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Order of the compensator and the closed-loop eigenvalues in the
fractional approach to design

P. J. ANTSAKLISt

The order of the stabilizing controller and the closed-loop eigenvalues in LTI
control systems designed using the fractional approach are studied. New insight is
provided and guidelines are given to attain tighter control over the number of the
closed-loop eigenvalues and the compensator order, thus avoiding unnecessarily
high order controllers and computationally expensive caiculations. The study is
carried out using the results of Antsaklis (1986) to derive the closed-loop internal
descriptions directly in terms of the proper, stable factorizations of the plant and the
controller transfer matrices.

1. Introduction

In the original parametrization of all stabilizing controllers u = — Cy of a plant
y = Pu via a stable rational K (Youla et al. 1976), the closed-loop eigenvalues are
exactly the poles of K; the order 8C of the resulting C is K — dP. A difficulty in this
approach is, of course, guaranteeing properness for C. In the parametrization of all
proper stabilizing controllers C, using proper and stable factorizations, in terms of a
proper and stable parameter K’ (Desoer et al. 1980, Vidyasagar 1985), the closed-loop
eigenvalues consist in general, as shown here, of some of the poles of K’; the rest are
some of the stable poles of quantities which are usually chosen rather arbitrarily. As a
result, if for example stabilization of an unstable plant is attempted using this
approach, the number of the closed-loop eigenvalues { = P + 8C) and consequently
the order of the stabilizing controller C tend to be larger than anticipated, since it is
not clear how to control them tightly.

The fractional approach to the design of linear time-invariant control systems has
gained acceptance and a rather large following in recent years. For greater under-
standing and more efficient designs, it is necessary to study the number and location of
the closed-loop eigenvalues and the order of the stabilizing controllers C when the
fractional approach is used.

This study is based on recent results presented by Antsaklis (1986), where the
relation between proper, stable factorizations and internal descriptions of a plant were
established. Here, the internal description of the compensated system is first derived,
when K' =0, and the closed-loop eigenvalues are determined directly in terms of the
quantities X', ¥, N" and D’ of the diophantine equation (2). These results are then
applied to the case when K’ # 0. The order of the controller C is determined. It is also
shown how K’ varies for the same P and C depending on the choice of X, Y’, etc. This
is useful in view of the fact that in H ® optimization problems, K’ is found first and
then the appropriate controller C is determined; and with well-chosen initial
factorizations of P and C the solution K’ to the optimization problem is simpler.
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where N', D' are proper and stable rational matrices denoted here as (N’, D') € M(S),
that is matrices with elements in S, the set of all proper and stable rational functions; y
and u are the output and input vectors respectively. Let (N', D) be right coprime (rc)
in §; that is, there exists (X', Y)e M (S) such that the diophantine equation (or Bezout
identity)

XD +YN'=I (2)

is satisfied. Note that D’~! is also proper, that is D’ is biproper.
Consider now the controller

u=—Cy; C=D'N, (3)

where C is proper and D, N.e M(S). It is known (Desoer et al. 1980), that such a
controller internally stabilizes the plant (1) if and only if

DD+ NN =U 4

where U’, U7 ! e M(S). It can easily be shown that the solutions (X', Y*) of the
diophantine equation (2) (perhaps with U’ in the right-hand side instead of I} which
generate proper stabilizing controllers C = X'~ 'Y are those for which X' is biproper.
If P is strictly proper, then X’ = D'~ — Y'P will always be biproper; if P is not strictly
proper, however, care should be exercised when solving the diophantine to ensure that
X' will be biproper. In the following, P is taken to be proper and the solutions to the
diophantine (X', Y’} have X' biproper.

Given P = N'D’'"! rc, suppose the diophantine (2) is solved to derive a stabilizing
controller C=X'"'Y". Although the result described above guarantees internal
stability, neither the exact locations nor the number of the closed-loop (cl) eigenvalues
or the order of C is directly apparent from (X’, Y’). In other words, clear guidelines do
not appear to exist as to how to select solutions of the diophantine if there is interest in
the order of C and the ¢l eigenvalues.

