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Abstract— Motivated by the passivity-based nonlinear model
predictive control (NMPC) scheme reported in [1], in this paper,
we propose a robust stabilizing output feedback NMPC scheme
by using passivity and disspativity. Model discrepancy between
the nominal model and the real system is characterized by
comparing the outputs for the same excitation function, and
with this kind of characterization, we are able to compare the
supply rate between the nominal model and the real system
based on their passivity indices. Then, by introducing specific
stabilizing constraint based on the passivity indices of the
nominal model into the MPC, we show that our proposed
NMPC scheme can stabilize the real system to be controlled.

I. INTRODUCTION

Model predictive control (MPC), as an effective control
technique to deal with multi-variable constrained control
problems, has been widely adopted in a variety of industrial
applications. The success of MPC can be attributed to its ef-
fective computational control algorithm and its ability to im-
pose various constrains when optimizing the plant behavior.
Unlike the conventional feedback control, MPC allows one
to first compute an open-loop optimal control trajectory by
using an explicit model over a specified prediction horizon,
then only the first part of the calculated control trajectory is
actually implemented and the entire process is repeated for
the next prediction intervals. For extensive surveys on MPC,
one can refer to [2], [3], [4], [5] and the references therein.

Although MPC has many advantages, several issues, such
as feasibility, closed-loop stability, nonlinearity and robust-
ness still need to be studied. If either models of the plant or
constraints are nonlinear, nonlinear MPC (NMPC) schemes
are required to be used. However, it was pointed out in [6]
that NMPC does not always guarantee closed-loop stability.
Moreover, robustness of MPC is also an issue when model
uncertainty or noise appears [5]. Model uncertainty usually
exists in MPC because the model used for prediction cannot
perfectly match the real dynamics of the plant to be con-
trolled.

On the other hand, passivity theory is a powerful tool in
analysis and control of nonlinear systems [7], [8], [9], [10].
Recently, a passivity-based NMPC scheme is proposed in
[1], motivated by the relationship between optimal control
and passivity as well as by the relationship between optimal
control and NMPC. It is shown that close-loop stability
and feasibility can be guaranteed by introducing specific
passivity-based constraints.
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Motivated by [1], in this paper, we propose a robust
stabilizing output feedback NMPC scheme by using passivity
and disspativity. Instead of assuming both the nominal model
and the plant are passive systems with the same dynamics
as reported in the previous work, we assume that the model
for prediction and the actual plant dynamics are dissipative
(which are more general than passive systems since they
could be non-passive), and they do not have to possess the
same dynamics. Model discrepancy between the nominal
model and the real system is characterized by comparing the
outputs for the same excitation function. With this charac-
terization of model discrepancy, we are able to compare the
supply rate between the nominal model and the real system
based on their passivity indices [11]. Then, by introducing
specific stabilizing constraint into the MPC based on the
passivity indices of the nominal model, we can show that
the control input calculated using the nominal model can
guarantee stability of the plant to be controlled.

The rest of this paper is organized as follows: in Section
II, background material on passivity and dissipativity is
provided; in Section III, we give a brief review on the
results of passivity-based NMPC; in Section IV, model
discrepancy between the nominal model and the real system
is characterized, and conditions under which the supply rate
of the real system is bounded above by the supply rate
of the nominal model is provided; our proposed stabilizing
output feedback NMPC scheme is presented in Section V;
simulations are provided to validate our results in Section
VI; finally, conclusions are made in Section VII.

II. BACKGROUND ON DISSIPATIVE AND PASSIVE
SYSTEMS

We first introduce some basic concepts on passive and
dissipative systems. Consider the following control system,
which could be linear or nonlinear:

H :

{
ẋ(t) = f(x(t)) + g(x(t))u(t)

y(t) = h(x(t), u(t))
(1)

where x(t) ∈ X ⊂ Rn, u(t) ∈ U ⊂ Rm and y(t) ∈ Y ⊂
Rm are the state, input and output variables, respectively,
and X , U and Y are the state, input and output spaces,
respectively. The representation φ(t, t0, x0, u(t)) is used to
denote the state at time t reached from the initial state x0 at
the time t0 under the control u(t).

For an easy understanding on the concepts of dissipativity
and passivity it is convenient to imagine that system H is a
physical system with the property that its energy can only be
increased through the supply from an external source. The
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definitions below give the generalizations of such physical
properties.

