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Abstract

The notions of passivity and positive realness are fundamental concepts in classical control theory,
but the use of the terms has varied. For LTI systems, these twoconcepts capture the same essential
property of dynamical systems, that is, a system with this property does not generate its own energy but
only stores and dissipates energy supplied by the environment. This paper summarizes the connection
between these two concepts for continuous and discrete timeLTI systems. Beyond that, the paper sum-
marizes relationships between classes of strictly passivesystems and classes of positive real systems.
The more general framework of dissipativity is introduced to connect passivity and positive realness.
An application is included to demonstrate how these resultscan be applied to input-output pairing in
MIMO control systems. Two case studies are provided to demonstrate the performance of the proposed
methods.

1 INTRODUCTION

In our recent research we have pursued constructive techniques based on passivity theory to design networked-
control systems which can tolerate time delay and data loss, see e.g. Kottenstetteand Antsaklis (2007b) and
McCourt and Antsaklis (2012). As a result we have had to rediscover and clarify key relationships between
three classes of systems. The first class is passive and strictly passivesystems, which are characterized by
a time-based input-output relationship, see e.g. Zames (1966a,b) and Desoer and Vidyasagar (1975). The
second class is stable dissipative systems, which satisfy a time-based property that relates an input-output en-
ergy supply function to a state-based storage function, see e.g. Willems (1972a), Willems (1972b), Hill and
Moylan (1980), and Goodwin and Sin (1984). The third class is that of positive real and strictly positive real
systems, which are characterized by a frequency-based input-outputrelationship, see e.g. Anderson (1967),
Hitz and Anderson (1969), Tao and Ioannou (1990), Wen (1988b),and Haddad and Bernstein (1994). It is
noted in Willems (1972b) that, for the continuous time case, these relationships “are all derivable from the
same principles and are part of the same scientific discipline”. However, it isnot clear that such connections
have been fully exploited, although recently Haddad and Chellaboina (2008) provided an excellent exposi-
tion of some such connections. The goals of this paper are to (1) review theclassical notions of passivity,
dissipativity, and positive realness; (2) summarize existing relationships between these classes of systems
with appropriate references; and (3) provide original results to clarifythese relationships. Rather than at-
tempting to survey all major contributions to these fields, this paper instead reviews literature that addresses
the relationships between these concepts in order to identify discrepanciesand provide clarifying results and
remarks.

Classical Results:The notion of passivity originated in electrical circuit theory where circuitsmade up
of only passive components were known to be stable. It was also known that any two passive circuits could
be interconnected in feedback or in parallel and the resulting circuit wouldstill be passive, see e.g. Anderson
and Vongpanitlerd (1973). This compositionality property greatly reducesthe analysis required to analyze a
network of circuits and assess stability. The property of passivity itself is an energy-based characterization
of the input-output behavior of dynamical systems. A passive system is one that stores and dissipates energy
without generating its own. The notion of stored energy can be either a traditional physical notion of energy,
as it is with many physical systems, or a generalized energy, see Anderson and Vongpanitlerd (1973) and
Desoer and Vidyasagar (1975). Passivity and dissipativity were formalized for general nonlinear state space
systems in Willems (1972a,b). These papers provided results for passivity, specifically that passive systems
were stable and that the passivity property was preserved when systemswere combined in feedback or
parallel. Specific forms of dissipativity for nonlinear control affine systems were studied further in Hill and
Moylan (1976), Hill and Moylan (1977), and Hill and Moylan (1980). These notions were studied for more
general nonlinear systems in continuous time in Lin (1995) and Lin (1996) and in discrete time in Lin (1996)
and Lin and Byrnes (1994).
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As the focus of this survey is on the relationship between passive systems and positive real systems, the
Positive Real Lemma is of special importance. This is also known as the KYP Lemma which originated in
Kalman (1963) which used results from Yakubovich (1962) and Popov (1961). Later this lemma would be
used to develop linear matrix inequality (LMI) methods to demonstrate passivity for linear systems in Boyd
et al. (1994).

There are two particularly valuable survey papers, Ortega et al. (2001) and Kokotovic and Arcak (2001),
that cover the history of dissipativity theory in control. Both papers make a case for analyzing systems
using dissipativity due to its strong connection to physics and conservation of energy. A more recent paper
highlighting new advances in energy-based analysis is Ebenbauer et al.(2009). In Willems (2007), the
classical work in dissipativity was reassessed from a modern perspective. Strong introductions to passivity
can be found in the textbooks Khalil (2002) and van der Schaft (1999). The more general framework of
dissipativity is thoroughly covered in Bao and Lee (2007), Haddad and Chellaboina (2008), and Brogliato
et al. (2007).

Recent Progress:For passivity and dissipativity, progress has been made recently in numerous areas.
While passivity based control has traditionally been applied to electrical circuits, see e.g. Anderson and
Vongpanitlerd (1973), and robotic manipulators, see e.g. Spong et al. (2006), recently this approach has
been expanded to chemical processes, where passivity can be used todesign robust controllers as in Bao
et al. (2003) and Bao and Lee (2007). Passivity has also been used as a design tool for coordination in
multi-agent systems in Chopra and Spong (2006b) and Arcak (2007).

One particular application area that has seen recent growth is in telemanipulation systems where a human
user operates a robotic arm remotely and is aided by tactile feedback. The use of passivity in this field began
with the work in Anderson and Spong (1988) using the wave variable transformation in Fettweis (1986).
This approach was greatly expanded through numerous papers, see e.g. Niemeyer and Slotine (1991, 2004),
Stramigioli et al. (2002b), Secchi et al. (2003), Chopra et al. (2008), Hirche and Buss (2012). The study
of telemanipulation has led to promising approaches for control of passivesystems over a network, see e.g.
Chopra and Spong (2006a), Kottenstette and Antsaklis (2007b), Kottenstette et al. (2011), and Hirche et al.
(2009).

