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On Feedback Passivity of Discrete-Time Nonlinear

Networked Control Systems with Packet Drops

Yue Wang∗, X. Meng†, Vijay Gupta†, and Panos J. Antsaklis†

Abstract

We analyze the feedback passivity of a networked control system in which the control packets may be dropped

by the communication channel. Specifically, we consider a discrete-time switched nonlinear system with relative

degree zero that switches between two modes. At the instants when the communication link transmits the packet

successfully, the system evolves in closed-loop and the increase in storage function is bounded below the energy

supplied by the control input. At the instants when a packet drop occurs, the system evolves in open loop according

to the free dynamics of the closed-loop mode and the increase in storage function is not necessarily bounded by

the supplied energy. The literature on passivity of switched systems seems to consider only the case when all the

modes are passive, which is not the case here. We prove that if the ratio of time steps for which the system evolves

in closed-loop versus in open loop is lower bounded by a critical number, the system is locally feedback passive in

a suitably defined sense. This generalized definition of feedback passivity is useful since it preserves two important

properties of classical passivity - that feedback passivity implies asymptotic stabilizability for zero state detectable

systems and that feedback passivity is preserved in parallel and negative feedback interconnections.

Index Terms

Networked Control Systems; Switched Nonlinear Systems; Passivity; Feedback Passivity; Zero Dynamics;
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I. INTRODUCTION

Networked control systems (NCS) is now an established area of research [1]. In this paper, we consider

a discrete-time nonlinear process being controlled across a communication channel that drops control

packets in a non-deterministic fashion [2], [3]. In particular, we analyze the feedback passivity of a NCS
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whose increase in storage function may be greater than the supplied energy at some time steps due to

packet drops. We assume that the process being controlled is not passive, but feedback passive, i.e., it

can be made passive through a suitable designed state feedback control law. Due to the packet drops

induced by the communication channel, the NCS evolves in two modes. At the instants when no packet

is dropped, a state feedback control input is applied through the communication link and the system

evolves in closed-loop. Because the process is feedback passive, the resulting increase in storage function

is bounded by the energy supplied by the control input. At the instants when the communication channel

erases the control packets, the system evolves in open loop according to the free dynamics of the original

process. Because the process is non-passive, the storage function may increase even though no energy

is being supplied by the control input. The problem we are interested in is to identify conditions on the

packet drop frequency so that the resulting switched system remains feedback passive.

Passivity is widely used for analyzing the stability of interconnected dynamical systems [4]–[7]. Two

properties that make passivity particularly useful are that (i) passivity implies asymptotic stability for

zero state detectable (ZSD) systems using feedback [7], and (ii) both negative feedback and parallel

interconnections of passive systems are passive. The classical notion of passivity has been extended

to consider time-delayed [8], [9], event-triggered [10], switched [11], and hybrid systems [12]–[14]. A

relaxation of passivity is the concept of feedback passivity [15], [16]. A feedback passive system is not

necessarily passive for every possible input sequence. However, it is possible to construct a control law

that is a function of both the state and an external input such that the system is passive with respect to

this external input [16]–[18].

Under the above framework, because of the packet drops, the process evolution can be modeled as a

switched system. While results are available for passivity of switched systems [11], the existing literature

seems to consider only switched systems with all passive modes. In our problem, this framework does

not hold. The main contributions of this paper are 1) to extend the concept of feedback passivity to such

a discrete-time nonlinear switched system, 2) to show that if the frequency of the time steps at which the

system evolves in open loop is bounded, the NCS is locally feedback passive, and 3) to prove that the

stabilizability and compositional properties of passivity are preserved under this generalized definition. The

closest work to our presentation is [11] from which we borrow the concept of allowing the storage function

of switched systems to increase when a particular mode is inactive. Unlike [11], we do not assume every

mode of the system to be individually passive. Also related are [19], [20] that consider the generalized
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asymptotic stability of nonlinear dynamical systems where the Lyapunov function is non-increasing only

on certain unbounded discrete time sets. Unlike the stability analysis in these works, passivity analysis is

complicated by the fact that it is an input-output property and both the inputs and the outputs are time

varying. Due to this difficulty, we analyze the passivity of the switched system based on zero dynamics

([6], [15], [16], [18]) which is the internal dynamics of the system that is consistent with constraining the

system output to zero. We show that more restrictive conditions than similar conditions in the literature

on stability of systems with packet drops are required to guarantee local feedback passivity. To relax these

conditions, we also study the concept of passivity only for any finite time, which is also compositional

and implies stability.

The organization of the paper is as follows. Section II defines the problem framework. Section III

provides the main results. Section III-A analyzes the passivity of the zero dynamics of the process.

Section III-B studies the (finite-time) feedback passivity of the switched system based on the results

from zero dynamics. Section III-C discusses the stabilizability and interconnections of feedback passive

systems. We conclude the paper in Section IV.

II. PROBLEM FORMULATION

Consider a discrete-time nonlinear system described by the equation




x(k + 1) = f(x(k),u(k))

y(k) = h(x(k),u(k))
, (1)

where k ∈ Z+ is the time index, x(k) ∈ Rn is the state, y(k) ∈ Rm is the output, and u(k) ∈ Rm is the

control input. Both f : Rn×Rm → Rn and h : Rn×Rm → Rm are in C∞. All considerations are restricted

to an open set X ×U : X ⊂ Rn,U ⊂ Rm which is a neighbourhood of the origin x∗ = 0,u∗ = 0. Let

the origin be an isolated equilibrium of (1) such that f(0,0) = 0 and h(0,0) = 0. System (1) is assumed

to be locally zero state detectable (ZSD) [21] and have local relative degree zero for all the outputs at

(x∗,u∗), i.e., ∂h(x,u)
∂u

���
(x∗,u∗)

is non-singular [18]. This is a reasonable assumption because as shown in [16],

a discrete-time nonlinear system can be rendered passive if and only if it has relative degree zero and

passive zero dynamics1.

Definition 2.1: ([16], [17]) A system of the form (1) is locally passive if there exists a positive definite

1Recent work [22] relaxes this assumption by using the coupled differential/difference representation (DDR) of the system. However, it
requires the existence of a control u such that f(x,u) is invertible. Extensions of our results to such a scenario is left as future work.
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function V̄ : x → R+, called the storage function, such that

V̄ (f(x(k),u(k)))− V̄ (x(k)) ≤ uT(k)y(k), ∀x(k) ∈ X,u(k) ∈ U, k ∈ Z+.