Definition 2.1: (Supply Rate [12]) The supply rate
ω(t) = ω(u(t), y(t)) is a real valued function defined on
U × Y , such that for any u(t) ∈ U and x0 ∈ X and
y(t) = h(φ(t, t0, x0, u(t)), u(t)), ω(t) satisfies

∫ t

t0

|ω(τ)|dτ < ∞. (2)

Definition 2.2: (Dissipative System[12]) System H with
supply rate ω(t) is said to be dissipative if there exists a
nonnegative real function V : X → R+, called the storage
function, such that, for all t ≥ t0 ≥ 0, x0 ∈ X and u ∈ U ,

V (xt)− V (x0) ≤
∫ t

t0

ω(τ)dτ, (3)

where xt = φ(t, t0, x0, u(t)) and R+ is a set of nonnegative
real numbers. If V is C1, then we have V̇ ≤ ω(t), ∀t ≥ 0.

Definition 2.3: (Passive System [12]) System H is said
to be passive if there exists a storage function V such that

V (xt)− V (x0) ≤
∫ t

t0

uT (τ)y(τ)dτ. (4)

If V is C1, then

V̇ ≤ uT (t)y(t), ∀t ≥ 0. (5)
Definition 2.4: (IF-OFP systems [13]) System H is said

to be Input Feed-forward Output Feedback Passive(IF-OFP)
if there exists a storage function V such that

V (xt)− V (x0)

≤
∫ t

t0

[
uT (τ)y(τ)− ρyT (τ)y(τ)− νuT (τ)u(τ)

]
dτ.

(6)

for some ρ, ν ∈ R.
For the rest of this paper, we will denote an m−inputs
m−outputs dissipative system with supply rate (6) by IF-
OFP(ν, ρ)m and we will call (ν, ρ) the passivity indices of
the system.

Remark 2.5: A positive ν and a positive ρ indicate that
the system has an excess of passivity; otherwise, the system
is lack of passivity. In the case when ν > 0 or ρ > 0,
the system is said to be input strictly passive (ISP) or output
strictly passive(OSP) respectively; if either ν or ρ is negative,
then the system is non-passive. Clearly, if a system is IFP(ν)
or OFP(ρ), then it is also IFP(ν−ε), or OFP(ρ− ε), ∀ε > 0.

Lemma 2.6: [14] The domain of ρ, ν in IF-OFP system
(6) is Ω = Ω1 ∪ Ω2 with Ω1 = {ρ, ν ∈ R|ρν < 1

4}, Ω2 =
{ρ, ν ∈ R|ρν = 1

4 ; ρ > 0}.
Proof: The proof shown in this paper is a little bit

different from the one shown in [14], and it is provided in
the Appendix I.

III. PASSIVITY-BASED NMPC
Different to many other NMPC schemes, which achieve

stability by enforcing a decrease of the control Lyapunov
function (CLF) along the solution trajectory, stability is
achieved for the passivity-based NMPC scheme by using
a nonlinear input-output constraint, which is implemented

as an additional condition within the NMPC set-up. The
passivity-based NMPC scheme in [1] is given by

min
u(·)

∫ tk+Tp

tk

[
q(x(τ)) + u(τ)Tu(τ)

]
dτ

s.t.






ẋ(t) = f(x(t)) + g(x(t))u(t)

y(t) = h(x(t))

uT (t)y(t) + yT (t)y(t) ≤ 0,

(7)

where tk denotes the time instant at which state measurement
of the controlled system is available to the MPC, q(x(t)) is
a positive semi-definite function and Tp denotes the finite
time horizon for prediction. The passivity-based constraint
uT (t)y(t) + yT (t)y(t) ≤ 0 guarantees stability of the plant
to be controlled, where the dynamics of the plant is assumed
to be passive and zero state-detectable. Feasibility is also
guaranteed due to the already known stabilizing output
feedback control law u = −y. It is also shown in [1] that
as Tp → 0, the passivity-based NMPC recovers the known
stabilizing output feedback u = −y.

Motivated by the work reported in [1], we propose a
robust stabilizing output feedback NMPC scheme in this
paper. The nominal model and the real plant are assumed
to be IF-OFP, and they do not have to possess the same
dynamics. Compared to the previous work, our results can
also be applied to a class of non-passive systems, and model
discrepancy between the real system and the nominal model
can be accommodated as well. We will discuss our proposed
scheme in the following sections in details.