To illustrate, consider the following scalar example (Antsaklis 1986).

Example 1
P=(s—-Ds—2)(s+1)
and

XD+ Y’N'=(S—5)(S+3) (s—2)(s+2) +9(S+3) (s—1(s+2) -1
(s+D+2)(s+D(s+3)  (s+2) (s+1)*s+3)

Here C=X""1Y' =92+ 1)/(s — 5) and the clep = (s + 1), as can be verified from
a0 |1 + PC| where «,, &, are the characteristic polynomials of P and C respectively,
Note that the cl eigenvalues are in general some of the poles of X', Y, D" and N,
which are not unique given P, but not all of them. This difficulty in determining the cl
eigenvalues in terms of the quantities the designer selects, becomes greater when all
stabilizing controllers are parametrically characterized in terms of K’ via (Desoer et
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al. 1980, Youla et af. 1976, Antsaklis 1979):
C=[xr_KJNf]—[[Yf+KrD'r] (5)

where K’ e M(S) with (X’ — K'N") biproper; K’ can be chosen to satisfy design
requirements in addition to internal stability (e.g. H* optimization) if necessary, and

o [ x Yo -y [1 o
V] B | D (6)
-8 DI~ X 0 I

As it will be shown below, the cl eigenvalues here are some of the poles of not only X',
Y, N, D', but also of N', D’ and K.

It can easily be seen that the order of the controller C is immediately known from
the number of ¢l eigenvalues via:

dC = {no. of cl cigenvalues} — JP N

where dC is the order of C; this is true as it is assumed that P and C are represented
(and implemented) via minimal realizations. So initially, we will concentrate on the cl
eigenvalues, but we will also provide expressions for the order of C.

3. Internal descriptions and closed-loop eigenvalues

Let P=N'D""' (1) and suppose a stabilizing controller C= X'"'Y" is found by
solving
XD+ VN =] @)

It is of interest to study the internal descriptions of P, C and of the closed-loop system
in terms of their fractional representations.

For this, let
D’ D
= I (3)

where D, N are r¢ polynomial matrices (P=ND"1!) and I is a rational matrix,
Theorem 1 of Antsaklis (1986) states that (N', D’} € M(§) define a rc factorization (1)
of Pin S if and only if (8) is true where IT, I1~! are stable and DIT biproper. Write

[D'] [Dl] : [D] i
= D;l = N,D, ! (9)
N' N, N

where [DT NT717, D, are rc polynomial matrices and N, is a greatest common right
divisor of D,, N,; then D, N are rcand Il = N, D7 .. Note that D,z, =u, y=N,z, is a
controllable and detectable realization of P, while Dz=u, y= Nz is a minimal
realization of P.
Similarly
[X* Y]1=TL[D. N.] (10)

where D.. N. are Ic polynomial matrices and TI., IT. ! stable with I1.D. biproper
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the poles of I111,. Note that in general, some of the poles of IT will cancel with zeros of
I1, and some of the zeros of T1 with poles of IT; the remaining poles in I1T1, are the
closed-loop eigenvalues.

In Example 1 above, [T =(s+2)/{(s+ 1)*(s + 3) and TI, =(s + 3)/(s + 1){s +2) in
view of (9) and (10);(II1.) ~! = D, =(s + 1)* as expected. Notice that (s + 2) and (s + 3)
cancel out. If D’ and X’ had been chosen so that their orders were the orders of P and
C respectively, then neither IT nor TT, would have any zeros (Antsaklis 1986). In this
case, no cancellations would take place in I'T], and the closed-loop eigenvalues would be
all the poles of IT (of [D'T  N'T]™) and all the poles of IT, (of {X' ¥']) as Example 2
illustrates. Note that this is also the case when minimal state space realizations of P
are used to determine X', Y, N’, D’ via state feedback and observer theory (see Doyle
1984, Antsaklis 1986).

