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Model-Based Control of Networked Distributed Systems with
Multirate State Feedback Updates

Abstract. This paper presents a model-based multirate control technique for stabilization of
uncertain discrete-time systems that transmit information through a limited bandwidth
communication network. This model-based multirate approach is applied to two networked
architectures. First, we discuss the implementation of a centralized control system with
distributed sensing capabilities and, second, we address the problem of stabilization of networks
of coupled subsystems with distributed sensors and controllers. In both cases we provide
necessary and sufficient conditions for stability of the uncertain system with multirate model
updates. Furthermore, we show that, in general, an important reduction of network bandwidth

can be obtained using the multirate approach with respect to the single rate implementations.

Keywords: multirate systems; networked control systems; distributed control; lifting

techniques.

1. Introduction

In recent years there has been a strong interest in the analysis, development, and controller
synthesis for networks of interconnected systems. Examples of such systems can be found in a
wide variety of applications such as: power networks, multiagent robotic systems and
coordination of autonomous vehicles, large chemical processes comprised of several subsystems
interacting one with each other, and also in areas that consider economic and/or social systems.
In addition, the availability of cheap, fast, embedded sensor and controller subsystems that are
capable to communicate via a shared digital network allow for the different subsystems to share
their local information with other (possibly the rest of) subsystems so it can be used to achieve a
common objective in a more efficient way (Camponogara, et.al. 2002; Dunbar 2007; Sinopoli,

et.al. 2003).
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However, digital communication networks have limited bandwidth and not all agents can
communicate at a given time instant. It becomes necessary to be able to schedule the broadcast
of information by the different nodes in such a way that bandwidth constraints are not violated
(Lian, Moyne, and Tilbury 2001; Antsaklis, and Baillieul 2007). Different approaches that
reduce the necessary network bandwidth have been investigated such as minimum bit rate
stabilization (Elia and Mitter 2001), packetized control (Georgiev and Tilbury 2004), and model-
based control (Montestruque and Antsaklis, 2003).

Multirate sampling has been mainly used to reduce computation effort in sampled data
systems (Yu and Yu 2007). The work in (Yu and Yu 2007) provides experimental results of a
Model Predictive Control (MPC) multirate controller in which a multivariable plant is
approximated by 3 single-output models which are modeled and sampled at different rates. The
main purpose in this work is to sample the output representing the slow dynamics of the system
at a lower rate in order to reduce the dimension and complexity of the optimization problem at
those sampling instants when only the fast dynamics are sampled. Other references concerning
the implementation of multirate MPC algorithms are (Scattolini and Schiavoni 1995) and (Lee,
Gelormino, and Morari 1992).

The multirate implementation generalizes the dual-rate approach frequently used in sampled-
data and networked systems (Li, Shah, and Chen 2002; Ding and Chen 2004; Ding and Chen
2005; Tange 2005) where two different rates are used in the control system. These two rates
correspond each one to the actuator (fast rate) and the sensor (slow rate). In the dual-rate
approach it is assumed that the entire output vector is measured and sent trough the network at

the same time instant.



Multirate systems have also been studied using different approaches. The authors of (Sezer
and Siljak 1990) provide stabilizability conditions for continuous-time Linear Time Invariant
(LTI) systems using decentralized controllers and sampling the system inputs using different
sampling rates. Vadigepalli and Doyle (2003) developed a multirate version of the Distributed
and Decentralized Estimation and Control (DDEC) algorithm in (Mutambara and Durrant-Whyte
2000) for large scale process based on model distribution and internodal communication. The
model distribution provides a definition of the states of interest to be estimated locally by each
node using measurements that are sampled periodically using different intervals at each node.
Communication between nodes is used in order to share information due to the interactions
between local subsystems resulting from the model decomposition overlapping states.

