
triggered schemes or whenever an event is generated for
event-triggered schemes. 3) When two or more plants send
information simultaneously, the network will transmit the
packet received from the plant with highest priority as
determined by a pre-assigned priority mechanism [7] and
the rest of the packets will be discarded. In this paper,
we consider three priority assignment mechanisms described
later. 4) In both the time-triggered and event-triggered setups,
the network allows every plant to transmit at least once
every T time steps to guard against the practical concerns of
synchronization, dying sensors and so on.

We are interested in the problem of analyzing the per-
formance of the system as measured by the following two
metrics: 1) The communication rate P , which is defined as
the average probability for the network to transmit informa-
tion at any time step; 2) The quality of estimate for the NCS,
which is measured by the aggregate error covariance,

J =

N∑
i=1

lim
t→∞

1

t

t∑
k=0

E
{
edeci (k)[edeci (k)]T

}
,

with edeci (k),xi(k)− x̂deci (k) as the estimation error for Si.

III. PRELIMINARY RESULTS: SINGLE PLANT ACROSS A
DEDICATED NETWORK

We drop the subscript i in this section. The information
can be successfully transmitted through the network when-
ever |ecomp(k)| > ε since there is no contention to access
the network. As shown in Fig. 2, we can define a discrete-
time discrete-state Markov chain M with T + 1 modes, the
state {X(k)}k≥0 and the transition probabilities

pij = Pr(X(k + 1) = j
∣∣X(k) = i),

such that X(k) = j implies that at time k, the last transmis-
sion occurred at time k − j. The communication frequency
and the estimation error covariance are characterized by this
Markov chain. We can obtain the following results.

Lemma 1: Consider the Markov chain M as defined



above. The transition probabilities pij are given by

pij =


1− F (n(i+1),0,Ri+1,ε1)

F (ni,0,Ri,ε1)
0 ≤ i ≤ T − 1, j = 0

1 i = T, j = 0

1− pi0 0 ≤ i ≤ T − 1, j = i+ 1

0 otherwise
(3)

Theorem 1: The average communication rate for the
event triggered algorithm described above is given by

1

1+
∑T

j=1

∏j−1
i=0 (1−pi0)

, which can be calculated using (3).

The other performance metric is the covariance of estima-
tion error Π(k) = E[edec(k)(edec(k))T ] which is given by
the following relation.

Theorem 2: The steady state average error covariance
Π = limk→∞Π(k) for the event triggered algorithm de-
scribed above is given by

Π =

T∑
j=1

j−1∏
t=0

(1− pt0)Pr(X(k) = 0)ΣM,j(j, j), (4)

where ΣM,j = Σ(Mj ,−ε1, ε1).

Together, these two results provide analytic expressions for
the communication frequency and average error covariance
given any level ε.

IV. MAIN RESULTS: MULTIPLE PLANTS SHARING THE
NETWORK

When N ≥ 2 plants transmit information over a common
network, similar to the single plant case, we can define a
discrete-time discrete-state Markov chain M with Ns =
(T + 1)T · · · (T − N + 2) states {X(k)}k≥0 ∈ RN and
the transition probabilities

Pr[X(k + 1) = m
∣∣X(k) = n]

,p(m1, · · · ,mN

∣∣n1, · · · , nN ),

such that X(k) = m implies that at time k, the last
transmission for the ith plant occurred at time k−mi. Note
that mi 6= mj for all i 6= j since the network does not permit
simultaneous transmissions. Performance of event triggered
algorithms can be characterized by this Markov chain. In the
following analysis, we concentrate on the case when N = 2
(and the arguments can be easily generalized to N > 2). At
every time step, there exist three possibilities:

• The network transmits information from S1.
• The network transmits information from S2.
• The network does not transmit any information.

This corresponds to the structure of the Markov chain. To
clarify this, consider the following example.