IV. CHARACTERIZATION OF MODEL DISCREPANCY

Consider two systems denoted by Σ and Σ̂ as shown
in Fig.1. One can view Σ̂ as an approximation of Σ, and
Σ̂ describes some behavior of interests of Σ. A common
used measure for judging how well Σ̂ approximates Σ is to
compare the outputs for the same excitation function u. We
denote the difference in the output by ∆y. The error may be
due to the modeling, linearization or model reduction, etc.
For a “good” approximation, we require that the “worst”
case ∆y over all control inputs u be small. Thus Σ̂ is a
good approximation of Σ if there exists a positive constant
γ > 0 such that

‖∆y‖t ≤ γ‖u‖t, ∀u and ∀t ≥ 0, (8)

where ‖ · ‖t denotes the truncated L2-norm update to time t.
One can conclude that the value of γ characterizes the model
discrepancy between Σ and Σ̂.

Remark 4.1: One can verify that for linear systems, γ is
an upper bound on the H∞ norm of the difference in the
transfer functions of systems Σ and Σ̂.

Assume that system Σ is IF-OFP(ν, ρ)m, and system Σ̂ is
an approximation of system Σ which is IF-OFP(ν̂, ρ̂)m. It
can be shown that under some conditions, the supply rate of
system Σ is always bounded above by the supply rate of Σ̂.
Those conditions are summarized in Lemma 4.2.



Fig. 1. Model Approximation

Lemma 4.2: Consider system Σ and system Σ̂ as shown
in Fig.1, where Σ is IF-OFP(ν, ρ)m and system Σ̂ is IF-
OFP(ν̂, ρ̂)m. If (8) holds and there exists a ξ > 0 such that

ν − ν̂ ≥ γ2

ξ
+ γ + b

ρ − ρ̂ ≥ ξρ̂2
(9)

where b = 2max{0, ρ̂γ2}, then

uT y − ρyT y − νuTu ≤ uT ŷ − ρ̂ŷT ŷ − ν̂uTu. (10)
Proof: Let ω = uT y − ρyT y − νuTu, ω̂ = uT ŷ −

ρŷT ŷ − ν̂uTu, then

ω̂ − ω = uT ŷ − ρŷT ŷ − ν̂uTu− (uT y − ρyT y − νuTu)

= −uT∆y − ρ̂yT y + 2ρ̂yT∆y − ρ̂∆yT∆y

− ν̂uTu+ ρyT y + νuTu,
(11)

with −uT∆y ≥ −γ‖u‖22 and −2ρ̂yT∆y ≥ −γ2

ξ ‖u‖22 −
ξρ̂2‖y‖22, based on (11), we can further get

ω̂−ω ≥ (ν−ν̂− γ2

ξ
−γ)‖u‖22+(ρ−ρ̂−ξρ̂2)‖y‖22−ρ̂‖∆y‖22.

(12)
So for the case ρ̂ ≤ 0, if ν − ν̂ ≥ γ2

ξ + γ and ρ − ρ̂ ≥ ξρ̂2,
then ω̂ ≥ ω; for the case ρ̂ > 0, if ν − ν̂ ≥ γ2

ξ + γ + γ2ρ̂
and ρ − ρ̂ ≥ ξρ̂2, then ω̂ ≥ ω. This completes the proof.

Remark 4.3: Lemma 4.2 provides conditions under which
the supply rate of system Σ is upper bounded by the supply
rate of Σ̂. Those conditions are related to the bound on the
model discrepancy between Σ and Σ̂ (which, in our case,
is characterized by γ), and is also related to their passivity
indices (as indicated by ν ≥ ν̂ + γ2

ξ + γ + b and ρ ≥ ρ̂ +
ξρ̂2). The conditions on the bound of passivity indices can
be relaxed if the bound on the model discrepancy is small
(i.e., γ is small, thus Σ̂ approximates the behavior of Σ well
for the same excitation function).