We assume that process (1) is not passive and hence is open loop unstable. We also assume that x does

not go out of X with packet drops; however, if the control u(k) is generated by a suitable state feedback

control, it can be turned passive. In other words, we assume that (1) is locally feedback passive.

Definition 2.2: ([15]–[18], [23]) A system of the form (1) is locally feedback passive if there exist a

positive definite storage function Ṽ : x → R+ and a function η(x,v) : X×U → U which is in C∞ and

locally regular2, such that for any sequence {v(0),v(1), · · · } (with all v(j) ∈ U), the system evolving

with the control input u(k) = η(x(k),v(k)) satisfies the inequality

Ṽ (f(x(k), η(x(k),v(k))))− Ṽ (x(k)) ≤ vT(k)y(k), ∀x(k) ∈ X,v(k) ∈ U, k ∈ Z+. (2)

Now assume that process (1) is controlled across a communication network that erases some of the

control packets transmitted across it. At the instants when the packets are successfully received, the system

evolves as described in (1). We denote the system as evolving in Mode 1 at these time steps. At the instants

when the channel erases the packets, we assume for concreteness that the actuator applies zero control

input, so that the system evolves as




x(k + 1) = f(x(k),0)

y(k) = h(x(k),0)
. (3)

We denote the system as evolving in Mode 2 at these time steps. Note that x∗ = 0 is an isolated equilibrium

for Mode 2. Also note that (3) is exactly the free dynamics of Mode 1 with u(k) = 0, ∀k. If Mode 2

is active at time k, the storage function Ṽ (x(k+ 1)) may be larger than Ṽ (x(k)) even though no energy

is being supplied through the control input. We denote the switched system evolving as in Mode 1 and

Mode 2 by S . The mode switching sequence for S is defined by the specification of the value d(k) for

every k ∈ Z+, where d(k) ∈ {1, 2} is the mode active at time k. Consider the evolution of system S over

T time steps. Let τ(T ) denote the total number of open loop time steps when S is in Mode 2 during time

period [1, T − 1], and T − τ(T ) the total number of closed-loop time steps when S is in Mode 1. Let

the ratio between the closed-loop time steps and the open loop time steps be r(T ) = T−τ(T )
τ(T ) . When the

2A nonlinear state feedback control law η(x,v) : X×U → U is locally regular if ∂η
∂v is invertible for all (x,v) ∈ X×U.
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context is clear, we will abuse the notation and suppress the dependence of τ(·) and r(·) on T . Without

loss of generality, the system is assumed to start in Mode 1 from time step k = 1. If this is not the case,

we can shift the time axis by defining a new time variable k� = k0 + k with an appropriately defined

initial condition k0.

The introduction of Mode 2 requires a new definition of feedback passivity. To see why this is true,

we consider the extreme case when d(k) = 2 identically. In this case, the set of allowed control inputs is

u(k) = 0 and no energy is supplied to the NCS. Thus, for the system to be feedback passive according to

Definition 2.2 would require the existence of a positive definite storage function Ṽ and the control input

u(k) = v(k) = 0 such that

Ṽ (f(x,0))− Ṽ (x) ≤ 0, ∀x(k) ∈ X, k ∈ Z+.

However, such a storage function would be a Lyapunov function for process (1) in open loop. Since

Mode 2 is unstable, such a storage function does not exist. Thus, the switched system S is not feedback

passive. Nevertheless, it is intuitive to consider the system to be feedback passive as long as Mode 2

occurs sufficiently infrequently. To capture this intuition, we propose new generalized definitions of local

passivity and local feedback passivity. Before we do that, we need to consider one more aspect of the

problem, which is that the set U of allowable controls may differ at different time steps. In particular, in

our problem, u(k) (and hence v(k)) can take any value in the set U if d(k) = 1, while u(k) = v(k) = 0

is the only value possible if d(k) = 2. We introduce this notion formally.

Definition 2.3: Consider a switched system S evolving as in Mode 1 given by Equation (1) and Mode

2 given by Equation (3) in which the control input u(k) ∈ U(k) at any time k. The system is locally

passive if there exists a positive definite storage function V̄ : x → R+ such that the following passivity

inequality holds:

V̄ (x(T ))− V̄ (x(1)) ≤
T−1�

k=1

uT(k)y(k), ∀x(k) ∈ X,u(k) ∈ U(k), T ∈ Z+. (4)

Definition 2.4: Consider a switched system S evolving as in Mode 1 given by Equation (1) and Mode

2 given by Equation (3) in which the control input u(k) ∈ U(k) at any time k. The system is locally

feedback passive if there exists a positive definite storage function Ṽ : x → R+ and a regular state
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feedback control law

u(k) =





η(x(k),v(k)) if d(k) = 1

v(k) = 0 if d(k) = 2
(5)

such that the following passivity inequality holds:

Ṽ (x(T ))− Ṽ (x(1)) ≤
T−1�

k=1

vT(k)y(k), ∀x(k) ∈ X,v(k) ∈ U(k), T ∈ Z+, (6)

where U(k) = U when d(k) = 1 and U(k) = 0 when d(k) = 2.

Note that a system that is locally passive (respectively locally feedback passive) according to Definition

2.1 (resp. Definition 2.2) remains locally passive (resp. locally feedback passive) according to Definition

2.3 (resp. Definition 2.4). However, the converse is not necessarily true. It is this freedom that will allow

us to define the switched system S as locally feedback passive.

In the case when the inequality (4) (respectively the inequality (6)) only satisfies when 0 < T < ∞,

the system is finite-time locally passive (reps. finite-time locally feedback passive).

With these definitions, we answer two questions in this paper. First, we prove the intuitive result that

if the system is in Mode 2 only infrequently, the switched system S should be expected to remain locally

feedback passive. More precisely, we prove that there is a critical ratio r�, such that if for every T ,

r(T ) > r�, then the system is locally feedback passive. Secondly, we show that this definition preserves

the following two properties of classical passivity:

• A feedback passive system is asymptotic stabilizable if it is ZSD.

• Parallel or negative feedback interconnections of feedback passive systems are feedback passive.

III. MAIN RESULTS

In this section, we provide the main results and brief proofs.