Example 3: Consider a NCS with N = 2 plants over
a shared medium. Assume the maximum delay that each
plant can tolerate is T = 2. We can define a Markov chain
with the following Ns = 6 modes as shown in Fig. 3. The
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Fig. 3. Illustrating example for the Markov model with T = 2.

communication rate for S1 and S2 are given as

P1 = Pr(

[
0
1

]
) + Pr(

[
0
2

]
),

P2 = Pr(

[
1
0

]
) + Pr(

[
2
0

]
),

respectively. The communication rate for the network is
then given by P0 = P1 + P2. From the mode {1, 0} and
{0, 1}, there are three possible transitions and the following
transitions are with probability 1.[

0
2

]
→
[

1
0

]
,

[
1
2

]
→
[

2
0

]
,[

2
0

]
→
[

0
1

]
,

[
2
1

]
→
[

0
2

]
.

To characterize the system performance, we need to cal-
culate the probability of each Markov mode. To this end,
define P ∈ RNs as the vector for probability of each mode
and define b = [1, 0, · · · ] ∈ RNs . The relations of the modes
are given through the following equation

∆P = b, (5)

where ∆ ∈ RNs×Ns with the first row [1, 1, · · · , 1] given by
the balance equation and the rest elements can be determined
from the structure of the Markov model.1 We can verify that
the matrix ∆ always has full rank. This guarantees that the
above equation (5) has a unique solution.

We next are characterize the matrix ∆ and evaluate
the performance of event triggered algorithms with static,
random and dynamic schedulers (subsequently) through the
Markov model defined above.

Event Trigger with Static Scheduler Without loss of
generality, we assume that S1 wins the arbitration to access
the network whenever it contends with S2.

Lemma 2: By using static scheduler, for any 0 ≤ i < T ,

p(0, i+ 1
∣∣T,i) = 1; p(i+ 1, 0

∣∣i, T ) = 1. (6)

Furthermore, for 0 < i < T , we have

p(0, i+ 1
∣∣0, i) = p

(1)
0,0, (7)

where p(1)0,0 can be calculated through (3) using {A1, w1}.
To illustrate the application of this result, let us consider

Example 3 again. We have the following relation

Pr

([
1
0

])
= Pr

([
0
1

])
p
(1)
01 p̄

(2)
10 + Pr

([
0
2

])
,

(8)

1The matrix ∆ may not be unique since the relations between the Markov
modes can be expressed in various manners, however, all these choices will
give the same probability of each mode in the end.



where p(1)01 = 1− p(1)00 and p̄(2)10 given by

p̄
(2)
10 = Pr(|A2w2(k − 1) + w2(k)| > ε).

One step further, we have the following transition,[
0
1

]
→
[

1
0

]
→
[

2
1

]
,

[
0
2

]
→
[

1
0

]
→
[

2
1

]
,

and from these transitions we have

Pr

([
2
1

])
= Pr

([
0
1

])
p
(1)
01 p̄

(2)
10 p

(1)
12 p

(2)
01

+ Pr

([
0
2

])
p̄
(1)
12 p

(2)
01 , (9)

where p(2)01 = 1− p(2)00 and

p
(1)
12 = Pr(|A1w1(k − 1) + w1(k)| < ε

∣∣|w1(k − 1)| < ε)

can be calculated through (3) by using {A2, w2} and respec-
tively {A1, w1}. p̄(1)12 is given by

p̄
(1)
12 = Pr(|A1w1(k − 1) + w1(k)| < ε).

We can obtain the following relations in a similar manner,

Pr

([
1
2

])
= Pr

([
0
1

])
p
(1)
01 p̄

(2)
12 , (10)

Pr

([
2
0

])
= Pr

([
0
1

])
p
(1)
01 p̄

(2)
10 p

(1)
12 p

(2)
00

+ Pr

([
0
1

])
p
(1)
01 p̄

(2)
12 + Pr

([
0
2

])
p̄
(1)
12 p

(2)
00 , (11)