Another area that has seen much growth in recent years is the study of passivity and dissipativity for
switched or hybrid systems. Passivity has been considered for continuous time in Zefran et al. (2001) and
discrete time in Bemporad et al. (2005) and Bemporad et al. (2008) switchedsystems. These notions were
studied for the more general framework of dissipativity for switched systems in continuous time in Zhao
and Hill (2008) and discrete time in Liu and Hill (2011). The related notion of passivity indices for switched
systems was studied in McCourt and Antsaklis (2010). Dissipativity was considered for a class of hybrid
systems in Teel (2010) and a class of left continuous systems in Haddad and Hui (2009).

Lastly, it should be mentioned that there has been much recent work on passivity for sampled data
systems. This work in this area has taken two distinct approaches. The first approach is to study conditions
under which passivity is guaranteed when a continuous time system is discretized by the application of
the ideal sampler and zero-order hold in de la Sen (2000) and Oishi (2010). The second approach is to
compensate for a potential loss of passivity due to the zero-order hold asin Stramigioli et al. (2002a),
Costa-Castello and Fossas (2006), and Kottenstette and Antsaklis (2007b).

Main Results of the Paper:While passivity and dissipativity are typically applied to general nonlinear
systems, we choose to focus on the linear time invariant (LTI) case to emphasize the connection to positive
real systems, as this notion only applies to LTI systems. Some of the basic results covered in this paper are
summarized in Fig. 1. The foundational relationship is that, for LTI systems, the property of passivity is
equivalent to the property of positive realness. Under mild technical assumptions, these systems are Lya-
punov stable. For LTI systems,strict passivityis equivalent to strict positive realness. For asymptotically
stable systems, strongly positive real is equivalent to strictly input passive (SIP). This will be covered in
Section 3. Other relationships will be covered that relateSIP, strictly output passive (SOP), and very strictly
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Figure 1: This Venn Diagram shows relationships between passivity, positive realness, andL2 stability for
continuous and discrete timeLTI systems.

passive (VSP) to notions of stability and of state strict passivity. While the figure shows thatSOPsystems
are passive andLm

2 (lm2 ) stable it should be noted that this relationship is sufficient only. Systems thatare
passive andLm

2 (lm2 ) stable are not necessarilySOP. This fact will be demonstrated in Section 4 with a coun-
terexample. Also covered in that section is another connection from Fig. 1,that systems that are bothSIP
andLm

2 (lm2 ) stable must beSOP. Some preliminary results from this paper were presented in Kottenstette
and Antsaklis (2010). The current paper expands on those results and presents additional clarifying results.
A more complete version of this paper Kottenstette et al. (2014) includes more results related to energy-
based control. The current paper covers a subset of these results inorder to present an original application
in passivity based control.

Before the main results of the paper are presented, definitions of the relevant properties are provided in
Section 2. This section begins with some mathematical preliminaries and then moves on to define passivity,
dissipativity, and positive realness. Section 3 includes some fundamental results involving passive and
positive real systems. The main results of the paper are given in Section 4.Section 5 demonstrates how to
use some of the results discussed in this paper by applying them to a passivity-based input-output pairing
framework. Some preliminaries for this approach are covered and then twocase studies are provided to
demonstrate achievable performance. Concluding remarks are providedin Section 6.

2 Defining the Properties of Passivity, Dissipativity and Positive Realness

2.1 Mathematical Preliminaries

This paper covers both the continuous time and discrete time cases. When it is clear which time series is
relevant or results apply to both continuous and discrete time, the time series is denotedT . In continuous
time this isT = R

+, while for discrete timeT = Z
+. The space of signals of dimensionm with finite

energy in continuous time isLm
2 andlm2 in discrete time. When the context is clear, the general spaceH

will be used to denote either. A continuous time signalx : T → R
m is in H (x ∈ H) if the signal has finite

Lm
2 -norm,

‖x‖22 =
∫ ∞

0
xT(t)x(t)dt < ∞. (1)
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Likewise, a discrete time signalx : T → R
m is in H (x ∈ H) if the signal has finitelm2 -norm,

‖x‖22 =
∞
∑

i=0

xT(i)x(i) < ∞. (2)

The extended signal spaces,Lm
2e andlm2e, can be defined by introducing the truncation operator. The trunca-

tion of a continuous time signalx(t) to timeT is indicatedxT (t),

xT (t) =

{

x(t), t < T,

0, t ≥ T

The truncation operator is

xT (i) =

{

x(i), i < T,

0, i ≥ T

in discrete time. A continuous time signalx : T → R
m is in He if

‖xT ‖22 =
∫ T

0
xT(t)x(t)dt < ∞, ∀T ∈ T . (3)

Likewise, a discrete time signalu : T → R
m is in He if

‖xT ‖22 =
T−1
∑

i=0

xT(i)x(i) < ∞, ∀T ∈ T . (4)

The inner product of signalsy andu over the interval[0, T ] in continuous time is denoted

〈y, u〉T =

∫ T

0
yT(t)u(t)dt. (5)

Similarly the inner product over the discrete time interval{0, 1, . . . , T − 1} is denoted

〈y, u〉T =
T−1
∑

0

yT(i)u(i). (6)

A systemH is a relation onHe. For u ∈ He, the symbolHu denotes an image ofu underH (Zames
(1966a)). FurthermoreHu(t) denotes the value ofHu at continuous timet while Hu(i) denotes the value
of Hu at discrete timei. The following two definitions coverLm

2 stability in continuous time andlm2 stability
in discrete time.