A. Passivity Analysis for Zero Dynamics

Note that there is considerable freedom in choosing the function η(x(k),v(k)) in Definition 2.2 for

Mode 1 as defined by Equation (1). We restrict the class of allowed functions to further satisfy v(k) =

h(x(k), η(x(k),v(k))). By the implicit function theorem [18], [24], such an η always exists since Mode

1 (Equation (1)) is assumed to have relative degree zero and η is regular. Denote the control inputs so
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obtained by ūv(k)(x(k)). For any given bounded vector sequence v(k) ∈ U, the corresponding control

inputs ūv(k)(x(k)) ∈ U are bounded. Under these inputs, system S in Mode 1 evolves as




x(k + 1) = f(x(k), ūv(k)(x(k))) � f̄v(k)(x(k))

y(k) = h(x(k), ūv(k)(x(k))) = v(k)
. (7)

This is referred as the feedback transformed system. Because h(x,u)
���
(x∗,u∗)=(0,0)

= 0, (x∗,v∗) = (0,0)

remains an isolated equilibrium of (7), i.e., f̄v(k)(x(k))
���
(x∗,v∗)=(0,0)

= 0. Note that the evolution in Mode

2 is still given by Equation (3). Denote the switched system defined by Equations (7) and (3) by S1.

In the particular case when y(k), and hence v(k), is identically zero, let the control inputs ūv(k)(x(k))

be denoted by ũ(k). Under ũ(k), Mode 1 evolves as the zero dynamics of the closed-loop system (1)




x(k + 1) = f(x(k), ũ(k)) � f̃(x(k))

y(k) = 0
(8)

Denote the switched system defined by (8) and (3) as S2. Since system S in Mode 1 as given by Equation

(1) is locally feedback passive, the zero dynamics (8) of the closed-loop mode are also locally passive

and hence stable (see [16, Theorem 7.3] and [15, Remark 2.5]). Furthermore, since for system S2, either

the input (in Mode 2 which evolves as (3)) or the output (in Mode 1 which evolves as (8)) is identically

zero at every time step, Definition 2.3 implies that system S2 is locally passive if there exists a positive

definite storage function V (x(·)) such that the following inequality holds:

V (x(T ))− V (x(1)) ≤
T−1�

k=1

uT(k)y(k) = 0, ∀x ∈ X, T ∈ Z+. (9)

From now on, we also assume that the determinant of the Hessian matrix of V (x) in (9) at x = 0 is

non-zero.

Our first result shows that there is a lower bound on the frequency of the steps at which system S2

evolves in closed-loop as defined by Equation (8) that guarantees S2 to be locally passive.

Lemma 3.1: Consider the switched system S2 defined by Equations (8) and (3). Assume there exist a

positive definite storage function V (x(·)) and constants ζ > 1 and 0 < σ ≤ 1 such that

V (f(x(k),0)) ≤ ζV (x(k)) (10)

V (f̃(x(k))) ≤ σV (x(k)).
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If for any time T ∈ Z+, the ratio r(T ) satisfies

r(T ) ≥ T ln ζ − ln σ

(1− T ) ln σ
(11)

and x(T ) ∈ X irrespective of d(1), · · · , d(T − 1), then system S2 is locally passive according to

Definition 2.3.

Proof: The inequalities (10) and (11) imply V (x(T )) ≤ σT−τ−1ζτV (x(1)) ≤ V (x(1)).

Remark 3.1: The choice of ζ and σ determines how conservative the condition (11) is. The minimum

ζ and σ that satisfy the inequality (10) will result in the least conservative bound.

Remark 3.2: Note that condition (11) does not require a constant ratio r(T ) and the right hand side is

an increasing function of T . Thus, the condition on the frequency of Mode 2 becomes progressively less

stringent.

We now prove an intuitive result on the effect of increasing r(T ).

Corollary 3.1: Consider system S2 defined by Equations (8) and (3) with the conditions (10) being

satisfied. If the system is locally passive with a ratio r(T ), it is locally passive with a ratio r�(T ) > r(T ).

Thus, decreasing the frequency of open loop time steps preserves passivity.

Proof: Let the number of open loop time steps with the ratio r(T ) (r�(T )) be τ(r, T ) (τ(r�, T )), we

have V (x(T )) ≤ σT−τ(r�,T )−1ζτ(r
�,T )V (x(1)) ≤ σT−τ(r,T )−1ζτ(r,T )V (x(1)) ≤ V (x(1)).

Remark 3.3: Define the sequence of time steps {ki} such that k0 = 1 and ki = the least time > ki−1

such that d(ki − 1) = 2 and d(ki) = 1. Assume system S2 is locally passive. Let τ be the total number

of time steps at which the system evolves in open loop and tc = T − τ be the number of time steps at

which the system evolves in closed loop during the time period [k0, ki]. According to Remark 3.2, r(T )

increases with T in (11). Therefore, in the time period [ki, ki+1], let τ � be the number of open loop time

steps and t�c be the number of closed-loop time steps, we must have t�c
τ � ≥

tc
τ . Following similar derivation

of Corollary 3.1, since S2 is locally passive in the time period [k0, ki], it is also locally passive in the

time period [ki, ki+1].

B. Feedback Passivity Analysis for the Original System

Lemma 3.2: Consider a positive definite storage function V (x(·)) as a storage function for the zero

dynamics (8) of the closed-loop system (1). Assume that V (f̃(x(k))) ≤ σV (x(k)) for some 0 < σ ≤ 1

according to (10) and that det{Hess(σV (x)− V (f(x, 0)))|x=0} �= 0. Then, there exists a constant a > 0



9

such that Ṽ = aV, a ∈ (0, â) is a storage function for the feedback transformed system (7) and

Ṽ (f̄v(k)(x(k)))− σṼ (x(k))− σvT (k)v(k) ≤ 0 (12)

with the equality holding at (x∗,v∗) = (0,0).

Remark 3.4: The original proof is presented in [18] for the case when σ = 1. The detailed proof for

this generalized result can be found in the Appendix for any 0 < σ ≤ 1.

Theorem 3.1: Let the switched system S2 defined by Equations (8) and (3) satisfy the inequalities (10)

and (11) such that S2 is locally passive. Furthermore, let the switched system S defined by Equations (1)

and (3) evolve from the same initial condition and with the same mode switching signal as S2. Denote

by M > 0 the number of maximum consecutive open loop operations of system S2 that occur according

to dynamics (3). Finally let det{Hess(σV (x)−V (f(x, 0)))|x=0} �= 0 with some 0 < σ ≤ 1 and V be the

storage function for S2. If ζMσ ≤ 1, then system S is locally feedback passive.