The present paper extends initial results described in (Garcia and Antsaklis 2010) to consider
two important architectures in control systems that communicate their measurements using a
limited bandwidth communication channel. The first problem considers the control of large scale
uncertain systems with multiple outputs and spatially distributed sensing implementation. In this
type of implementation the sensors that measure different elements of the state vector can be
located at distant positions. A limited bandwidth communication network is used to send all
sensor measurements to the controller. In order to schedule the sampling and sharing of
information and to increase the sampling intervals at each sensor node as much as possible we
implement a multirate sampling scheme. The results concerning this problem provide a simple
approach to address robustness to parameter uncertainties using multirate sampling in contrast to
(Yu and Yu 2007; Scattolini and Schiavoni 1995; Lee, Gelormino, and Morari 1992; Li, Shah,
and Chen 2002; Tange 2005; Sezer and Siljak 1990; Vadigepalli and Doyle 2003) where it is

assumed that the plant and model parameters are the same.



The second problem that is analyzed in the present paper corresponds to a decentralized
architecture in which it is necessary to stabilize a set of coupled, uncertain, and unstable
dynamical systems. In this architecture a Local Control Unit (LCU) is implemented within each
subsystem and it is assumed that each subsystem is able to measure its own state at all times but
it is allowed to broadcast its measurements to other subsystems only at certain instants according
to its assigned update rate. Similar to the problem described above, we do not restrict the
subsystems to use the same update rates but those rates can be all different in general.

In order to reduce the necessary network bandwidth for stabilization we follow the Model-
Based Networked Control Systems (MB-NCS) approach in Montestruque and Antsaklis (2003;
2004; 2005), Lunze and Lehmann (2010), Garcia and Antsaklis (2012), Garcia, Vitaioli, and
Antsaklis (2011). In MB-NCS a nominal model of the system is implemented in the controller
node to provide estimates of the state of the system for the intervals of time that feedback
measurements are not transmitted by the sensor nodes.

Similar MB-NCS implementations have been used for distributed systems by Sun and El-
Farra (2008; 2012a; 2012b), El-Farra and Sun (2009). In (Sun and El-Farra 2008) the authors
study the stabilization of coupled continuous-time systems employing the MB-NCS in
(Montestruque and Antsaklis 2003) and using a single rate approach which forces all agents to
send measurement updates through the network all at the same time instants. That approach was
extended in (El-Farra and Sun 2009) and in (Sun and El-Farra 2012a; 2012b) to the case when a
schedule for the updates is pre-assigned but all subsystems still use the same update rate, i.e. a
single rate approach in which the agents send updates at different time instants. The approach in
our paper offers more flexibility and provides, in general, further reduction of network

communication. Each subsystem is allowed to send measurements using its own update rate.



Subsystems with slower dynamics or represented by more accurate models are able to use lower
update rates and they are not restricted to use the same rates as the subsystems with faster
dynamics.

The paper is organized as follows. Section 2 provides a background analysis of MB-NCS
using single rate. Section 3 considers the centralized control problem using multirate sensor
measurements. Section 4 and 5 address the decentralized architecture using single rate and
multirate updates, respectively. Section 6 provides an illustrative example for estimating

admissible model uncertainties and section 7 concludes the paper.

2. Preliminaries and MB-NCS with single-rate updates
We recall a simple result concerning discrete-time LTI systems:
Theorem 1 (Antsaklis and Michel 1997). The equilibrium x=0 of system x(k+1)=Fx(k) is

asymptotically stable if and only if all eigenvalues of F are within the unit circle of the complex
plane, i.e. if A,...4 denote the eigenvalues of F, then |/1j| <l,j=1..,n.m
Let us consider a discrete-time system and model given, respectively, by:
x(k+1) = Ax(k)+ Bu(k) (1)
Rk +1) = AR(k)+ Bi(k) (2)
with 4,4eR™ and B,BeR™ . The control input is given by u(k)=Kx(k). In MB-NCS
measurements of the system which are used to update the model of the system at the controller
node. The entire state of the system is sampled periodically. The sampling term refers to the time
event in which the sensor measures the state and sends this measurement through the network in

order to update the corresponding state of the model. The sampling period used by the sensor is

greater or equal than the original operating period of the discrete-time plant. By using this



approach we try to reduce the number of samples that are transmitted from the sensor to the
model/controller. We search for larger sampling periods, which are integer multiples of the
operating period of the system, i.e. if the original period of the system is denoted by 7 time units
then the sampling periods are allowed take values 7, 27, 37, ... In this paper we refer to the
sampling periods that the sensors use to measure and update the model as update periods in order
to differentiate them from the underlying period of the plant 7. The associated rates to the update
periods are called therefore update rates. Assume without loss of generality that the underlying
period of the plant is 7=1.