Definition 1 A continuous time dynamical systemH : He → He isLm
2 stable if

u ∈ Lm
2 =⇒ Hu ∈ Lm

2 .

Definition 2 A discrete time dynamical systemH : He → He is lm2 stable if

u ∈ lm2 =⇒ Hu ∈ lm2 .
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For both continuous and discrete time finite-gainLm
2 (lm2 ) stability can be defined by the following

input-output condition. For all timeT ∈ T and for all inputsu ∈ H, a systemH is finite-gainLm
2 (lm2 )

stable if there existγ > 0 andβ such that

‖(Hu)T ‖2 ≤ γ‖uT ‖2 + β. (7)

The notion of finite-gain stability can be used to show stability of feedback interconnections using the small
gain theorem, see e.g. van der Schaft (1999) or Isidori (1999). Thesmall gain theorem has an important
relationship to the passivity theorem for feedback interconnections that was first written in Anderson (1972).
There has been some effort recently to combine the benefits of the passivity theorem and small gain theorem,
see e.g. Griggs et al. (2007) or Forbes and Damaren (2010).

Another notion related to finite-gain is that of a system beingnon-expansive(van der Schaft (1999)). A
system isnon-expansiveif there exist constantŝγ > 0 andβ̂ such that

‖(Hu)T ‖22 ≤ γ̂2‖uT ‖22 + β̂. (8)

Remark 1 ((van der Schaft 1999, p. 4), (Kottenstette and Antsaklis 2007b, Remark 1)) A continuous time
(discrete time) systemH is non-expansiveiff it is finite-gainLm

2 (lm2 ) stable.

For the remainder of the paper, when results involvingnon-expansiveor finite-gainLm
2 (lm2 )-stability

arise, the notion offinite-gainLm
2 (lm2 )-stabilitywill be used without loss of generality.

This paper focuses onLTI systems that are real and causal withm inputs andm outputs. A system in
continuous time can be described by a proper square (m ×m) transfer function matrixH(s). This system

can be equivalently described by a minimal state space representationΣ
△
= {A, B, C, D}, with state

x ∈ R
n, inputu ∈ R

m, and outputy ∈ R
m, that can be written

ẋ(t) = Ax(t) +Bu(t), (9)

y(t) = Cx(t) +Du(t) (10)

where
H(s) = C(sI −A)−1B +D. (11)

Remark 2 A proper continuous time LTI systemH(s) is Lm
2 stable if and only if all poles have negative

real part (Antsaklis and Michel 2006, Theorem 9.5 p.488). This is referred to as uniform BIBO stability.
Equivalently, the minimal state space realizationΣ is asymptotically stable (Antsaklis and Michel 2006,
Theorem 9.4 p.487).

A discrete timeLTI system can be described by a proper square (m×m) transfer function matrixH(z).

This system has an equivalent minimal state space realizationΣz
△
= {A, B, C, D}, with statex ∈ R

n,
inputu ∈ R

m, and outputy ∈ R
m, that can be written

x(k + 1) =Ax(k) +Bu(k), (12)

y(k) =Cx(k) +Du(k) (13)

where
H(z) = C(zI −A)−1B +D. (14)

Remark 3 A discrete time LTI systemH(z) is lm2 stable if and only if all poles have magnitude less than
one (i.e. they are inside the unit circle of the complex plane) (Antsaklis and Michel 2006, Theorem 10.17
p.508). Again, this result is known as uniform BIBO stability. Equivalently, thecorresponding minimal state
space realizationΣz is asymptotically stable (Antsaklis and Michel 2006, Theorem 10.16 p.508).
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2.2 Passive Systems

A system is passive if it only stores and dissipates energy without generating its own energy. This is captured
by an inequality where the energy supplied to the system by its environment,〈Hu, u〉T , is an upper bound
on the loss of stored energy,−β. From an alternative perspective, the maximum energy that can be extracted
from a system,−〈Hu, u〉T , is bounded above by the constantβ that represents initially stored energy.

Definition 3 Consider a continuous or discrete time LTI systemH : He → He. Considering all inputs
u ∈ He and all timesT ∈ T , H is

i) passiveif ∃β such that
〈Hu, u〉T ≥ −β, (15)

ii) strictly input passive(SIP) if ∃δ > 0 and∃β such that

〈Hu, u〉T ≥ δ‖uT ‖22 − β, (16)

iii) strictly output passive(SOP) if ∃ǫ > 0 and∃β such that

〈Hu, u〉T ≥ ǫ‖(Hu)T ‖22 − β, (17)

iv) very strictly passive(VSP) if ∃ǫ > 0, δ > 0 and∃β such that

〈Hu, u〉T ≥ δ‖uT ‖22 + ǫ‖(Hu)T ‖22 − β, (18)

Remark 4 There have been many subtle differences in the naming of these definitionsin the literature.
In some references (Desoer and Vidyasagar (1975), for example)strictly input passivewas referred to as
strictly passive. This will be avoided asstrictly passiveoften refers tostate strictly passive. Other references
(e.g. Khalil (2002)) use the termsinput strictly passiveand output strictly passive, however, these are
equivalent to the definitions ofstrictly input passiveandstrictly output passiveprovided here.

Remark 5 If H is linear and initial conditions are assumed to be zero, thenβ can be set equal to zero
without loss of generality in regards to passivity. When initial conditions are not zero,β is a generalized
measure of initially stored energy. IfH is causal and finite-gainLm

2 (lm2 ) stable then the notion ofpositive
given in (Desoer and Vidyasagar 1975, p.174) is equivalent topassivegiven here (assumingHu(0) = 0).