V. ROBUST STABILIZING OUTPUT FEEDBACK NMPC
FOR IF-OFP SYSTEMS BY USING PASSIVITY AND

DISSIPATIVITY

In this section, we first study the problem of stabilization
of IF-OFP systems by using static output feedback gains.
This result is important for us to derive the stabilizing
condition in our proposed NMPC scheme. We then propose
a NMPC scheme by using passivity and dissipativity when
there is no model discrepancy between the nominal model
and the real system. Finally, we extend this result to the case

when model discrepancy between the nominal model and the
real system can be characterized in the way as discussed in
Section IV.

A. Stabilization of IF-OFP Systems by Using Static Output
Feedback Gain

Lemma 5.1: If system H is IF-OFP(ρ, ν), then there
always exists an output feedback stabilizing control u(t) =
r(t) −Ky(t), where K ∈ R, r(t), y(t) ∈ L2, such that the
closed-loop system is L2 stable from r(t) to y(t). Moreover,
if the system is also zero-state detectable, then with r(t) = 0,
the closed-loop system is asymptotically stable.

Proof: Since u(t) = r(t)−Ky(t), we can get

V (xt)− V (x0) ≤
∫ t

0

{[
r(τ)−Ky(τ)

]T
y(τ)

− ρyT (τ)y(τ)− ν
[
r(τ)−Ky(τ)

]T [
r(τ)−Ky(τ)

]}
dτ

=

∫ t

0

[
(1 + 2νK)rT (τ)y(τ)− (K + ρ +K2ν)yT (τ)y(τ)

− νrT (τ)r(τ)
]
dτ,

(13)
thus

V (xt)− V (x0) ≤
∫ t

0

(
|1 + 2νK|‖r(τ)‖2‖y(τ)‖2

+ |ν|‖r(τ)‖22 − (K + ρ +K2ν)‖y(τ)‖22
)
dτ.

(14)

If K + ρ +K2ν > 0, then we can obtain

V (xt)− V (x0) ≤
∫ t

0

[( |1 + 2Kν|2

2(K + ρ + νK2)
+ |ν|

)
‖r(τ)‖22

− K + ρ + νK2

2
‖y(τ)‖22

]
dτ,

(15)
which further yields

∫ t

0

K + ρ + νK2

2
‖y(τ)‖22dτ

≤
∫ t

0

( |1 + 2Kν|2

2(K + ρ + νK2)
+ |ν|

)
‖r(τ)‖22dτ + V (x0),

(16)
which shows that the closed-loop system is L2 sta-
ble from r(t) to y(t). With r(t) = 0, we have∫ t
0

K+ρ+νK2

2 ‖y(τ)‖22dτ ≤ V (x0). With V (x0) being
bounded, we can further conclude that limt→∞ y(t) = 0.
Asymptotic stability follows from that the system H is zero-
state detectable. Now it remains to show that there always
exists K such that K + ρ + νK2 > 0. Assume that there
does not exist a K such that K + ρ + νK2 > 0. This can
only happen when ν < 0. Let p(K) = K + ρ + νK2, then
one can find that with ν < 0, p(K) has a global maximum
at K = − 1

2ν , and maxK{p(K)} = 4ρν−1
4ν . In view of

Lemma 2.6, with ν < 0, we have ρ ∈ Ω1, which yields
maxK{p(K)} = 4ρν−1

4ν > 0. This implies that there exists
K such that p(K) > 0 when ν < 0, which completes the
proof.

Remark 5.2: It can be shown that:



• if ν = 0, then we can choose K > −ρ;
• if ν > 0, then we can choose K > −1+

√
1−4ρν

2ν or
K < −1−

√
1−4ρν

2ν ;
• if ν < 0, we can choose −1+

√
1−4ρν

2ν < K <
−1−

√
1−4ρν

2ν .
So based on the passivity indices (ν, ρ), we can find the
range of stabilizing output feedback gains for the system.

B. Stabilizing Output Feedback NMPC for IF-OFP Systems
with no Model Discrepancy

Motivated by the passivity-based NMPC scheme reported
in [1], we extend this scheme to the more general cases,
where the systems to be controlled are IF-OFP. In view of
Lemma 5.1, we can conclude that it is always possible to
find a range of stabilizing output feedback gains for an IF-
OFP system based its passivity indices. We first consider
the case when there is no model discrepancy between the
system to be controlled and the nominal model being used
for prediction. The scheme of stabilizing output feedback
NMPC for IF-OFP systems with no model discrepancy is
given by:

min
u(·)

∫ tk+Tp

tk

[
q(x(τ)) + u(τ)TRu(τ)

]
dτ

s.t.