Pr

([
0
2

])
= Pr

([
0
1

])
p
(1)
01 p̄

(2)
10 p

(1)
12 p

(2)
01

+ Pr

([
0
1

])
p
(1)
00 + Pr

([
0
2

])
p̄
(1)
12 p

(2)
01 , (12)

where p̄(2)12 = 1− p̄(2)10 .
In such a way, we represent the probabilities of all modes

through the relations with mode {0, 1} and {0, 2} as in (8)-
(12). Then from the balance equation that the sum of all
probabilities equal to 1, we can solve for probability of each
mode. More compactly, define

a = p
(1)
01 p̄

(2)
10 p

(1)
12 p

(2)
00 + p

(1)
01 p̄

(2)
12 , b = p

(1)
01 p̄

(2)
10 p

(1)
12 p

(2)
01 ,

and we obtain the probability for every individual mode from
equation (5) with ∆ given as

1 1 1 1 1 1

p
(1)
01 p̄

(2)
10 1 −1 0 0 0

p
(1)
01 p̄

(2)
12 0 0 −1 0 0

a p̄
(1)
12 p

(2)
00 0 0 −1 0

b p̄
(1)
12 p

(2)
01 0 0 0 −1

p
(1)
00 + c −1 + p̄

(1)
12 p

(2)
01 0 0 0 0


. (13)

Remark 1: For single plant case, we can easily obtain the
relations between the modes from the structure of the Markov

model. Particularly, the matrix ∆ for single plant is given as

1 1 · · · 1
p01 −1

p12 −1
p23 −1

. . . . . .
pT−1,T −1


,

and the transition probabilities are given in Lemma 1. For
the multiple case, however, it is more complicated because
of coupling of the two Markov states in one mode.

By solving (5), we obtain the probability of each Markov
mode. The following result is immediate.

Theorem 4: For T = 2, the average communication rate
for S1 under event triggered algorithm described above
is given by P1 = Pr({0, 1}) + Pr({0, 2}), and P2 =
Pr({1, 0}) + Pr({2, 0}) for S2 through P = ∆−1b with
∆ given in (13). Furthermore, the average communication
rate for the network is given by P0 = P1 + P2.

The other performance metric is the covariance of the
estimation error Πi(k) = E[edeci (k)(edeci (k))T ], which is
given by the following result.

Theorem 5: For T = 2, the steady state average error
covariance for the rth plant, Πr = limk→∞Πr(k), under
the event triggered algorithm described above is given by
Πr(k) =

∑Ns

j=1 Πr(j) from (14-20). Furthermore, the aver-
age error covariance for the NCS is given by Π = Π1 + Π2.

Proof: To calculate Π1, we use the relation Π1 =∑Ns

j=0 Π1(j), where Π1(j) corresponds to the error covari-
ance under the Markov mode j as defined above. We have

Π1(1) = 0,Π1(2) = 0, (14)

since the estimation error edec1 (k) = 0. Under the Markov
mode {1, 0}, we have

Π1(3) = Pr({0, 1})∆(1, 3)var{w1(k) | |w1(k)| < ε}
+ Pr({0, 2})var{w1(k)}.

As for single plant case, var{w1(k) | |w1(k)| < ε} is given
by Σ

(1)
M,1(1, 1). Thus, we have

Π1(3) = Pr({0, 1})∆(1, 3)Σ
(1)
M,1(1, 1) + Pr({0, 2})Rw1 .

(15)

Under the Markov mode {1, 2}, we have

Π1(4) = Pr({0, 1})∆(1, 4)Σ
(1)
M,1(1, 1). (16)

We can also obtain the error covariance under mode {2, 0},

Π1(5) = Pr({0, 2})p̄(1)12 p
(2)
00 Ξ1

+ Pr({0, 1})p(1)01 p̄
(2)
10 p

(1)
12 p

(2)
00 Ξ2

+ Pr({0, 1})p(1)01 p̄
(2)
12 Ξ3, (17)

where Ξ1 = Σ(A1w1(k−1)+w1(k),−ε, ε) can be evaluated
through Gaussian integrals, Ξ2 = Σ

(1)
M,2(2, 2), and

Ξ3 = var{A1w1(k − 1) + w1(k) | |w1(k − 1)| < ε}
= A1Σ

(1)
M,1(1, 1)AT1 +Rw1 .