Passivity is preserved when two passive systems are combined in either feedback or parallel, see Khalil
(2002) or van der Schaft (1999). This provides valuable stability results for small and large interconnections
of dynamical systems. An important related problem is to determine conditions under which a system can
be made passive so that these stability results may be applied. The necessary conditions for passivating a
nonlinear system can be found for continuous time in Byrnes et al. (1991)and for discrete time in Byrnes
and Lin (1994).

2.3 Dissipative Systems

The property of dissipativity is a generalization of passivity that relates internally stored energy of a system
to a generalized energy supply function,s(u, y). The internally stored energy is measured by an energy
storage functionV (x) that is analogous to a Lyapunov function. As a measure of energy,V (x) must be
non-negative,V (x) ≥ 0, ∀x. Without loss of generality, it is assumed thatx = 0 is an equilibrium and
V (x) = 0 at this point. As with passivity, the discussion of dissipativity can be generalized to non-linear
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systems, however for simplicity we will focus on the linear time invariant case. For LTI systems it can be
assumed thatV (x) has a quadratic form, see Khalil (2002),

V (x) = xTPx, (19)

whereP = PT > 0. The following definitions cover dissipativity and(Q,S,R)-dissipativity in continuous
time and discrete time.

Definition 4 (Willems (1972a)) A continuous time systemΣ is dissipative with respect to the energy supply
rates(u, y) if there exists a non-negative storage functionV (x) (19), such that for all input signalsu ∈ R

m,
all trajectoriesx ∈ R

n, and all t2 ≥ t1 the following inequality holds

V (x(t2)) ≤ V (x(t1)) +

∫ t2

t1

s(u(t), y(t))dt. (20)

Additionally, the systemΣ is (Q,S,R)-dissipative if it is dissipative with respect to

s(u, y)=yTQy+2yTSu+uTRu, (21)

whereQ = QT andR = RT.

Dissipativity can be defined in discrete time with supply rates(u, y) and energy storage functionV (x),
such thatV (x) ≥ 0 for all x andV (x) = 0 for x = 0,

V (x) = xTPx. (22)

Definition 5 (Goodwin and Sin 1984, Appendix C) A discrete time systemΣz is dissipative with respect to
the supply rates(u, y) iff there exists a matrixP = PT > 0, such that for allx ∈ R

n, all timesl, j ∈ T s.t.
l > j ≥ 0, and all input functionsu ∈ He

V (x[l]) ≤ V (x[j]) +
l−1
∑

i=j

s(u[i], y[i]), holds. (23)

Additionally, the systemΣ is (Q,S,R)-dissipative if it is dissipative with respect to supply rate (21) where
Q = QT andR = RT.

Passivity and some related definitions can be given with respect to the definition of (Q,S,R)-dissipativity.

Lemma 1 (Kottenstette and Antsaklis (2010)) Consider a minimal continuous time systemΣ or a discrete
time systemΣz that is(Q,S,R)-dissipative. This system

i) is passive iff the system is

(0,
1

2
I, 0)-dissipative, (24)

ii) is strictly input passive iff∃δ > 0 such that the system is

(0,
1

2
I,−δI)-dissipative, (25)

iii) is strictly output passive iff∃ǫ > 0 such that the system is

(−ǫI,
1

2
I, 0)-dissipative, (26)
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iv) is very strictly iff ∃ǫ > 0, δ > 0 such that the system is

(−ǫI,
1

2
I,−δI)-dissipative, (27)

v) isfinite-gainLm
2 (lm2 ) stableiff ∃γ̂ > 0 such that the system is

(−I, 0, γ̂2I)-dissipative. (28)

Remark 6 The reason that these conditions are necessary and sufficient is that the systemsΣ andΣz are
minimal realizations ofH(s) andH(z) respectively. This implies they are controllable and observable and
therefore satisfy either (Hill and Moylan 1976, Theorem 1) or (Hill and Moylan 1980, Theorem 16).

From the above discussion the following two corollaries can be stated in continuous and discrete time.
These results represent a generalization of the Positive Real Lemma (KYPLemma) from necessary and
sufficient conditions for passivity to necessary and sufficient conditions for (Q,S,R)-dissipativity.

Lemma 2 For continuous time LTI systems (9)-(10), a necessary and sufficient test for Definition 1 to hold
is that∃P = PT > 0 such that the following LMI is satisfied:

[

ATP + PA− Q̂ PB − Ŝ

(PB − Ŝ)T −R̂

]

≤ 0 , (29)

in which

Q̂ = CTQC (30)

Ŝ = CTS + CTQD (31)

R̂ = DTQD + (DTS + STD) +R. (32)

Lemma 3 (Goodwin and Sin 1984, Lemma C.4.2) For discrete time LTI systems (12)-(13), a necessary and
sufficient test for Definition 1 to hold is that∃P = PT > 0 such that the following LMI is satisfied:

[

ATPA− P − Q̂ ATPB − Ŝ

(ATPB − Ŝ)T −R̂+BTPB

]

≤ 0 , (33)

in whichQ̂, Ŝ, andR̂ are specified by (30), (31), and (32), respectively.

The matrix inequalities covered in this paper are linear in the decision variable (P ) so they can be solved
using traditionalLMI optimization methods in Boyd et al. (1994).

2.4 Positive Real Systems

The property of positive realness is a condition on the transfer function of a LTI system. A minimal transfer
function with this property must be BIBO stable, minimum phase, and have relative degree of zero or one.
Positive realness can be shown by an equivalent frequency based condition.