ẋ(t) = f(x(t)) + g(x(t))u(t)

y(t) = h(x(t), u(t))

uT (t)y(t)− ρyT (t)y(t)− νuT (t)u(t)

≤ −K+ρ+νK2

2 yT (t)y(t),

(17)

where R is a positive definite matrix, the stabilizing output
feedback gain K should be chosen based on the indices (ν, ρ)
of the system such that K + ρ + νK2 > 0, which has been
discussed in Remark 5.2.

Theorem 5.3: The output feedback NMPC scheme pro-
posed in (17) can asymptotically stabilize system (1) if it
is IF-OFP(ν, ρ)m with a continuously differentiable storage
function and is zero-state detectable.

Proof: The proof is very similar to the proof provided in
[1]. First, we need to show that the NMPC scheme proposed
in (17) for the system (1) which is IF-OFP(ν, ρ)m is always
feasible; second, we need to show that the NMPC scheme
will stabilize the system asymptotically. Actually, feasibility
is guaranteed due to the known output feedback stabilizing
control law u(t) = −Ky(t). Let V be the storage function of
system (1). With the differentiable storage function V and the
stability constraint uT (t)y(t) − ρyT (t)y(t) − νuT (t)u(t) ≤
−K+ρ+νK2

2 yT (t)y(t), one can obtain V̇ ≤ uT (t)y(t) −
ρyT (t)y(t) − νuT (t)u(t) ≤ −K+ρ+νK2

2 yT (t)y(t). Using
the fact that system (1) is zero-sate detectable, asymptotic
stability follows from the result shown in Lemma 5.1.

C. Stabilizing Output Feedback NMPC for IF-OFP Systems
with Model Discrepancy

Consider system Σ and system Σ̂ as shown in Fig.1, where
Σ̂ is an approximation of Σ. In NMPC, Σ represents the real
system to be controlled, and Σ̂ represents the nominal model

used in MPC for prediction. System Σ is IF-OFP(ν, ρ)m and
system Σ̂ is IF-OFP(ν̂, ρ̂)m. Since Σ̂ is an approximation of
Σ, (ν̂, ρ̂) is not necessarily equal to (ν, ρ). In this case, we
need to rectify the stabilizing output feedback NMPC scheme
proposed in Section V-B as:

min
u(·)

∫ tk+Tp

tk

[
q(x̂(τ)) + u(τ)TRu(τ)

]
dτ

s.t.






˙̂x(t) = f̂(x̂(t)) + ĝ(x̂(t))u(t)

ŷ(t) = ĥ(x̂(t), u(t))

uT (t)ŷ(t)− ρ̂ŷT (t)ŷ(t)− ν̂uT (t)u(t)

≤ −K+ρ̂+ν̂K2

2 ŷT (t)ŷ(t),

(18)

where {
˙̂x(t) = f̂(x̂(t)) + ĝ(x̂(t))u(t)

ŷ(t) = ĥ(x̂(t), u(t))
(19)

is the state-space model of Σ̂, and K is chosen based on
(ν̂, ρ̂) such that K + ρ̂+ ν̂K2 > 0 (see Remark 5.2 on how
to choose the range of K).

Due to possible model mismatch between Σ and Σ̂, the
control action generated through the NMPC (18) may not be
able to stabilize the real system Σ. Intuitively, stabilization
results may still hold if Σ̂ is a good approximation of Σ.
Theorem 5.4 provides sufficient conditions under which the
NMPC scheme provided in (18) can still stabilize the real
system Σ.

Theorem 5.4: Consider system Σ and system Σ̂ as shown
in Fig.1, where Σ is IF-OFP(ν, ρ)m with a continuously
differentiable storage function V and is zero-state detectable;
system Σ̂ is IF-OFP(ν̂, ρ̂)m with a continuously differen-
tiable storage function V̂ and is also zero-state detectable. If
(8) holds and there exists a ξ > 0 such that

ν − ν̂ ≥ γ2

ξ
+ γ + b

ρ − ρ̂ ≥ ξρ̂2
(20)

where b = 2max{0, ρ̂γ2}, then the NMPC scheme provided
in (18) is also a stabilizing MPC for the system Σ.