Proof: Here we summarize the proof and a detailed explanation can be found in the Appendix. The

proof is in two steps. We use mathematical induction to prove that

Ṽ (x(T )) ≤ σT−τ(T )−1ζτ(T )Ṽ (x(1)) + ζMσ
�

k:d(k)=1
k≤T−1

vT(k)v(k), (13)

holds for all T ≥ 2. From condition (11), we have σT−τ(T )−1ζτ(T ) ≤ 1. By assumption, we have ζMσ ≤ 1.

Therefore, the inequality (13) becomes

Ṽ (x(T )) ≤ Ṽ (x(1)) +
�

k:d(k)=1
k≤T−1

vT(k)v(k).

This indicates that system S is locally feedback passive.

Remark 3.5: Notice that the condition ζMσ ≤ 1 is more restrictive than similar conditions in the

literature on stability of systems with packet drops [25], [26]. We conjecture that condition (11) is enough

for passivity. However, the analysis is hampered by the fact that passivity is an input-output property and

conditions (10) impose restrictions only on the state. As a partial proof of the conjecture, we present the

following result that shows that if we restrict Definitions 2.3 and 2.4 to hold only for all finite T , then (11)

is a sufficient condition. Note that this concept of passivity is also compositional (as shown in Theorem

3.4) and implies Lyapnov stability (as shown in Theorem 3.3).

Theorem 3.2: Let the switched system S2 defined by Equations (8) and (3) satisfy the inequalities (10)
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and (11) such that S2 is locally passive. Furthermore, let the switched system S defined by Equations (1)

and (3) evolve from the same initial condition and with the same mode switching signal as S2. Then system

S is finite-time locally feedback passive in the sense that (6) is satisfied for all x(k) ∈ X,v(k) ∈ U(k)

and any finite T .

Proof: To prove that system S is finite-time locally feedback passive, i.e. the inequality (6) holds

for any 0 < T < ∞ in a neighborhood of (x∗,v∗), we proceed as follows. First, if d(k) = 1 for all

1 ≤ k ≤ T − 1, then the system S operates in Mode 1 at every time step and thus (6) holds trivially.

Second, if v(k) = 0 at every time when d(k) = 1, then the system S is equivalent to the system S2 and

by assumption, (6) is satisfied. Other than these two cases, we will show that Ṽ (x(·)) = aV (x(·)) (with

a > 0) is a storage function for system S (Recall that V (x(·)) is the storage function for system S2).

Since we impose y(k) = v(k) at every time when d(k) = 1, proving (6) is equivalent to prove that in a

neighborhood of (x∗,v∗), the inequality

Ṽ (x(T ))− Ṽ (x(1)) ≤
�

k:d(k)=1
k≤T−1

vT(k)v(k), ∀x ∈ X,v ∈ U, T ∈ Z+. (14)

holds for all finite T .

The proof is in two steps.

1) First, we show that it is sufficient to prove that for an appropriate a > 0, the inequality

a(ζ − 1)
�

k:d(k)=2
k≤T−1

V (x(k)) ≤
�

k:d(k)=1
k≤T−1

φ(x(k),v(k)). (15)

holds for all finite T . Then, assuming (15), we show that we can always choose a constant a > 0

such that Ṽ (x(·)) is a storage function for system S . To prove that (15) holds, we proceed as

follows. Two cases are possible.

a) If x(k) = 0 for all k such that d(k) = 2, (15) holds for any a > 0.

b) For all other cases, there exists at least one time step K < T such that d(K) = 2 and x(K) �= 0.

Since T is finite, there exists M > 0, such that

0 < V (x(K)) ≤
�

k:d(k)=2
k≤T−1

V (x(k)) < M < ∞. (16)



11

Define the function φ(x(k),v(k)) as

φ(x(k),v(k)) � vT(k)v(k) + Ṽ (x(k))− Ṽ (f̄v(k)(x(k)))

=
m�

i=1

v2i (k) + Ṽ (x(k))− Ṽ (f̄v(k)(x(k))). (17)

We use the following property of φ(x(k),v(k)) that is proved in Lemma 3.2: if k : d(k) = 1,

φ(x(k),v(k)) has a local minimum at (x∗,v∗) = (0,0) with value 0.

Since we exclude the special case that v(k) = 0 at every time when d(k) = 1, there must be

some K � < T such that v(K �) �= 0 and d(K �) = 1. Thus, we obtain

�

k:d(k)=1
k≤T−1

φ(x(k),v(k)) ≥ φ(x(K �),v(K �)) > 0. (18)

Define ã � φ(x(K�),v(K�))

(ζ−1)M
> 0. Now we choose a ∈ (0,min{â, ã}) where â is defined in Lemma

3.2, so that the inequality (15) is satisfied.

2) Now, if (15) holds, we can show that Ṽ is a storage function for S as follows. For any k such

that d(k) = 2, systems S and S2 evolve in an identical manner as given by Equation (3). From the

inequality (10), we obtain at these time steps

Ṽ (f(x(k),0))− Ṽ (x(k)) = a (V (f(x(k),0))− V (x(k))) ≤ a(ζ − 1)V (x(k)) (19)

so that

�

k:d(k)=2
k≤T−1

�
Ṽ (f(x(k),0))− Ṽ (x(k))

�
≤ a(ζ − 1)

�

k:d(k)=2
k≤T−1

V (x(k)). (20)

Now note that

�

k:d(k)=2
k≤T−1

�
Ṽ (f(x(k),0))− Ṽ (x(k))

�
+

�

k:d(k)=1
k≤T−1

�
Ṽ (f̄v(k)(x(k)))− Ṽ (x(k))

�
= Ṽ (x(T ))− Ṽ (x(1)),

so that according to the inequalities (20) and (15), we have

Ṽ (x(T ))− Ṽ (x(1)) ≤
�

k:d(k)=1
k≤T−1

vT(k)v(k)

if a is chosen in the interval (0,min(â, ã)). At this point, we have shown that the inequality (6)
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holds for any 0 < T < ∞ in a neighborhood of (x∗,v∗) and therefore system S is finite-time locally

feedback passive.

C. Stability and Interconnections of Feedback Passive Systems

We now prove that the definition of feedback passivity we have introduced in Definition 2.4 for both

finite and infinite T preserves some of the important properties of classical feedback passivity.

Theorem 3.3: If the switched system S defined by Equations (1) and (3) is locally feedback passive

according to Definition 2.4 and locally ZSD, then the system is locally asymptotically stabilizable with

a suitable state feedback control law. If Definition 2.4 holds merely for all finite T , then the system is

locally stabilizable with a suitable state feedback control law.