The MB-NCS was studied in (Garcia and Antsaklis 2010) using a lifting technique. The
lifting process has the purpose of extending the input and output spaces properly in order to
obtain a Linear Time Invariant (LTI) system description for sampled-data, multirate, or linear
time-varying periodic systems. Since the lifted system is a LTI system, the available tools and
results for LTI systems are applicable to the lifted system as well. For details on the discrete-time
lifting technique used in this work refer to Chen and Francis (1995) and to Bittanti and Colaneri
(2000) and Kahane, Mirkin, and Palmor (1999) for alternative approaches.

A MB-NCS with periodic updates is clearly a linear time-varying periodic system by

considering an output x that is equal to X when measurements are not transmitted and equal to x

when we have an update.

Denote the input and output for the lifted system by u and x respectively and they are given
by the following

u(kh) Kx(kh)

u(kh +1) Ki(kh+1)

u(kh)=| - ©

u((kh+h=1)| | K&((kh+h—-1)



(1] [0 0 . 0]
A B 0 0

x(kh)=| 4 |x(kh)+| AB B .. 0 |u(kh). (4)
Iah—l Ah—zé 121}'733? 0

The dimension of the state is preserved and the state equation expressed in terms of the lifted
input is given by:
x((k+D)h)= A"x(ki)+| A"™'B A"7B .. Bu(kh). (5)

Theorem 2. The lifted system is asymptotically stable if and only if the eigenvalues of

h-1 R R )
A"+ A" BK(A+ BK)Y (6)

j=0
are within the unit circle of the complex plane.
Proof. To prove this theorem we note that (5) is the same as the state equation that characterizes

the autonomous linear time invariant system:

x((k+1)h) = (4" + ﬁ A" BK (A+ BK) )x(kh). (7)

=0
Equation (7) can be obtained by directly substituting (3) in (5), and then substituting the value of

each individual output by its equivalent in terms of the state x(k#), i.e.

%(kh+1) = Ax(kh)+ Bu(kh) = (A+ BK)x(kh)
$(kh+2) = (A+ BK)* x(kh) (8)

The resulting equation can be simply expressed as (7). The lifted system is an LTI system and by
Theorem 1 it is asymptotically stable if and only if the eigenvalues of (6) have magnitude less

than one.m



3. Spatially distributed systems with multirate sensor measurements

In this section we use the MB-NCS approach and the lifting procedure to establish stability
conditions for discrete-time spatially distributed systems when their states are sampled
periodically but using different sampling rates. This multirate approach is necessary especially
when different sensors are used to measure different elements of the system output, see Figure 1.

When the sensors use the same network to transmit their measurements to the controller node
then the multirate approach brings important benefits to the operation of the overall networked
system. By allowing the sensors to transmit their measurements using different sampling periods
we avoid packet collisions and networked induced delays compared to the case when all of the
sensors need to sample and transmit at the same instants. Additionally, we will show that in
many cases a further reduction in network communication can be obtained by using different
update rates for each sensor compared to the single rate case shown in Garcia and Antsaklis
(2010). Although the multirate sampling case requires a more complex analysis, the same lifting
approach can be used in order to find a system representation for the LTI equivalent (lifted)

system.
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Figure 1. Networked control system with centralized controller and distributed multirate
sensor measurements.

Consider a multi-output system depicted in Figure 1. In this case we do not assume that a
single sensor measures all states at the same time; instead we consider a spatially distributed
system for which different sensors measure different elements of the state and send this
information to the centralized controller at different rates. The state of the model is partially
updated according to the information that is received at any given update instant.

In what follows we will provide details on how the state of the model is partially updated and
how to obtain the response of the corresponding lifted system. The lifted system state equation
directly provides necessary and sufficient conditions for the stability of the multirate system.