Proof: If (8) and (20) are satisfied, then in view of
Lemma 4.2, we can conclude that uT (t)y(t)−ρyT (t)y(t)−
νuT (t)u(t) ≤ uT (t)ŷ(t)−ρ̂ŷT (t)ŷ(t)−ν̂uT (t)u(t). With the
stabilization condition uT (t)ŷ(t)− ρ̂ŷT (t)ŷ(t)− ν̂uT (t)u(t)
≤ −K+ρ̂+ν̂K2

2 ŷT (t)ŷ(t) in the NMPC, we can conclude that

˙̂
V ≤ uT (t)ŷ(t)− ρ̂ŷT (t)ŷ(t)− ν̂uT (t)u(t)

≤ −K + ρ̂ + ν̂K2

2
ŷT (t)ŷ(t) ≤ 0,

(21)

and
V̇ ≤ uT (t)y(t)− ρyT (t)y(t)− νuT (t)u(t)

≤ uT (t)ŷ(t)− ρ̂ŷT (t)ŷ(t)− ν̂uT (t)u(t)

≤ −K + ρ̂ + ν̂K2

2
ŷT (t)ŷ(t) ≤ 0,

(22)

since V̂ ≥ 0 and V ≥ 0, this implies that limt→∞
˙̂
V =

0 and limt→∞ V̇ = 0 (otherwise, if limt→∞
˙̂
V < 0



and limt→∞ V̇ < 0, then V and V̂ will eventually
become negative). Observing from (21), we can directly
conclude that limt→∞ ŷ(t) = 0, and asymptotic stabil-
ity of the model Σ̂ follows from the assumption that
Σ̂ is zero-state detectable. Since 0 = limt→∞

˙̂
V ≤

limt→∞{uT (t)ŷ(t) − ρ̂ŷT (t)ŷ(t) − ν̂uT (t)u(t)} ≤ 0, with
limt→∞ ŷ(t) = 0, we can get limt→∞ u(t) = 0. With
0 = limt→∞ V̇ ≤ limt→∞{uT (t)y(t) − ρyT (t)y(t) −
νuT (t)u(t)} ≤ 0 and limt→∞ u(t) = 0, we can further
conclude that limt→∞ y(t) = 0. Asymptotic stability of the
system Σ follows from the assumption that Σ is zero-state
detectable.

Remark 5.5: One can see that the basic idea behind this
robust stabilizing NMPC scheme is that if the supply rate of
the real system is upper bounded by the supply rate of the
nominal model, then by introducing the stabilizing condition
provided in Theorem 5.4, we are able to stabilize the real
system as well. And in view of the discussions provided
in Section IV, this bound on the supply rate is related to
bound on the model discrepancy between the real systems
and the nominal models, and their own passivity indices.
This approach may appear to be conservative at the first
look, but one should be aware that the nominal model used
for prediction can always be adapted in order to meet those
conditions.

VI. EXAMPLE

Example 6.1: In this example, the dynamics of the real
system is given by

[
ẋ1

ẋ2

]
=

[
−2 0.1
0.2 1

] [
x1

x2

]
+

[
0.1
1

]
u

y = 0.1x1 + x2,

(23)

while the nominal model is given by

[ ˙̂x1
˙̂x2

]
=

[
−1 0.2
0.3 0.95

] [
x̂1

x̂2

]
+

[
0.12
0.96

]
u

ŷ = 0.12x̂1 + 0.96x̂2.

(24)

In this case, one can verify that ρ = −1.05, ν = −0.04, ρ̂ =
−1.2, ν̂ = −0.2, γ = 0.0451, which satisfy the conditions
provided in Lemma 4.2, and we choose K = 2.5 based on
Remark 5.2. By using the proposed NMPC scheme provided
in Theorem 5.4, we get the simulation results by using
JModelica[15], where the state measurements of the plant are
sent to the NMPC at every 0.5s, while the prediction period
of NMPC is 2s. In the cost function, q(x̂) = 0.5x̂2

1 + 0.3x̂2
1,

and R = 0.5. The simulation results are shown in Fig.2-
Fig.4.