Example 2 (Antsaklis 1986)

=(s—1)/(5—2)(s+ 1) as in Example 1, and
s—5s5-2 s—1
X'D'+YN = =
* stistl e

Here T = t/s+ )3, TI,=1/(s+ 1) and (TI11) "' =D, =(s + 1)°.

The following results can now be formally stated.
Let P=N'D'"'and C= X' 'Y satisly (2). Determine T from (8) and write
nex: vy1=p.'td. NJ (13)
an lc polynomial factorization.

Theorem

Dz=u,y=Nzand D, = — N_.y, u=Z, are minimal internal realizations of P and
C respectively. D,z =0, y = Nz is an internal description of the closed-loop system.

Proof
nfx  Y1=nI,D, N with D, N, Ic in view of (10). Then (12) gives the
desired result since D,, [D, N_] are lc. O

Note that the theorem can also be shown directly using Theorem 3 of Antsaklis and
Sain (1984).

Corollary 1
The closed-loop eigenvalues are:

(a) the poles of TII1,, or D
{(b) the poles of TI[ X' Y] or [ ] I.; or
NI

DI
(c) the poles of |:N':| [xX' 1]
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Proof

In view of (12) and the Theorem, and by using the fact that premultiplication by
rc (DT NT]T does not change the poles. W

Remarks

(i) If instead of (2), X'D'+ YN =U'(U", U' ' e M(S)) is solved, all results are
valid ifinstead of [X" Y], U''[X’ Y']is used; for example, the poles of TIU'~!TT,
are now the cl eigenvalues.

(it) 1t can be shown that

S A 0 P L »
—p 1| Tlw |, (19

In view now of the fact that the poles of the left-hand side are the cl eigenvalues
(Antsaklis and Sain 1984, Collier and Desoer 1982), an alternative proof of (¢) in
Corollary 1 is derived.

(1ii) In view of (7), 8C = &(TII1,) — AP.

4. Controller parameterizations

The above results are now used to determine the closed-loop internal descriptions,
the eigenvalues and the order of the controiler, when a stabilizing C, expressed as a
function of the parameter K’ is used.

Let P=N'D'"'=D""'N’ be a ‘doubly coprime’ factorization satisfying (6). In
view of (5), all proper stabilizing controllers are given by C = D."'N_ where

(0. Ni=[ KU’ (15)

with K’ e M(S) and such that D, is biproper.

In view of the Theorem, if 1[5, N_]=D;'[D, N_.] an Ic polynomial matrix
factorization, D,z =0, y = Nz describes the ¢l system. Using Corollary 1 we have the
following result.

Corollary 2
The closed-loop eigenvalues are the poles of:

[D’][ﬁé N]= Dr][l K1

N’ | N’ (16)
—D’ r ¢l DI L AT i r

=_N'][x }’]+|:Nr:|K[ N~ D7

or of
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. s+2 s+2|ls+1 s+ D(s+2) 1 0
uvutl= =
1 s—1 1 (s+3}s+a) 0 1

s+a s+a s+ 1 (s+1)(s+2)

with @>0. Using (16), the cl eigenvalues are the poles of TI[/ K'JU'=
Dy '[D. N.J with TI=1/(s+1) and K'(: =n/d) proper and stable; then D, =
(s+ D(s+ (s + a)d with D, =d(s+ 3)(s+a) —n(s+2) and N.=d(s+5)(s+a)+
n(s — 1)(s + 2). Clearly, the ¢l eigenvalues are the poles of DT N'T](at —1), the
poles of U’ (at —2, —a) and the poles of K’ (in d). The order of the compensator
C(=D7'N,)is 3C =2+ 8K’ as can be seen directly from D, or by using (7). There
is no doubt that this is an unnecessarily high order for the controller, if stabilization
of the first-order plant is the only objective.