We consider an N-partition of the state of the system (1), and the model (2) likewise,

according to the number of sensors that are used to obtain measurements:



=
=

I\)H)

x=|. ,X= : 9)

N
where x,% e R", Zm‘ =n. In general, each subset of the system state may have different
i=1

dimensions. Let s, represent the update period that sensor i uses to send measurements in order

to update the corresponding part of the model state x;. Let s represent the minimum common

multiple of all s, .

In order to obtain the response of the multirate system using the model-based control input
with partial updates we define all the update instants within a period s by arranging the periods

s, and its multiples up to before s in increasing order as follows:

81528, (1 =1)s,

8y,28,,...,(1, =1)s,

(10)

Sys 285 (y —1)sy

where 7, = 2 for i=1...N represents the relative update rate compared to the update rate given by
N

the period s. Let A, for i=1...p-1 represent the update instants in increasing order, where p is the

total number of update instants within a period s including the update at time s. Note that at any

given instant one or more sets of states X, can be updated. This procedure can be better shown

trough a simple example.

10



Consider the state of a system that is partitioned into three subsets x,x,,x; with
corresponding periods s, =3,s, =4,s5, =6. Then we proceed to define all update instants within

a period s=12, as follows:

h=3=s

h,=4=s,

h,=6=2s, =5, (11)
h,=8=2s,

hy =9 =35,

Note that at the time instant 4, we have two partial updates for this example.

Let us define, in general, the partial update matrices:

0
[ni
0

(12)

~

Il
S O O
S O O

that is, the ith partial update matrix 7/, € R™ contains an identity matrix at the position
corresponding to x, and zeros elsewhere. Define

I, =1,+1,+1.. (13)
The matrices /, represent all updates that happen at time instant /,.
Theorem 3. The uncertain system with distributed sensors as shown in Figure 1 with model-

based control input and with partial multirate model updates is asymptotically stable for given

update periods s; if and only if the eigenvalues of

P
A+Y A"E, U, (14)

i=1

are within the unit circle of the complex plane, where

11



[1]

hi—=h;_ -1 ) R R )
o = 2, AMTUBK(A+ BK)
= _ (15)

y = =1)(A+BK)"™ U, \+1, (4" +Y A", , U, )

gq=1

-

with b, =0,U, =1,h, =s.

Proof. Let us consider the beginning of a period s. At this time instant all sensors send

measurements and we have that x(ks) = x(ks). At the time of the first update after time ks, that

is, at time ks +/, we have:

x(ks +h)= (A" + lZ‘i A" BK(A+ BK) )x(k) =(4" + g, )x(ks) (16)

j=0
and the model state after the update has taken place is given by:
X(ks+h)=(I-1, YA+ BK)" + 1, (A" +E,)x(k) = U, x(ks). (17)
Following a similar analysis we can obtain the response of both the system and the model at time

ks +h, as a function of x(ks+h) and x(ks+h)):

hy—hy -1

x(ks+h)= A" "x(ks +h)+ Y. A" BK(A+BKY (ks +h) (18)
Jj=0
R(ks +hy) = (I~ 1, \(A+BKY" " i(ks + ) + 1, x(ks +h,) (19)

but, since both x(ks+#4) and X(ks+h) can be expressed in terms of x(ks), we obtain the

following:

x(ks+h) = (A" + 4"™"E, +8, U, )x(ks) (20)
Rks+h)=((I-1, A+ BK)"™U, +1, (4" + 48, +8, , U, )x(ks) =U, x(ks). 21)

By following the same analysis for each update instant /4, up to 4, =s we obtain

12



P
X((k+1)s)=(4"+Y A""E, | U, )x(ks). (22)
i=1

Since (22) represents an LTI system then the networked system is asymptotically stable when the
eigenvalues of (14) lie inside the unit circle. m

Example 1. Consider the 5th order unstable system given by:

[~1.05 035 0.02 035 0.24 ] 1 1]
035 1.1 0.1 0.035 0.035 1 2
A=| 003 032 021 -04 06 |, B=|1 1
0.06 0.03 03 -0.7 055 1 2
10.035 0.03 06 03 02 | 11
Its nominal model is given by:
-1 035 0.02 035 0.24] 1 1]
0.35 1 0.05 0.035 0.035 1 2
A=| 003 035 0.15 -045 06 |, B=|1 1
0.06 0.035 034 -0.75 0.6 1 2
10.035 0.035 05 03 04 | 11