Also, the error covariance under the mode {2, 1} is given by

Π1(6) = Pr({0, 2})p̄(1)12 p
(2)
01 Ξ1

+ Pr({0, 1})p(1)01 p̄
(2)
10 p

(1)
12 p

(2)
01 Ξ2. (18)

To calculate Π2, similar to calculation of Π1, we use the
relation Π2 =

∑Ns

j=0 Π2(j) with

Π2(3) = 0,Π2(5) = 0, (19)

since the estimation error edec2 (k) = 0. We can also have the
following relations

Π2(1) = Rw2
,

Π2(2) = Pr({0, 1})p(1)00 Ξ4 + Pr({2, 1})Ξ5,

Π2(4) = Pr({1, 2})Ξ4,

Π2(6) = Pr({2, 1})Σ(2)
M,1(1, 1), (20)

where Ξ4 = Σ(A2w2(k − 1) + w2(k),−ε, ε) and Ξ5 =

A2Σ
(2)
M,1(1, 1)AT2 +Rw2

. Together with the probabilities from
the previous theorem, this yields the desired expressions.

Remark 2: For single plant case, edec(k) = 0 for X(k) =
0 and X(k) = j > 0 implies the estimation error in previous
steps all less than ε. As a result, the error covariance under
the mode X(k) = j > 0 is simply

Π(j) , Pr(X(k) = j)E[edec(k)(edec(k))T | X(k) = j]

= Pr(X(k) = j)ΣM,j(j, j)

and the average estimation error covariance can be calculated
as
∑T
j=1 Π(j). For the multiple case, however, we have

to identify how it comes to the current mode, caused by
local events or network constraints, which yields different
expressions for the error covariance.

Remark 3: For T > 2, a similar Markov chain can be
defined by considering two more variables for each mode
indicating how long has each plant signaled it wants to
transmit and basically the issue is that to calculate the
transition probabilities, one has to track the past states as
well. This will result in too many Markov states and the
analysis is more involved.

Event Trigger with Random Scheduler Denote Pα as
the probability for S1 to win when contention occurs, and
1−Pα for S2. Otherwise, the plant can transmit information
successfully whenever its local event is generated.

Consider the Markov model shown in Fig. 3. As men-
tioned earlier, one has to track the past states to calculate
the transition probabilities. However, the approximation of
ignoring this past and calculating transition probability only
with the current state is close, which is verified through
simulations. Through such approximations, the matrix ∆ for
a random scheduler is given as

1 1 1 1 1 1
∆21 −1 0 0 0 1
∆31 1 −1 0 0 0

p
(1)
01 (1− p̄(2)10 ) 0 0 −1 0 0

0 0 ∆53 1 −1 0

0 0 p̄
(1)
12 (1− p(2)00 ) 0 0 −1

 ,
(21)

where ∆31 = [p
(1)
01 + p

(1)
00 (1 − Pα)]p̄

(2)
10 , ∆53 = p

(2)
00 [p̄

(1)
12 +

(1− p̄(1)12 )(1−Pα)] and ∆21 = (1−p(1)01 )(p̄
(2)
10 Pα+1− p̄(2)10 ).

By solving equation (5) with ∆ given in (21), we can
get the probability for each mode. The approximate results
calculated in this way match closely to the Monte Carlo sim-
ulations as shown in Section V. We can thus characterize the
communication rate and error covariance from this Markov
model along the same lines as for static scheduler.

Event Trigger with Dynamic Scheduler When two local
events are generated simultaneously, the network grants the
one with maximum error |ecompi (k)| to access the network
first. Thus, the network transmits information for S1 if

|ecomp1 (k)| > |ecomp2 (k)|, |ecomp1 (k)| > ε, |ecomp2 (k)| > ε,

or |ecomp1 (k)| > ε, |ecomp2 (k)| < ε. Define the conditional
probability Pd as follows,

Pd , Pr(|ecomp1 | > |ecomp2 |
∣∣|ecomp1 | > ε, |ecomp2 | > ε),

where the dependence of the errors on time k is omitted
for notational convenience. In the previous case, when both
errors exceed the predefined threshold, the probability of the
network to transmit information for S1 is given by

PαPr(|ecomp1 | > ε, |ecomp2 | > ε).