Proof: Because system S is locally passive, choose v(k) = 0, ∀k when d(k) = 1, the inequality

(14) reduces to Ṽ (x(T )) − Ṽ (x(1)) ≤ 0, ∀x(·) ∈ X. Following Remark 3.3, we obtain Ṽ (x(ki+1)) −

Ṽ (x(ki)) ≤ 0, ∀i = 0, 1, · · · , ∀x ∈ X. Then Ṽ (x(·)) is a Lyapunov function for system S . The asymptotic

stability for the case when T is infinite follows from ZSD.

Theorem 3.4: If two switched nonlinear systems S1 and S2 are both locally feedback passive according

to the inequality (6) in Definition 2.4, then their parallel and negative feedback interconnections (as defined

in Figure 1) are both locally feedback passive.

(a) (b)

Fig. 1. (a) Parallel, and (b) negative feedback interconnections for two locally feedback passive switched nonlinear systems S1 and S2.
Note that the switches marked with a same notation (si), i = 1 or 2 switch simultaneously.

Proof: For the parallel interconnection, the extrinsic control sequence v(k) is the same for both

systems (S1 and S2) and the output y(k) = y1(k) + y2(k). Consider the storage function Ṽ (x(k)) =
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Ṽ1(x1(k)) + Ṽ2(x2(k)), we have

Ṽ (x(T ))− Ṽ (x(1)) ≤
T−1�

k=1

vT(k)y(k). (21)

Similarly, for the negative feedback interconnection, the control inputs and outputs are as r1(k) = v1(k)+

y2(k) and r2(k) = v2(k)− y1(k). We have

Ṽ (x(T ))− Ṽ (x(1)) ≤
T−1�

k=1

(rT
1(k)y1(k) + rT

2(k)y2(k)). (22)

Note that in Theorem 3.4, if (6) holds for S1 and S2 only for 0 < T < ∞, then the inequalities (21) and

(22) for the interconnected system holds for 0 < T < ∞ as well.

IV. CONCLUSIONS

We analyze feedback passivity for a NCS with packet drops. We model it as a discrete-time switched

nonlinear system that switch between two modes - an uncontrolled mode in which the system evolves

open loop, and a controlled mode in which a control is applied to the system. A new generalized definition

of feedback passivity is given for such a system and it is shown that if the ratio of the time steps for

which the system evolves closed-loop versus the time steps for which the system evolves open loop is

bounded above a critical ratio, then the system is locally feedback passive in this sense. We show that

this generalized definition is useful since it preserves the stabilizability and compositional properties of

classical passivity.
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APPENDIX

Proof for Lemma 3.1.

Proof: For any time T ∈ Z+, (10) implies that V (x(T )) ≤ σT−τ−1ζτV (x(1)). Since (11) implies

σT−τ−1ζτ ≤ 1, we obtain that V (x(T )) ≤ V (x(1)) for any T , if the conditions (10) in the theorem are

met. From Definition 2.3, system S2 is locally passive.

Proof for Corollary 3.1.

Proof: At time T ∈ Z+, denote the number of time steps for which the system evolves open loop

with the ratio r(T ) by τ(r, T ) and with the ratio r�(T ) by τ(r�, T ). Conditions (10) yield V (x(T )) ≤

σT−τ(r,T )−1ζτ(r,T )V (x(1)) and V (x(T )) ≤ σT−τ(r�,T )−1ζτ(r
�,T )V (x(1)). Since the system is locally passive

with ratio r(T ), σT−τ(r,T )−1ζτ(r,T ) ≤ 1. The proof follows by noting that τ(r�, T ) < τ(r, T ) and thus,

σT−τ(r�,T )−1ζτ(r
�,T ) < σT−τ(r,T )−1ζτ(r,T ) ≤ 1.

Proof for Lemma 3.2.

Proof: Define the function

φ(x(k),v(k)) � σvT(k)v(k) + σṼ (x(k))− Ṽ (f̄v(k)(x(k)) = σ
m�

i=1

v2i (k) + σṼ (x(k))− Ṽ (f̄v(k)(x(k)).(23)

For notational convenience, we suppress the dependence on k and denote the pair (x∗,v∗) by (0,0). Thus,

consider the first order derivatives of φ(x,v) at (0,0). We have for i = 1, · · · , n, r = 1, · · · ,m,

∂φ(x,v)

∂xi

�����
x∗=0,v∗=0

=

�
σ
∂Ṽ

∂xi
−

n�

h=1

∂Ṽ

∂f̄v
h

∂f̄v
h (x)

∂xi

�

(0,0)

∂φ(x,v)

∂vr

�����
x∗=0,v∗=0

=

�
2σvr −

n�

h=1

∂Ṽ

∂f̄v
h

∂f̄v
h (x)

∂vr

�

(0,0)

.

The storage function V (x(k)), and hence the function Ṽ (x(k)) = aV (x(k)), has a local minimum at

x∗ = 0 because V is positive definite with V (x) = 0 if and only if x = 0. Moreover, the origin is an

isoalated local equilibrium of the system; thus, at x∗ = v∗ = 0, f̄v(k)(x(k)) = 0. Combining these facts,
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we see that

∂φ(x,v)

∂xi

�����
x∗=0,v∗=0

= 0, i = 1, · · · , n,

∂φ(x,v)

∂vr

�����
x∗=0,v∗=0

= 0, r = 1, · · · ,m.

Next, we check the elements of the Hessian matrix of φ(x,v) at (0,0). We have for i, j = 1, · · · , n and

r, s = 1, · · · ,m,

∂2φ(x,v)

∂xj∂xi

�����
x∗=0,v∗=0

= a

�
σ

∂2V

∂xj∂xi
−

n�

h,l=1

∂2V

∂f̄v
h ∂f̄

v
l

∂f̄v
h

∂xi

∂f̄v
l

∂xj

�

x∗=0,v=∗0

∂2φ(x,v)

∂vr∂xi

�����
x∗=0,v∗=0

= −a

�
n�

h,l=1

∂2V

∂f̄v
h ∂f̄

v
l

∂f̄v
h

∂xi

∂f̄v
l

∂vr

�

x∗=0,v∗=0

∂2φ(x,v)

∂vs∂vr

�����
x∗=0,v∗=0

= 2σδrs − a

�
n�

h,l=1

∂2V

∂f̄v
h ∂f̄

v
l

∂f̄v
h

∂vr

∂f̄v
l

∂vs

�

x∗=0,v∗=0

.