If it were possible to implement a single sensor and send periodic updates, that is, to send the
whole state at the same time instants we would need to use a period #<10 according to Theorem
2. Figure 2 shows the response of the system and the model for the initial conditions shown
below and using the update period #=9, the largest stabilizing single rate period. Note that the

entire state of the model is updated at the same time instants.

x,=[1 05 0.6 03 —0.5]

13
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Figure 2. Response of the plant and model for the single rate system in example 1 for #=9.

Now suppose that each state of the system can be measured by a different sensor node. By
using the results in this section it is possible to show the existence of multirate stabilizing update
periods. The combination of stabilizing periods is quite large including those that involve lower
sampling periods. In many cases it is possible to decrease a few of the individual sampling
periods while increasing the rest of them. For instance, if we select the periods
s, =10,s, =6,s, =15, s, =10, s, =30, the eigenvalues of (14) are all inside the unit circle, which
means that the multirate networked system is asymptotically stable.

Figure 3 shows the response of the plant and the model for this particular selection and using

the same initial conditions as in Figure 2. It is important to note that many update period

14



combinations result in a stable system and the one selected is one that provides for significant
reduction of network communication compared to the more conservative single-rate

implementation in which all sensors would need to use a sampling period 4<10.

x1

: : : : : : x3
R R R SERREE x4
‘ ‘ ‘ ‘ ‘ ‘ x5

Plant states

100 120 140 160

xhat1
xhat2
xhat3
xhat4
xhatb

Model states

05 l ; ; ; ; i i i
0 20 40 60 80 100 120 140 160
Time (k)

Figure 3. Response of the multirate system for the following choice of update periods:

s, =10,s, =6,s, =15,s, =10, s, =30,

4. Stabilization of coupled systems using single-rate updates

In this section we consider a different networked architecture which is shown in Figure 4. This
figure represents a network of coupled interconnected subsystems where the measurements can
be transmitted over a network and the dark arrows represent the physical interconnections or

coupling of the subsystems.
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System 1 System 2 System N
LCU 1 LCU 2  LCUN
NETWORK

Figure 4. Model-based networked interconnected systems.

To simplify the analysis and to clearly explain the model-based implementation we restrict

our attention to the case in which all subsystems send measurements to update the models in

other subsystems using the same sampling period. Next section will generalize this approach to

the multirate case.

We consider a network of N interconnected agents or subsystems as seen in Figure 4. Each

subsystem can be described by a discrete-time state-space representation as follows:

x,(k+1)=A,x,(k)+Bu,(k)+ i Ajjxj (k)

N

Xy (k+1) = Ayx, (k) + By, (k) + > A4,,x,(k)

J=Lj#2

N

x,(k+1)=Ax,(k)+ Bu,(k)+ > Ax, (k)

J=Lj#i

N-1
Xy(k+1) = Ayx, (k) + Byuy (k) + Y Ayx, (k)
Jj=1

16
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In this framework each Local Control Unit (LCU) contains copies of the models of all
subsystems including the model corresponding to its own local dynamics in order to generate
estimates of the states of all subsystems in the network. The model of each subsystem is

represented by:

N

X (k+)= A% (k) +Ba,(k)+ Y A% (k) (24)

J=Lj#
for each ieN, N denotes the set {I,2,..N} of N integers where x,,% €R" represent

respectively the real state of the i-#4 unit and the state of the corresponding model, u,,u, € R™

represent the local input for subsystem i and for model i, respectively. The matrices A, Ay, Bi,

Ai, Ay, Bi are of appropriate dimensions. Note that the subsystems could have different dynamics
and different dimensions, the dimensions mi and ni could be all different in general. Note also
that each LCUi has access to its local state x; at all times which is used to compute the local

subsystem control input:

() =Kxk)+ Y K5 k) (25)

where Kiand K are the stabilizing control gains to be designed.