Definition 6 ((Anderson and Vongpanitlerd 1973, p.51)(Tao and Ioannou 1988,Definition 1.1)(Haddad
and Chellaboina 2008, Definition 5.18)) Consider a continuous time LTI system represented by anm ×
m rational and proper transfer function matrixH(s). This system is positive real (PR) if the following
conditions are satisfied:
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i) All elements ofH(s) are analytic inRe[s] > 0.

ii) H(s) is real for all real positive values ofs.

iii) HT(s∗) +H(s) ≥ 0 for Re[s] > 0.

FurthermoreH(s) is strictly positive real (SPR) if∃ǫ > 0 s.t. H(s − ǫ) is positive real. Finally,H(s) is

strongly positive real ifH(s) is strictly positive real andD +DT > 0 whereD
△
= H(∞).

It should be noted that the definition ofPR implies that the poles ofH(s) are in the closed left-half
plane, i.e. a minimal internal realization of the system is Lyapunov stable. The definition of SPRimplies
that the poles ofH(s) are in the open left-half plane, i.e. the system isLm

2 stable with a minimal internal
realization that is asymptotically stable. The conditions forPRandSPRcan be verified directly or the test
can be simplified to a frequency domain condition.

Theorem 1 ((Willems 1972b, Theorem 1)(Anderson and Vongpanitlerd 1973, p.216)(Haddad and Chellaboina
2008, Theorem 5.11)) LetH(s) be a square, proper, and real rational transfer function.H(s) is positive
real iff the following conditions hold:

i) All elements ofH(s) are analytic inRe[s] > 0.

ii) HT(−jω) +H(jω) ≥ 0, ∀ω ∈ R for whichjω is not a pole for any element ofH(s).

iii) Any pure imaginary polejωo of any element ofH(s) is a simple pole, and the associated residue matrix

Ho
△
= lims→jωo(s− jωo)H(s) is nonnegative definite Hermitian (i.e.Ho = H∗

o ≥ 0).

A similar test is given for strict positive realness.

Theorem 2 (Tao and Ioannou 1988, Theorem 2.1) LetH(s) be am × m, real rational transfer function
and supposeH(s) is non-singular. ThenH(s) is strictly positive real iff the following conditions hold:

i) All elements ofH(s) are analytic inRe[s] ≥ 0.

ii) H(jω) +HT(−jω) > 0 for ∀ω ∈ R.

iii) Either limω→∞[H(jω) +HT(−jω)] = D + DT > 0 or if D + DT ≥ 0 thenlimω→∞ ω2[H(jω) +
HT(−jω)] > 0.

To finish the discussion on continuous time positive real systems, we state the Positive Real Lemma and
the Strict Positive Real Lemma.

Lemma 4 ((Anderson 1967, Theorem 3), (Anderson and Vongpanitlerd 1973, p.218)) LetH(s) be anm×m
matrix of real proper rational functions of a complex variables. LetΣ be a minimal realization ofH(s).
ThenH(s) is positive real iff there existsP = PT > 0 s.t.

[

ATP + PA PB − CT

(PB − CT)T −(DT +D)

]

≤ 0 (34)

Lemma 5 (Sun et al. 1994, Lemma 2.3) LetH(s) be anm×m matrix of real proper rational functions of
a complex variables. LetΣ be a minimal realization ofH(s). ThenH(s) is strongly positive real iff there
existsP = PT > 0 s.t.Σ is asymptotically stable and

[

ATP + PA PB − CT

(PB − CT)T −(DT +D)

]

< 0. (35)
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This section up to this point covered continuous time positive real systems. A similar presentation can
be made for discrete time systems.

Definition 7 (Hitz and Anderson (1969), Xiao and Hill (1999), (Haddad and Chellaboina 2008, Defini-
tion 13.16) (Tao and Ioannou 1990, Definition 2.4, 2.5)) A square transfer function matrixH(z) of real
rational functions is a positive real matrix if:

i) all the entries ofH(z) are analytic in|z| > 1 and

ii) Ho = H(z) +HT(z∗) ≥ 0, ∀|z| > 1.

FurthermoreH(z) is strictly positive real if∃ρ (0 < ρ < 1) s.t.H(ρz) is positive real.

Remark 7 For the discrete time case, there is no need to define strongly positive real. The definition of

strictly positive real implies that(D +DT) > 0 whereD
△
= H(∞). This satisfies the analogous definition

for strongly positive real for discrete time systems, see (Lee and Chen 2000, Remark 4). The terms “strictly
positive real” and “strongly positive real” may be used interchangeably fordiscrete time systems.

The test for a discrete time positive real system can be simplified to a frequency test as follows:

Theorem 3 ((Hitz and Anderson 1969, Lemma 2), (Haddad and Chellaboina 2008,Theorem 13.26)) Let
H(z) be a square, real rationalm × m transfer function matrix.H(z) is positive real iff the following
conditions hold:

i) No entry ofH(z) has a pole in|z| > 1.

ii) H(ejθ) +HT(e−jθ) ≥ 0, ∀θ ∈ [0, 2π], in whichejθ is not a pole of any entry ofH(z).

iii) If ejθ̂ is a pole of any entry ofH(z) it is at most a simple pole, and the residue matrixHo
△
=

lim
z→ejθ̂

(z − ejθ̂)G(z) is nonnegative definite.

The test for a strictly positive real system can be simplified to a frequency test as follows:

Theorem 4 (Tao and Ioannou 1990, Theorem 2.2) LetH(z) be a square, real rationalm × m transfer
function matrix in whichH(z) +HT(z∗) has rankm almost everywhere in the complexz-plane.H(z) is
strictly positive real iff the following conditions hold:

i) No entry ofH(z) has a pole in|z| ≥ 1.

ii) H(ejθ) +HT(e−jθ) ≥ ǫI > 0, ∀θ ∈ [0, 2π], ∃ǫ > 0.