Denote φ̃(x(k)) = φ(x(k),0) = a
�
σV (x(k))− V (f̄0(x(k)))

�
, so that

∂2φ(x,v)

∂xj∂xi

�����
x∗=0,v∗=0

=
∂2φ̃(x)

∂xj∂xi

�����
x∗=0

. (24)

The zero dynamics (8) are locally passive and hence satisfy the passivity inequality (9). Because f̄0(x(k)) =

f̃(x(k)), the term φ̃(x(k)) has a local minimum at x∗ = 0. By the assumption that det{Hess(σV (x) −

V (f(x, 0)))|x∗=0} �= 0 for some 0 < σ ≤ 1, we obtain that the eigenvalues of the Hessian matrix of φ̃(x)

at x∗ = 0 are all positive. Denote these eigenvalues by λi, ∀i = 1, 2, · · · , n. Furthermore, the Hessian

matrix of φ̃(x) at x∗ = 0 is symmetric and can be diagonalized. Thus, with an appropriate choice of
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coordinates, the Hessian matrix of φ(x,v) at (0,0) can be evaluated to be of the form




aλ1 · · · 0 ab11 · · · ab1m
... . . . ...

... . . . ...

0 · · · aλn abn1 · · · abnm

ab11 · · · abn1 2σ + ac11 · · · ac1m
... . . . ...

... . . . ...

ab1m · · · abnm acm1 · · · 2σ + acmm





(25)

Now, we apply [18, Lemma 12] which states that for λi > 0 and ∀a = (0, â), â = minj auj where

auj = min

�
1,

2jσjλ1 · · ·λn − �

|α1|+ · · ·+ |αj|

�
, j = 1, · · · ,m (26)

with 0 < � � 1 and αl, l = 1, · · · , j being some constants related to λi, bil and crl, i = 1, · · · , n, r =

1, · · · , j, l = 1, · · · , j, the determinant of matrix (25) is greater than zero. Sylester’s criterion now

readily yields that the Hessian matrix of φ(x,v) at (0,0) as evaluated in (25) is positive definite.

Therefore, φ(x,v) has a local minimum at (0,0). Because the storage function V is positive definite

and f̄v(k)(x(k))
���
x∗=0,v∗=0

= 0, we obtain φ(x,v) = 0 at (0,0).

Proof for Theorem 3.1.

Proof: The proof is in two steps. First, we prove that (13) holds for all T ≥ 2. We use mathematical

induction. Recall that τ(T ) denotes the total number of open loop time steps when S is in Mode 2 during

the time period [1, T − 1]. For T = 2, by assumption we have d(1) = 1. Thus, τ(T ) = 0 and from (12),

it follows that Ṽ (x(2)) ≤ σṼ (x(1)) + σvT(1)v(1). Since ζM ≥ 1, the inequality (13) holds in this case.

Next, assume that (13) holds for T . Two cases are possible at time T :

• If d(T ) = 1, then τ(T + 1) = τ(T ). From (12), we have Ṽ (x(T + 1)) ≤ σṼ (x(T )) + σvT(T )v(T ).

From (13), we obtain that

Ṽ (x(T + 1)) ≤ σT+1−τ(T )−1ζτ(T )Ṽ (x(1)) + ζMσ2
�

k:d(k)=1
k≤T−1

vT(k)v(k) + σvT(T )v(T ).
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Since ζMσ2 ≤ ζMσ, σ ≤ ζMσ and τ(T + 1) = τ(T ), we have

Ṽ (x(T + 1)) ≤ σT+1−τ(T+1)−1ζτ(T+1)Ṽ (x(1)) + ζMσ
�

k:d(k)=1
k≤(T+1)−1

vT(k)v(k),

i.e., the inequality (13) holds for T + 1 as well if d(T ) = 1.

• If d(T ) = 2, then Ṽ (x(T + 1)) ≤ ζṼ (x(T )) according to condition (10). By assumption that the

number of consecutive open loop steps is bounded by M , hence there exists a time step t such that

d(t) = 1 and t ∈ [T −M,T −1]. Thus, according to (12), Ṽ (x(t+1)) ≤ σṼ (x(t))+σvT(t)v(t). Let

b(m) denote the total number of open-loop time steps when S is in mode 2 during the time interval

[t, t+m], where T = t+m. We prove that for any m ∈ [1,M ]

Ṽ (x(T + 1)) = Ṽ (x(t+m+ 1)) ≤ ζb(m)σm+1−b(m)Ṽ (x(t)) + ζb(m)σ
t+m�

k=t
d(k)=1

vT(k)v(k). (27)

We also prove the inequality (27) by mathematical induction.

1) When m = 1, if d(t+ 1) = 1, according to (12), we have

Ṽ (x(t+ 2)) ≤ σṼ (x(t+ 1)) + σvT(t+ 1)v(t+ 1)

≤ σ2Ṽ (x(t)) + σ2vT(t)v(t) + σvT(t+ 1)v(t+ 1)

≤ σ2Ṽ (x(t)) + σ
�
vT(t)v(t) + vT(t+ 1)v(t+ 1)

�
.

Therefore, the inequality (27) is satisfied with b(m) = 0.

If d(t+ 1) = 2, according to condition (10) and the inequality (12), we have

Ṽ (x(t+ 2)) ≤ ζṼ (x(t+ 1)) ≤ ζ
�
σṼ (x(t)) + σvT(t)v(t)

�
.

Therefore, the inequality (27) is satisfied with b(m) = 1. Hence, the inequality (27) is satisfied

when m = 1.
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2) Assume that (27) holds for m− 1, i.e.,

Ṽ (x(t+m)) ≤ ζb(m−1)σm−b(m−1)Ṽ (x(t)) + ζb(m−1)σ
t+m−1�

k=1
d(k)=1

vT(k)v(k). (28)

If d(t+m) = 1, we have b(m− 1) = b(m). From (12) and (28), it follows that

Ṽ (x(t+m+ 1)) ≤ σṼ (x(t+m)) + σvT(t+m)v(t+m)

≤ ζb(m−1)σm+1−b(m−1)Ṽ (x(t)) + ζb(m−1)σ2
t+m−1�

k=1
d(k)=1

vT(k)v(k)

+ σvT(t+m)v(t+m). (29)

Since ζb(m−1)σ2 = ζb(m)σ2 ≤ ζb(m)σ and σ ≤ ζb(m)σ, from (29), we obtain

Ṽ (x(t+m+ 1)) ≤ ζb(m)σm+1−b(m)Ṽ (x(t)) + ζb(m)σ
t+m�

k=1
d(k)=1

vT(k)v(k),

i.e., the inequality (27) holds for m if d(t+m) = 1.