We define the model control inputs as

N
i, (k)= Kx,(k)+ >, K%, (k) (26)
J=1,j#i

These control inputs are applied to all models in all LCUs whereas (25) is applied to each local

subsystem. It is clear now that although LCUi computes an estimate X, of x,, this estimated state

is not used to control subsystem i since we have the real state available. At LCUi we use X, as

17



input for the models ensuring that the same model equations with the same model control inputs

are implemented at all LCUs.

Define the augmented plant and model state vectors:

T T TqT
x=[x; x, ...x, ]
(27)
A AT AT ~ TqT
x=[x, x, ...x ]
The dynamics of the overall system and model can be represented by:
x(k+1) = Ax(k)+ Bu(k) (28)
Rk +1) = A%(k)+ Bii(k). (29)

~ “ N N
The forms of the matrices 4,4 R"" and B, B € R™™ where n= Zni and m= Zmi for this

i=1 i=1

type of implementation are as follows:

A Az ... Am B: 0 - 0
An Az ... Az 0 B 0
A=\ . . . B=| . . .
Anl An2 cee An 0 0 e Bn (30)
_1211 A ... 1211»7— _él o --- 0 ]
A= A.Zl A> - 14.2)7 B 0 B> 0
_1&)11 1&112 e An_ L O 0 e én_

We can describe the dynamics of the overall system as given in the next proposition.
Proposition 4. Assume (4,B) is stabilizable. The dynamics of the overall distributed system can

be represented by:

x(k+1)=(A+BK ,,)x+ BK,, & (31)

iag
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K

diag

where Koff =K-K

diag * =diag(K,) is a matrix containing the controller gains K, as main

diagonal sub matrices. The controller K is a stabilizing controller for the overall model dynamics,

i.e. A+BK is Hurwitz.
Proof. We rewrite (28) in the next form

x(k+1) = Ax+ Bu = Ax + B(K , x(k) + (K — K ,,)3(K)) (32)

iag
where u is the augmented vector containing each agent local subsystem control inputs

u=[u"u"...u'T. (33)
Equation (32) can be simple rewritten as (31). m

Theorem 5. System (28) with control input u(k) = K, x(k)+ K, X(k) and single-rate periodic

iag

updates of the states of the models is asymptotically stable if only if the eigenvalues of

h—1 n " )
(A+BK,,)" +> (4+BK, )" BK,,(A+ BK) (34)

Jj=0
are within the unit circle of the complex plane, where /4 is the update period.
Proof. By Proposition 4 we have that the overall networked system can be expressed as a

function of the state of the system and the state of the model as in (31), which is of the form (1)

with state matrix 4+ BK,,, , controller gain K, , and single-rate updates. Then Theorem 2 can

diag >

be applied directly using these modified matrices. Similarly, the lifted system

x((k+1)h)=((4+BK,,,)" + hi (A+BK,,,)""7 BK,; (A+ BK) )x(kh) (35)

off
Jj=0

is an LTI system and it is asymptotically stable if and only if the eigenvalues of (34) lie strictly
inside the unit circle. m
Example 2. We consider a network of N=6 subsystems represented as in equation (23) all with

different dynamics. The dimensions of the systems vary from 1 to 3 as well. The models for all

19



different parameters represent an uncertainty as follows: 12% alteration in the A; matrices, 10%
in Aj, and 6% in B:. Some of the systems are unstable and every agent is coupled to all other
agents including those with different dimensions by corresponding coupling matrices A;. By
evaluating the eigenvalues of (34) for different values of 4, we can find that for 42 <11 the
overall networked system is asymptotically stable. Figures 5 and 6 show the response of all

subsystems for the largest stabilizing rate 4=11 and for initial conditions

x(0)=1, x,(0)=0.5

©) 0.6 ] 0) [—0.5]
X = , X =
o3 YT [ -04]
1 ] (0.3 ]
x(0)=]0.5|, x,(0)=|-0.5
_0.6_ _—0.4_
1 T T T T 1
X
- —x2
E5 osp T
5 <
22
E g 0 VO@W
o
05 i i i i
20 40 60 80 100
3 T T T T 31
. ; ; : X
o : : : :
Sao 2H - e e G - x32
§ GE, : : : ; x41
o > : : : : x42
s I S S S .
83
8o 0 o
)
-1 i i i
40 60 80 100
Time (k)

Figure 5. Response of the first order systems (top) and the second order systems
(bottom) for ~A=11.
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Figure 6. Response of the third order system 1 (top) and third order system 2
(bottom) for ~A=11.