Finally, we state the Positive Real Lemma and the Strictly Positive Real Lemma for the discrete time
case.

Lemma 6 (Hitz and Anderson 1969, Lemma 3) LetH(z) be ann × n matrix of real, proper, and rational
transfer functions and letΣz be a minimal stable realization ofH(z). ThenH(z) is positive real iff there
existsP = PT > 0 s.t.

[

ATPA− P ATPB − CT

(ATPB − CT)T −(DT +D) +BTPB

]

≤ 0. (36)

Lemma 7 ((Lee and Chen 2000, Corollary 2)(Haddad and Bernstein 1994, Lemma 4.2)) LetH(z) be an
n×n matrix of real, proper, and rational transfer functions and letΣz be an asymptotically stable realization
ofH(z). ThenH(z) is strictly positive real iff there existsP = PT > 0 s.t.

[

ATPA− P ATPB − CT

(ATPB − CT)T −(DT +D) +BTPB

]

< 0. (37)
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3 Preliminary Results for Passivity, Dissipativity, and Positive Realness

Preliminary results related to the properties of passivity and positive realness are covered in this section. The
following result from Desoer and Vidyasagar (1975) summarizes a series of frequency-based conditions that
are equivalent to passivity or strict input passivity.

Theorem 5 (Desoer and Vidyasagar 1975, p.174-175) Consider a LTI systemH which has a minimal
realizationΣ (Σz) that is asymptotically stable.

(i) If H is a continuous time system then

(a) H is passive iffH(jω) +HT(−jω) ≥ 0, ∀ω ∈ R.

(b) H is strictly input passive iff∃δ > 0 s.t.

H(jω) +HT(−jω) ≥ δI, ∀ω ∈ R. (38)

(ii) If H is a discrete time system then

(a) H is passive iffH(ejθ) +HT(e−jθ) ≥ 0, ∀θ ∈ [0, 2π].

(b) H is strictly input passive iff∃δ > 0 s.t.

H(ejθ) +HT(e−jθ) ≥ δI, ∀θ ∈ [0, 2π]. (39)

While there are existing results for frequency based conditions for passivity and strict input passivity,
there isn’t an established test for strict output passivity. One such condition is proposed in the following
theorem.

Theorem 6 Consider a single-input single-output LTI strictly output passive system with transfer function
H(s) (H(z)), real impulse responseh(t) (h(k)), and corresponding frequency response:

H(jω) = Re{H(jω)}+ jIm{H(jω)} (40)

in which Re{H(jω)} = Re{H(−jω)} for the real part of the frequency response andIm{H(jω)} =
−Im{H(−jω)} for the imaginary part of the frequency response. IfH is SOP then the constantǫ in the
definition may be found by the following inequality:

0 < ǫ ≤ inf
ω∈[0,∞)

Re{H(jω)}
Re{H(jω)}2 + Im{H(jω)}2 (41)

for the continuous time case. Similarly for discrete time case,

H(ejθ) = Re{H(ejθ)}+ jIm{H(ejθ)} (42)

in whichRe{H(ejθ)} = Re{H(e−jθ)} in which0 ≤ θ ≤ π for the real part of the frequency response and
Im{H(ejθ)} = −Im{H(e−jθ)} for the imaginary part of the frequency response. The constantǫ for (17)
satisfies:

0 < ǫ ≤ min
θ∈[0,π]

Re{H(ejθ)}
Re{H(ejθ)}2 + Im{H(ejθ)}2 (43)

for the discrete time case.
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Proof: Since a strictly output passive system has a finite integrable (summable) impulseresponse (i.e.
∫∞

0 h2(t)dt < ∞ (
∑∞

i=0 h
2[i] < ∞)) then the condition forSOP(17) can be written as
∫ ∞

−∞

H(jω)|U(jω)|2dω≥ǫ

∫ ∞

−∞

|H(jω)|2|U(jω)|2dω (44)

for the continuous time case or
∫ π

−π
H(ejθ)|U(ejθ)|2dθ ≥ ǫ

∫ π

−π
|H(ejθ)|2|U(ejθ)|2dθ (45)

for the discrete time case. (44) can be written in the following simplified form:
∫ ∞

−∞

Re{H(jω)}|U(jω)|2dω ≥ (46)

ǫ

∫ ∞

−∞

(Re{H(jω)}2 + Im{H(jω)}2)|U(jω)|2dω

in which (41) clearly satisfies (46). Similarly (45) can be written in the followingsimplified form:
∫ π

−π
Re{H(ejθ)}|U(ejθ)|2dθ ≥ (47)

ǫ

∫ π

−π
(Re{H(ejθ)}2 + Im{H(ejθ)}2)|U(ejθ)|2dθ

in which (43) clearly satisfies (47).�
The frequency based conditions for passivity and strict input passivity (Theorem 5) appear to be closely

related to the frequency based conditions for positive realness and strong positive realness.

Remark 8 It is important to note that the valueǫ in (41) or (43) corresponds to the output feedback passivity
(OFP) indexρ, see e.g. Bao and Lee (2007) or McCourt and Antsaklis (2009). In (Bao and Lee 2007, p.29),
an alternative method of calculating the OFP index is given for minimum phase linear systems. We did not
pose such constraints on the system when calculating this value using (41) or (43).

Lemma 8 Let H(s) (with a corresponding minimal realizationΣ) be am × m, real rational transfer
function that is non-singular. Then the following are equivalent:

i) H(s) is strongly positive real

ii) Σ is asymptotically stable and strictly input passive s.t.