For the dynamic case, unlike Pα defined above, Pd depends
on the magnitudes of the errors of both plants and hence
the interference between the plants and the shared medium
becomes more complicated. Pd can be exactly evaluated
through Gaussian integrals. However, for simplicity, we can
use λ , Pr(|ecomp1 | > |ecomp2 |) as an approximation of
the conditional probability Pd. In fact, we have λ = 1/2.
Therefore, the communication rate can be calculated as a
special case of random access by setting Pα = λ = 1/2.
The results given by this approximation match the Monte
Carlo experiments very closely as shown in Section V.

The analysis of system performance in time triggered
setting follows.

Time Triggered Algorithm Since we do not consider the
cost of using the network, we assume the network transmits
information at every time step. For N = 2, there exist
two possible schedules: S1 = {1, 2, 1, 2 · · · } and S2 =
{2, 1, 2, 1 · · · }. If A1 = A2 and Rw1

= Rw2
, it can be

verified that the two round robin schedules S1 and S2 are
both optimal. Otherwise, one can find an optimal schedule by
evaluating the cost function for every possible schedule [7].
Therefore, for N = 2, both schedules are optimal and the
system performance can be calculated as

J =
1

2
(Rw2 +Rw1).

V. SIMULATION RESULTS

In this section, we present numerical examples to illustrate
our main results. The system model is given by (1) with
A1 = 0.8 and A2 = 0.5 and we assume wi, xi(0) (i =
1, 2) are zero-mean Gaussian random variables with unit
covariance. We set T = 2 and ε1 = ε2 = ε. For various
values of ε from 0 to 4, we evaluated system performance
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Fig. 4. Performance metrics for the NCS obtained from derived analytic
expressions and Monte Carlo simulations.
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Fig. 5. Performance metrics for the NCS using random scheduler obtained
from approximate expressions and Monte Carlo simulations.

for static, random and dynamic schedulers. We compared the
analytic results to Monte Carlo simulations of the system.

The comparison of using static scheduler is shown in
Fig. 4 for the communication rate in the top plot and in
the bottom one for the error covariance. It can be seen that
the analytic results match the Monte Carlo simulations very
closely. From the bottom plot in Fig. 4, we can see that for
ε ∈ [0.2, 1.2], the error covariance for event trigger is less
than time trigger; however, for other values of ε ∈ [0, 4],
time triggered algorithm performs better. This implies that
there is a probability of 75% for event-triggered algorithm
to perform worse than time-triggered algorithm if we choose
the threshold randomly.

The system performance by using approximate models for
random scheduler in terms of the communication rate and the
error covariance is provided in Fig. 5 with Pα = 0.7. The
results for communication rates by using dynamic scheduler
in Fig. 6 by setting Pα = 0.5. It can be seen that the results
obtained from approximate models for both cases match the
Monte Carlo simulations very closely.

VI. FINAL REMARKS

This paper studies state estimation for a NCS with multiple
plants over a shared communication network. Each plant
transmits information through the common network accord-
ing to either a time-triggered or an event-triggered rule.

0 0.5 1 1.5 2 2.5 3 3.5 4

0.4

0.5

0.6

0.7

Threshold value

C
om

m
un

ic
at

io
n 

fr
eq

ue
nc

y

Process 1

0 0.5 1 1.5 2 2.5 3 3.5 4

0.35

0.4

0.45

0.5

Threshold value

C
om

m
un

ic
at

io
n 

fr
eq

ue
nc

y

Process 2

Fig. 6. Communication rates for each plant using dynamic scheduler.

For a time-triggered algorithm combined with TDMA, each
plant uses the network according to an off-line scheduling.
For an event-triggered algorithm with CSMA, each plant is
assumed to access the network based on one of the following
scheduling strategies: static, random or dynamic schedulers.
Performance in terms of the communication rate and estima-
tion error covariance is analytically characterized. Our results
demonstrate that event-triggered schemes may preform worse
than time-triggered schemes when considering the effect of
communication strategies.
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