If d(t+m) = 2, we have b(m) = b(m− 1)+ 1. According to condition (10) and the inequality

(28), we have

Ṽ (x(t+m+ 1)) ≤ ζṼ (x(t+m))

≤ ζb(m−1)+1σm−b(m−1)Ṽ (x(t)) + ζb(m−1)+1σ
t+m−1�

k=1
d(k)=1

vT(k)v(k),

= ζb(m)σm+1−b(m)Ṽ (x(t)) + ζb(m)σ
t+m�

k=1
d(k)=1

vT(k)v(k),

i.e., the inequality (27) holds for m if d(t+m) = 2. Hence, the inequality (27) holds for both

d(t+m) = 1 and d(t+m) = 2 where 1 < m ≤ M .

3) Therefore, by mathematical induction, the inequality (27) is satisfied for all m ∈ [1,M ].
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By induction, the inequality (13) holds for all time steps before T . Hence, we have

Ṽ (x(t)) ≤ σt−τ(t)−1ζτ(t)Ṽ (x(1)) + ζMσ
�

k:d(k)=1
k≤t−1

vT(k)v(k). (30)

Substitute (30) into (27), we obtain

Ṽ (x(T + 1)) ≤ ζb(m)σm+1−b(m)σt−τ(t)−1ζτ(t)Ṽ (x(1)) + ζb(m)σm+1−b(m)ζMσ
�

k:d(k)=1
k≤t−1

vT(k)v(k)

+ ζb(m)σ
t+m�

k=t
d(k)=1

vT(k)v(k). (31)

Since τ(t) + b(m) = τ(T + 1), b(m) ≤ m ≤ M, it follows that




ζb(m)+τ(t)σm+1−b(m)+t−τ(t)−1 = ζτ(T+1)σT+1−τ(T+1)−1

ζb(m)+Mσm+1−b(m)σ ≤ ζ2Mσm+2−b(m) ≤ ζ2Mσ2
.

Hence, the inequality (31) becomes

Ṽ (x(T + 1)) ≤ ζτ(T+1)σT+1−τ(T+1)−1Ṽ (x(1)) + ζ2Mσ2
�

k:d(k)=1
k≤t−1

vT(k)v(k) + ζMσ
t+m�

k=t;
d(k)=1

vT(k)v(k).

By assumption that ζMσ ≤ 1, it follows that ζ2Mσ2 = (ζMσ)2 ≤ ζMσ. Therefore, we have

Ṽ (x(T + 1)) ≤ ζτ(T+1)σT+1−τ(T+1)−1Ṽ (x(1)) + ζMσ
�

k:d(k)=1
k≤(T+1)−1

vT(k)v(k),

i.e., the inequality (13) holds for T + 1 as well if d(T ) = 2.

Hence, for both cases (either d(T ) = 1 or d(T ) = 2) we prove that (13) holds with T +1. From condition

(11), we have σT−τ(T )−1ζτ(T ) ≤ 1, and by assumption ζMσ ≤ 1. Therefore, the inequality (13) becomes

Ṽ (x(T )) ≤ Ṽ (x(1)) +
�

k:d(k)=1
k≤T−1

vT(k)v(k).
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This completes the proof.

Proof for Theorem 3.3.

Proof: Since System S is locally passive, we can follow the proof of Theorem 3.1 and construct

a control law u(k) as defined by Equation (5) that guarantees that for any v(k) ∈ U, y(k) = v(k) if

d(k) = 1 and the inequality (14) holds.

Now, we choose v(k) = 0, ∀k. Thus, the control law is given by

u(k) =





η(x(k),0) if d(k) = 1

0 if d(k) = 2
,

so that y(k) = 0 if d(k) = 1. In this case, the inequality (14) reduces to

Ṽ (x(T ))− Ṽ (x(1)) ≤ 0, ∀x(·) ∈ X, ∀T.

In other words, there exists a function η and a positive definite storage function Ṽ (x(·)) = aV (x(·)) such

that the inequality (14) holds.

Recall the sequence of time steps {ki} such that k0 = 1 and ki = the least time > ki−1 such that

d(ki − 1) = 2 and d(ki) = 1. Choosing T = k1 yields in particular Ṽ (x(k1))− Ṽ (x(1)) ≤ 0, ∀x(·) ∈ X.

Following Remark 3.3, we can repeat the same argument starting from time ki with x(ki) as the initial

condition. Thus we obtain the series of inequalities

Ṽ (x(ki+1))− Ṽ (x(ki)) ≤ 0, ∀i = 0, 1, · · · , ∀x ∈ X.

When T is infinite, since Mode 1 is active infinitely often, {ki} is an infinite sequence. Then Ṽ (x(·)) is a

Lyapunov function for system S which implies that the system is Lyapunov stable with the given control

law. The asymptotic stability then follows from ZSD. Observe that all the trajectories of the closed-loop

system eventually approach the invariant set I = {x ∈ Rn : V (x(k + 1)) = V (x(k))}. Since y(k) = 0

and by ZSD limk→∞ x(k) = 0. The system is thus locally asymptotically stable with the given control

law.

When T is finite, the sequence {ki} is also finite and depends on T . However, since the number of time
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steps in Mode 2 is bounded and the ratio between Mode 1 and 2 is given by (11) , the state will always

be bounded in a neighborhood of the origin and also satisfies the inequality Ṽ (x(ki+1)) − Ṽ (x(ki)) ≤

0, ∀i = 0, 1, · · · , ∀x ∈ X. This implies that the system is stable with the given control law.

Proof for Theorem 3.4.