The results following Example 3 are correct as long as D,, [D, N_] are k¢ as
dictated by the Theorem; and this is generally true if K’ is chosen to be proper and
stable but otherwise arbitrary. It is of course known that for particular K’, the order of
C and the number of cl eigenvalues can be reduced. Such K’ exists when a stabilizing
controller of order less than &(X’°~ ! Y’) does exist. One way to determine such K’ is to
use (5) to derive:

K'=X'(C—Co)l +PC) D! (18)

which gives the required value of K’ so that starting from Cy: = X' "' Y’ to determine
another stabilizing controller C. In Example 3, C=b+1, b>0 is a stabilizing
controller of order zero, giving s+ b as the clep. Co=(s+ 5)/(s+ 3) as before.
Substituting in (18) the appropriate K’ = [b(s + 3) — 2](s + a}/(s + 2)(5 + b); note that
here M[I KU’ =(1/s+b)[s+ 3,5+ 5] Such K’ was found relatively easily here
because C(= b + 1) was given. In general, if C, is high, to find K’ so that the resulting
stabilizing controller C is of low order, is a non-trivial problem. It can be done by
requiring that TI[J K JU' =D, '[D, N_]is of as low order as possible (numerator
and denominator have common divisors} and then translating these conditions to
restrictions on K.

The cl eigenvalues depend on the poles of U’ (16). In general, the poles of U’ are
the polesof [X’ Y] and the polesof [~ N’ D] (6). It is however always possible to
choose U’ so that the poles of [X* Y] are those of [— N’ D’] in which case the
number of poles of U’ is reduced. In Example 3, this is the case if a = 2. This is also the
case when the state-space method is used (Doyle 1984, Antsaklis 1986); the poles of U’
are the poles of [X' Y] (or of [N’ D’]) equal to the zeros of |sI — (A4 + HC)|.
These, together with the zeros of [sf — (A4 + BF)| (poles of IT) and the poles of K’, are
the cl eigenvalues. H and F are the observer and the state feedback gains respectively.
If n is the order of the realization {4, B, C, E} of P used, there are 2n+ 0K ' closed-
loop eigenvalues. The order of C in general is ¢C = n + JK ' in this case. For particular
K’s, the order of C and the number of cl eigenvalues can of course be reduced as
indicated above,

In view of (15)

dc<ab; NJl=o[I KU’ (19)
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with equality holding when D, and N do not have polynomial common factors in the
numerator. If the initial stabilizing controller Co = X'~!Y" is of relatively high order,
then, if the desired C, which, say, solves an H™ optimization problem is of low order,
K’ has to cancel the excess dynamics in [I K'JU’ (this was the case in Example 3
when (18) was used); note that H*™ optimization gives K’ which is then used to
determine C. Care should be taken in the numerical determination of C from K’ in this
case, since in practice the cancellations will not be exact,

5. Concluding remarks

In view of the above, it is clear that dK’, when K’ is determined via an
optimization technique, say H >, can vary widely. It depends of course on P and the
appropriate C which solves the control design problem. However, its complexity can
be high or low depending on the initial choice for C,, X’, Y', N’, D' in the diophantine
(2) and D", N’, and it can vary significantly for the same P and C (see also (18)). The
suggested procedure in this case is to take [D'" N'TJ"and [0’ N’] equal to IP
(i.c. minimum) and try to use a C, of the lowest order possible, especially when it is
suspected that the desired C is of low order as well. This initial effort will pay
handsomely by deriving lower-order controllers when possible and avoiding compli-
cated calculations.

An interesting case, when many of the above drawbacks are avoided, is when P is
stable. Here, one usually selects X =1, Y=0, D’=1 and N’ = P in which case

C=(1-K'P)y 'K’ {20)

are the stabilizing controliers. The closed-loop eigenvalues are in this case the poles of

el ]

in view of (16). Here the cl eigenvalues and the order of C depend exclusively on K’
and P and not on choices which can be made arbitrarily. Notice that here C, =0,
certainiy of iow order. It is perhaps worth pointing out that this case of stable plants is
the case considered in the original H® paper by Zames (1981).
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