H(jω) +HT(−jω) ≥ δI > 0, ∀ω ∈ R (48)

Proof: ii =⇒ i:
SinceΣ is asymptotically stable then all poles are in the open left half plane, thereforeTheorem 2-i is
satisfied. Next (48) clearly satisfies Theorem 2-ii. Also, (48) implies thatD+DT > δI > 0 which satisfies
2-iii which satisfies the final condition to be strictly positive real and also strongly positive real as noted in
Definition 6.
i =⇒ ii:
First we note that Theorem 2-i impliesΣ will be asymptotically stable. Next, from Definition 6 we note that
∃δ1 > 0 s.t.

HT(−j∞) +H(j∞) = DT +D ≥ δ1I > 0

13



Lastly, we assume that∃δ2 ≤ 0 s.t.

HT(−jω) +H(jω) ≥ δ2I, ∀ω(−∞,∞) (49)

however this contradicts Theorem 2-ii therefore∃δ2 > 0 s.t. (49) is satisfied which implies (48) is satisfied
in which δ = min{δ1, δ2} > 0. �

Remark 9 Note that Lemma 8-ii is equivalent toΣ being asymptotically stable andH(s) being strictly
input passive as stated in Theorem 5-ib.

The previous development will be given for discrete time systems. Recall that the definition for strictly
positive real and strongly positive real are equivalent in discrete time.

Lemma 9 Let H(z) (with a corresponding minimal realizationΣz) be a square, real rationalm × m
transfer function matrix in whichH(z) + HT(z∗) has rankm almost everywhere in the complexz-plane.
Then the following are equivalent:

i) H(z) is strictly positive real

ii) Σz is asymptotically stable and strictly input passive s.t.

H(ejθ) +HT(e−jθ) ≥ δI, ∀θ ∈ [0, 2π] (50)

Proof: ii =⇒ i:
SinceΣz is asymptotically stable then all poles are strictly inside the unit circle, thereforeTheorem 4-i is
satisfied. Next (50) clearly satisfies Theorem 4-ii.
i =⇒ ii:
First we note that Theorem 4-i impliesΣz will be asymptotically stable. Finally Theorem 4-ii clearly satisfies
(50).�

4 Main Results

4.1 Connection Between Passive and Positive Real

This section covers the important relationships presented in this paper. Thisfirst part focuses on the re-
lationships between the various definitions of passive and positive real. The following lemma covers the
connection between passive and positive real for continuous timeLTI systems. Recall that positive real is
defined for square transfer functions that are assumed to have zero initial conditions so the connection will
be shown for zero initial conditions. The next result is the connection between strongly positive real and
strictly input passive for asymptotically stable systems. The relationship between strictly passive and strictly
positive real will not be covered but the reader is directed to Haddad and Chellaboina (2008) or Khalil (2002)
for more details. The remainder of this subsection cover these connectionsfor the discrete time case.

Lemma 10 Let H(s) be anm × m matrix of real, proper, and rational transfer functions of a complex
variables. LetΣ be a minimal realization ofH(s). Denoteh(t) as them×m impulse response matrix of
H(s) from which the outputy(t) can be computed by,

y(t) =

∫ t

0
h(t− τ)u(τ)dτ.

Then the following statements are equivalent:

14



i) The transfer functionH(s) is positive real.

ii) There existsP = PT > 0 to satisfy the Positive Real Lemma (34) .

iii) The systemΣ is (0, 12I, 0)-dissipative, i.e.∃P = PT > 0 s.t. (29) is satisfied.

iv) The system is passive, i.e.∀T
∫ T

0
yT(t)u(t)dt ≥ 0,

for zero initial conditions.

Proof: i) ⇔ ii): Stated in Lemma 4.
iii) ⇔ iv): Remark 5 states that iv) is an equivalent test for passivity and Corollary 2 states that iii) is an
equivalent test for passivity when(Q,S,R) = (0, 12I, 0).
ii) =⇒ iii): A passive systemH(s) is also passive iffkH(s) is passive for∀k > 0. Therefore (29) for
kH(s) in whichΣ = {A,B, kC, kD} and(Q,S,R) = (0, 12I, 0), Q̂ = 0, Ŝ = k

2C
T, R̂ = k

2 (D
T +D):

[

ATP + PAT PB − k
2C

T

(PB − k
2C

T)T −k
2 (D

T +D)

]

≤ 0 , (51)

which fork = 2 satisfies (34).
iii) =⇒ ii): The converse argument can be made in which a positive real systemH(s) is positive real iff
kH(s) is positive real∀k > 0 in which we choosek = 1

2 . �

Remark 10 The key to the proof was connecting the work of Anderson and Vongpanitlerd (1973), Desoer
and Vidyasagar (1975) and Hill and Moylan (1980). Doing so highlights the connection between positive
real system theory and dissipative system theory. This connection was partially made previously in (Willems
1972b, Theorem 1) and Desoer and Vidyasagar (1975). Similar connections are discussed recently in (Had-
dad and Chellaboina 2008, Theorem 5) which relied on Parseval’s Theorem. The benefit of the approach
in the current paper is that it does not rely on Parseval’s Theorem which cannot be applied to systems with
poles on the imaginary axis. As a result, the connection between passive systems and positive real systems
holds for systems with poles on the imaginary axis. Finally, it should be noted that this result was given
previously with a different proof in Brogliato et al. (2007).