Proof: If System S1 (respectively S2) is locally feedback passive, then there exist a control law

u1(k) = η1(x1(k),v1(k)) when d1(k) = 1 and u1(k) = 0 when d1(k) = 2 (resp. u2(k) = η2(x2(k),v2(k))

when d2(k) = 1 and u2(k) = 0 when d2(k) = 2) and a positive definite storage function Ṽ1(x1(·))

(resp. Ṽ2(x2(·))) such that the inequality (6) is satisfied for any sequence u(k) ∈ U(k). For the par-

allel interconnection, the extrinsic control sequence v(k) is the same for both systems and the output

y(k) = y1(k) + y2(k). Consider the control law u(k) = [uT
1(k) uT

2(k)]
T and the storage function

Ṽ (x(k)) = Ṽ (x1(k),x2(k)) = Ṽ1(x1(k)) + Ṽ2(x2(k)). For any time T ∈ Z+, we have Ṽ (x(T )) −

Ṽ (x(1)) = (Ṽ1(x1(T ))−Ṽ1(x1(1)))+(Ṽ2(x2(T ))−Ṽ2(x2(1))) ≤
�T−1

k=1 v
T(k)y1(k)+

�T−1
k=1 v

T(k)y2(k) ≤
�T−1

k=1 v
T(k)y(k).

Similarly, for the negative feedback interconnection, the control inputs and outputs are as r1(k) =

v1(k)+y2(k) and r2(k) = v2(k)−y1(k). Consider the control law u(k) = [uT
1(k) uT

2(k)]
T and the storage

function Ṽ (x1(k),x2(k)) = Ṽ1(x1(k)) + Ṽ2(x2(k)), we have Ṽ (x(T ))− Ṽ (x(1)) ≤
�T−1

k=1 (r
T
1(k)y1(k) +

rT
2(k)y2(k)).

EXAMPLES

A. Example 1

In this example, we passify a nonlinear switched system by applying a regular state feedback control

law across a network with packet drops. Consider a system of the form

x1(k + 1) = −0.3x2
1(k)x2(k) + 1.2x2(k) + u(k)

x2(k + 1) = 0.82x1(k)− u2(k) (32)

y(k) = 0.7x2(k) + u(k),
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with initial states x1(1) = 0.2, x2(1) = 0.1. Note that system (32) is locally ZSD and has relative

degree zero. As discussed earlier, we construct η(x(k), v(k)) by imposing v(k) = y(k). This leads to

u(k) = η(x(k), v(k)) = v(k) − 0.7x2(k). The resulting feedback transformed system has a passive

zero dynamics with v(k) = 0, and hence the system is feedback passive for any possible v(k). For

the purpose of numerical illustration, we choose the external input as v(k) = 0.35x2(k), which leads

to the controller u(k) = −0.35x2(k). The evolution of the system in Mode 2 is given by Equation (3)

with u(k) = 0. In Mode 1, the transformed dynamics and the zero dynamics of system (32) can be

obtained as in Equations (7) and (8). Given the zero dynamics, we choose a quadratic storage function

V (x(k)) = x(k)TPx(k) = x2
1(k)+ 0.5x2

2(k). We can verify that the determinant of the Hessian matrix of

V (x(k)) at x(k) = [0 0]T is not zero.
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Ṽ (T )− Ṽ (1)
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Fig. 2. (a) Passivity check for the switched system in the time interval [1, 20] according to classical passivity Definition 2.2, (b) Passivity
check for the switched system according to the generalized feedback passivity Definition 2.4, and (c) State dynamics of the switched system.

More insight can be obtained if we consider the system to operate over a finite horizon T . Consider the

system operation from k = 1 to 20. The parameters in the condition (10) are ζ = 2.88 and σ = 0.5516.

The condition σζM < 1 required for infinite T will be too restrictive in this case. According to (11) then,

choosing the ratio r(T ) to satisfy

r(T ) ≥ 1.0578(T − 1)

1.0578 + 0.5949T
(33)

would guarantee system passivity. This condition is satisfied, e.g., by a periodic system in which at every

third time step (i.e., at k = 3, 6, 9, · · · ) the system is in Mode 2. However, the system need not be
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periodic to satisfy (33). If the system starts in Mode 1, then any communication protocol that guarantees

that out of every 3 consecutive control packets, at most one packet is not delivered would guarantee

passivity. We consider the system to be in Mode 2 at time steps k = 3, 6, 10, 13, 16, 19 as shown in

Figure 2(a). Thus, the classical feedback passivity inequality (2) does not necessarily hold at these time

steps. The storage function Ṽ (x(k)) for the transformed system is chosen as 0.32V (x(k)) with â = 0.49

and ã = 1.9996. Figure 2(b) shows the corresponding generalized feedback passivity inequality (6) for

the system. We can see that unlike the classical case, the storage function is now allowed to be greater

than the supplied energy instantaneously; however, the general passivity inequality is satisfied at every

time till T . Figure 2(c) shows the evolution of the state dynamics of the switched system. If we choose

the control to be u(k) = −0.7x2(k), the system can achieve local stability.

B. Example 2

Consider the following nonlinear mass-damper-spring system which is controlled through a network

with packet drops. A negative damper is used so that the system is non-passive and open loop unstable.

We use the proposed method to passify and stabilize the system.

x1(k + 1) = x1(k) + Tx2(k)

x2(k + 1) = −K

m
Tx1(k) +

�
1− c

m
T sin(x1(k))

�
x2(k) +

T

m
u(k)

y(k) = 18x2(k) + u(k),

where x1 and x2 are the displacement and velocity and u(k) is the force. We set the sampling period

T = 0.1s, mass m = 0.5kg, stiffness K = 1N/m, viscous damping coefficient c = 3N · s/m and initial

conditions x1 = 0.2m, x2 = −0.1m/s. We choose the controller by imposing f2(x, u) = f̄0(x). The

resulting controller is u(k) = −5x1(k)− 10x2(k) with v(k) = 0 which renders the system locally passive

and stable. The evolution of the system in Mode 2 is given in Figure 3 when u(k) = 0. We choose a

storage function V (x(k)) = 100x2
1+0.01x2

2. We can also verify that the determinant of the Hessian matrix

of V (x(k)) at x(k) = [0 0]T is not zero. We consider the system to operate from k = 1 to 30 and with
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d(k) = 2 at time steps k = 2, 11, 20, 29. The parameters in condition (10) are ζ = 1.23 and σ = 0.92.

Figure 3(a) shows the corresponding passivity inequality for Mode 1 and 2, respectively. Figure 3(b)

shows the generalized passivity inequality according to 6. Figure 3(c) shows the evolution of the state

dynamics of the switched system. Both states are locally stable.
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Fig. 3. (a) Passivity check for Mode 1 and 2 according to classical feedback passivity definition 2.2, (b) Passivity check for the switched
system according to the generalized feedback passivity definition 2.4, and (c) State dynamics of the switched system.