Fig. 2. State of the Plant and State of the Nominal Model

Fig. 3. Output and Control Input

Fig. 4. Supply Rate and Cost Comparison

Fig.2 compares the state of the plant and the state of the
nominal model; Fig.3 shows the output and the control input
of the plant and the nominal model; Fig.4 compares their



supply rate and the cost, where ω denotes the supply rate of
the real system, and ω̂ denotes the supply rate of the nominal
model; one can see that ω is always upper bounded by ω̂.

VII. CONCLUSION

In this paper, we propose a robust nonlinear model pre-
dictive control scheme by using passivity and dissipativity.
Compared with the previous results on passivity-based MPC
reported in [1], our proposed scheme is more general because
it can also be applied to a class of non-passive systems, and
model discrepancy can be accommodated as well. By intro-
ducing specific stabilizing constraint based on the passivity
indices of the nominal model into the MPC, we show that
our proposed NMPC scheme can guarantee the stability of
the real system to be controlled.

APPENDIX I
PROOF OF LEMMA 2.6

Proof: If ρ, ν ∈ Ω̄ = Ω3 ∪ Ω4 with Ω3 = {ρ, ν ∈
R|ρν ≥ 1

4 ; ρ < 0} and Ω4 = {ρ, ν ∈ R|ρν > 1
4 ; ρ > 0},

degenerate cases occur. In case ρ, ν ∈ Ω3, multiplying (6)
with ρ < 0 and taking the square complement it follows

ρ
[
V (xt)− V (x0)

]
+

∫ t

0

[
ρ2‖y(τ)‖22 − ρuT (τ)y(τ)

+
1

4
‖u(τ)‖22 + (ρν − 1

4
)‖u(τ)‖22

]
dτ ≥ 0.

(25)

Let β1 = −ρmin{V (x0)}, then ρ
[
V (xt) − V (x0)

]
≤

−ρV (x0) ≤ β1, in view of (25), we have

β1 +

∫ t

0

[∥∥ρy(τ)− 1

2
u(τ)

∥∥2
2
+ (ρν − 1

4
)
∥∥u(τ)

∥∥2
2

]
dτ ≥ 0,

(26)
which is satisfied for any pair of (u, y), since ρν − 1

4 ≥ 0
imposing no restriction to the system’s input-output behavior.
In case ρ, ν ∈ Ω4, multiplying (6) with ρ > 0 and taking the
square complement it follows

V (xt)− V (x0) ≤ −1

ρ

∫ t

0

[∥∥ρy(τ)− 1

2
u(τ)

∥∥2
2

+ (ρν − 1

4
)
∥∥u(τ)

∥∥2
2

]
dτ ≤ 0,

(27)

which indicates that V (xt) ≤ V (x0), ∀t ≥ 0. Thus

0 = max
{
V (xt)− V (x0)

}

≤ −1

ρ

∫ t

0

[∥∥ρy(τ)− 1

2
u(τ)

∥∥2
2
+ (ρν − 1

4
)
∥∥u(τ)

∥∥2
2

]
dτ,

(28)
which can be only satisfied for u(t) = 0 since ρν − 1

4 > 0.
The proof is completed.
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systems theory: An introduction and recent results,” in Invited Lectures
of the International Congress on Industrial and Applied Mathematics
2007, R. Jeltsch and G. Wanner, Eds. European Mathematical Society
Publishing House, 2009, pp. 23–42.

[11] M. Xia, P. Antsaklis, and V. Gupta, “Passivity analysis of a system
and its approximation,” in American Control Conference, Jun. 2013.

[12] J. C. Willems, “Dissipative dynamical systems part i: General theory,”
Archive for Rational Mechanics and Analysis, vol. 45, no. 5, pp. 321–
351, 1972.

[13] R. Sepulchre, M. Jankovic, and P. Kokotovic, Constructive Nonlinear
Control. Springer-Verlag, 1997.

[14] T. Matiakis, S. Hirche, and M. Buss, “A novel input-output transfor-
mation method to stabilize networked control systems of delay,” in
Proceedings of the 17th International Symposium on Mathematical
Theory of Networks and Systems, 2006, pp. 2890–2897.

[15] J. Åkesson, K.-E. Årzén, M. Gäfvert, T. Bergdahl, and
H. Tummescheit, “Modeling and optimization with Optimica and
JModelica.org—languages and tools for solving large-scale dynamic
optimization problem,” Computers and Chemical Engineering,
vol. 34, no. 11, pp. 1737–1749, Nov. 2010.