5. Stabilization of coupled systems using multirate updates

In this section we consider the same problem and approach as in the previous section but we do
not restrict all updates to take place at the same time instants. Instead, we allow every subsystem
to use a different sampling period. This approach results in a better usage of network resources.
By allowing the sensors to transmit their measurements using different sampling periods we
reduce the probability of packet collisions and the size of networked induced delays compared to
the case when all of the sensors need to sample and transmit at the same instants. Additionally,
we will show that in many cases a further reduction in network communication can be obtained
by using different update rates for each sensor compared to the single rate case shown in
previous section.
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Consider a set of N subsystems or agents as represented in Figure 4. Each subsystem can be

represented by (23) and the models by equation (24), for each i € N, N denotes the set {1,2,...N}
of N integers where x,,%, € R" represent respectively the real state of the i-th unit and the state
of the corresponding model, u.,i, € R™ represent the local input for subsystem i and for model i,

respectively. The matrices A, Ay, Bi, zzli,zzlg,éi are of appropriate dimensions. Note that the
subsystems could have different dynamics and different dimensions, the dimensions mi and ni
could be all different in general. Note also that each LCUi has access to its local state x, at all
times which is used to compute the local subsystem control input. The system control inputs u,
and the model control inputs i, are given by (25) and (26), respectively. Likewise, the overall

networked system can be represented by equations (28) and (29), where

A ~ N N
A, Aec R" and B,B € R"™ with n :zni and mzzmi. The system and model matrices are

i=1 i=1
given by (30).
Let s, represent the sampling period that sensor i uses to send measurements in order to

update the states of all models corresponding to subsystem i, that is, a measurement x, to update

all models ;. Let s represent the minimum common multiple of all s, .
In order to obtain the response of the overall networked system with multirate samplings and
using the model-based control inputs we define all the update instants within a period s by

arranging the periods s, and its multiples up to before s in increasing order as in (10), where

r= 2 fori=1..N represents the relative sampling rate compared to the sampling rate given by

S

the period s. Let 4 for i=1...p-1 represent the update instants in increasing order, where p is the
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total number of update instants within a period s including the update at time s. Note that at any

given instant one or more sets of states X, can be updated. Let the update matrix /,
corresponding to subsystem i be given by (12). The matrices 7, represent all updates that take
place at time instant 4, and are given by (13).

Theorem 6. The overall networked system (28) with model-based control inputs and with

multirate model updates is asymptotically stable for given inter-sample periods s, if and only if

the eigenvalues of

P
(A+BK, )+ (A+BK, )" "5, , U, (36)
i=1

lie inside the unit circle, where

[1]

- diag )hi_hiil_]_jBKOﬁ'(‘/a + EK)]
” | (37)
Uh, =(I- Ih‘ )(121 + éK)hi_hH Uh,-—l + [h,- ((4+ BK g )hi + z (4+ BK g )hi_hq th‘hq—l Uhq‘l)

g=1

=y -1
Wby = Z (A+BK
J

with b, =0,U, =1,h,=s.
Proof. Let us consider the beginning of a period s. At this time instant all sensors send
measurements and we have that x(ks) = x(ks) . At the time of the first update after time ks, that

is, at time ks + A, we have:

-1 . _
x(ks+h)=((A+BK )" + > (A+BK )" "7 BK . (A+ BK) )x(ks) %)
j=0

= ((A4+BK )" +E, )x(ks)

and the model state after the update has taken place is given by:

(ks +h) = (-1, A+ BK)" +1, (A+BK ,)"" + &, ))x(ks)
=U, x(k)

39)
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Following a similar analysis we can obtain the response of both the system and the model at time

ks +h, as a function of x(ks+h,) and X(ks+h,):

hy—Iy—1 . . .
x(ks+h,)=(A+BK,,, Y2 (ks + b)) + Z (4+BK,, )k BK ,(A+BK) (ks +h,) (40)
j=0
Xks+h) =1, YA+ BK )™ 3(ks + b)) + 1, x(ks +hy) 41)

but, since both x(ks+A,) and x(ks+h,) can be expressed in terms of x(ks), we get:

x(ks+h)=((A+BK,, )" +(A+BK, )" "E, +8, , U, )x(ks) (42)

diag

(ks +hy) = (I -1, YA+ BK)"™ U, +1, (A+BK )" +(4+BK,, )" "E, +8, U, ))x(ks)

diag (43)
=U, x(ks)
Following the same analysis for each update instant % up to /, = s we obtain
P
x((k+1)s)=((A+BK,,,)' +>.(A+BK, )" "8, , U, )x(ks) (44)
i=1

Since (44) represents an LTI system then the overall networked system is asymptotically stable
when the eigenvalues of (36) lie strictly inside the unit circle. m

Example 3. Consider the same set of systems and models as in example 2 with the same initial
conditions. By allowing the agents to broadcast their states using different rates we are able to

asymptotically stabilize the overall system and to further reduce the communication between

agents. There exist many combinations of periods s, that result in a stable system. The next

selection that significantly increases the sampling periods and reduces network traffic compared

to =11 in example 2 was used in the simulation shown in Figures 7 and 8,

s, =60,s,=15,s,=10,s, =10, s, =30, s, =12.
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Figure 7. Response of the first order systems (top) and the second order systems
(bottom) fors, =60, s, =15, s, =10, s, =10.
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Figure 8. Response of the third order system 1 (top) and third order system 2
(bottom) fors; =30, s, =12.

6. Applicability of multirate MB-NCS

Sections 3 and 5 provided necessary and sufficient conditions for stability of MB-NCS using
multirate model updates. It was also shown that the multirate approach may significantly
increase the update periods with respect to the single rate update counterparts addressed in
sections 2 and 4. Since we are considering model uncertainties, the necessary and sufficient
stability conditions are based on the model parameters and the plant parameters as well. The
exact value of the plant parameters is generally unknown. Next, we provide a simple but
illustrative example in which we fixed the updates rates and we use the results of the paper in
order to estimate admissible model uncertainties, i.e. possible uncertainties that result in an
overall stable system using the predefined update rates.

Example 4. Consider a set of 3 first order unstable, coupled nominal systems of the form (23).

The known nominal models (24) are given by the following parameters:

We select the following periods s, =15,s, =6, s, =10. Note that the same procedure can be

repeated for any selection of periods s;. Assume that the plant parameters are given by:

>

)

3

A=A +A4, A =4,+4, A =A4+4,
Bi i’ Alj ij

Il
>
X >
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where the parameters A represent the unknown model uncertainties. By fixing the update
periods we are able to evaluate (36) for different values of ;11.. The contour plots of Figure 9
show the maximum eigenvalues of (36) for 6 different values of ;13 and for different

combinations of 4, and A, in increments of 0.1. By following this search it is possible to

evaluate all possible combinations of model uncertainties that result in an overall stable multirate
MB-NCS. In these illustrations the admissible uncertainty combinations are those that result in a
maximum eigenvalues within the contour labeled by 1. Similar searches are possible for larger

number of uncertain parameters and also including the different update rates.
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Figure 9. Maximum eigenvalues of (36). Model uncertainties that preserve stability inside
contour labeled as 1 for update periods s, =15, s, =6, 5, =10.

7. Conclusions

The single-rate MB-NCS approach has been extended in this paper in order to control networked
systems using multirate sampling. The use of multirate model updates results in an important
reduction of network traffic when applied to high-order systems with centralized controller and
distributed sensors. This is achieved by assigning low update rates to sensors corresponding to

slow dynamics. The model-based multirate approach was also applied for control of groups of
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coupled systems that exchange information through a shared network. Similarly, the slow
dynamics subsystems are able to operate using a low update rate. In these two cases, the model
based multirate framework provides greater flexibility for scheduling measurement updates

while maintaining stability of the network interconnected systems.
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