Lemma 11 Let H(s) be anm × m matrix of real, proper, and rational transfer functions of a complex
variables, with H(∞) < ∞. LetΣ be a minimal realization ofH(s). Furthermore we denoteh(t) as an
m×m impulse response matrix ofH(s) in which the outputy(t) is computed as follows:

y(t) =

∫ t

0
h(t− τ)u(τ)dτ

Then the following statements are equivalent:

i) The transfer functionH(s) is strongly positive real.

ii) There existsP = PT > 0 to satisfy the strict Positive Real Lemma (35).

iii) Σ is asymptotically stable and(0, 12 ,−δI)-dissipative, i.e.∃P = PT > 0 such that (29) is satisfied, i.e.
the system is strictly input passive andLm

2 stable.
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iv) Σ is asymptotically stable, and for zero initial conditions (y(0) = 0),
∫ ∞

0
yT(t)u(t) ≥ δ‖u(t)‖22

in whichδ = inf−∞≤ω≤∞ Re{H(jω)} for the single input single output case.

Furthermore, iii) implies that for(Q,S,R) = (−ǫI, 12I, 0) there∃P = PT > 0 s.t. (29) is also satisfied
(strictly output passive). Thus ify(0) = 0 then

∫ ∞

0
yT(t)u(t)dt ≥ ǫ‖y(t)‖22.

Remark 11 In order for the equivalence between strongly positive real and strictly input passive to be
stated, the strictly input passive system must also have finite gain (i.e.Σ is asymptotically stable). For
example the realization forH(s) = 1 + 1

s , Σ = {A = 0, B = 1, C = 1, D = 1}, δ = 1 is strictly input
passive but is not asymptotically stable. HoweverH(s) = s+b

s+a , Σ = {A = −a,B = (b − a), C = D =

1}, δ = min{1, b
a} is both strictly input passive and asymptotically stable for alla, b > 0.

Proof: i) ⇔ ii): Stated in Lemma 5.
ii) ⇔ iv): Stated in Lemma 8.
iii) ⇔ iv): Stated in Definition 1.�

Remark 12 It is known that if anLm
2 (lm2 ) stable system is strictly input passive then it is also strictly-output

passive (van der Schaft 1999, Remark 2.3.5) , the converse however, is not always true (i.e.inf∀ω Re{H(jω)}
is zero for strictly proper (strictly output passive) systems). It has beenshown for the continuous time case
(van der Schaft 1999, Theorem 2.2.14) and discrete time case ((Kottenstette and Antsaklis 2007b, Theo-
rem 1) and (Goodwin and Sin 1984, Lemma C.2.1-(iii))) that a strictly outputpassive system is passive and
Lm
2 (lm2 ) stable but it remains to be shown if the converse is true or not true. Indeed, we can show that an

infinite number of continuous time and discrete time linear time invariant systems do exists which are both
passive andLm

2 (lm2 ) stable and are neither strictly output passive nor strictly input passive.

Theorem 7 Let H : He → He (in which y = Hu, y(0) = 0, and for the case when a state-space
description exists forH that it is zero-state observable (y = 0 implies that the statex = 0) and there exists
a positive definite storage functionβ(x) > 0, x 6= 0, β(0) = 0) have the following properties:

a) ‖yT ‖2 ≤ γ‖uT ‖2

b) 〈y, u〉T ≥ −δ‖uT ‖22
c) There exists a non-zero norm inputu such that〈y, u〉T = −δ‖uT ‖22 and‖yT ‖22 > δ2‖uT ‖22 for δ < γ.

Then the following systemH1, in which the outputy1 is computed usingy1 = y + δu has the following
properties:

I. H1 is passive.

II. H1 is Lm
2 (lm2 ) stable.

III. H1 is not strictly output passive (also not strictly input passive )
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Proof: 7-I: Solving for the inner-product betweeny1 andu we have

〈y1, u〉T = 〈y, u〉T + δ‖uT ‖22 ≥ (−δ + δ)‖uT ‖22 = 0

7-II: Solving for the extended-two-norm fory1 we have

‖(y1)T ‖22 = ‖(y + δu)T ‖22 ≤ ‖yT ‖22 + δ2‖uT ‖22
‖(y1)T ‖22 ≤ (γ2 + δ2)‖uT ‖22

7-III: From 7-I, the solution for the inner-product betweeny1 andu can be substituted in Assumption c) to
give,〈y1, u〉T = (−δ + δ)‖uT ‖22 = 0.

It is obvious that no constantδ > 0 exists such that

〈y1, u〉T = 0 ≥ δ‖uT ‖22 = 0

since it is assumed that‖uT ‖22 > 0, henceH1 is not strictly-input passive. In a similar manner, noting that
the added restriction holds‖yT ‖22 = δ2‖uT ‖22 for the same input functionu when〈y, u〉T = −δ‖uT ‖22, it is
obvious that no constantǫ > 0 exists such that

〈y1, u〉T = 0 ≥ ǫ‖(y1)T ‖22 = 0

0 ≥ ǫ(‖yT ‖22 − δ2‖uT ‖22)

holds.�

Remark 13 Theorem 7 shows that a system that is passive andLm
2 stable is not necessarilySOP. The

continuous time systemH(s) given by

H(s) =
ω2
n

s2 + 2ωns+ ω2
n

, (52)

for ωn > 0 satisfies the assumptions of the theorem required of a systemH in whichδ = 1
8 and an input-

sinusoidu(t) = sin(
√
3ωnt) is a null-inner-product sinusoid such that

H1(s) =
1

8
+H(s) =

1

8
+

ω2
n

s2 + 2ωns+ ω2
n

(53)

is both passive andLm
2 stable but neither strictly-output passive nor strictly-input passive.

This section will be finished with the connections between passivity and positive real in discrete time.
The proofs are omitted because they closely follow the continuous time case.

Lemma 12 Let H(z) be anm × m matrix of real rational transfer functions of variablez. LetΣz be a
minimal realization ofH(z) which is Lyapunov stable. Furthermore we denoteh[k] as anm ×m impulse
response matrix ofH(z) in which the outputy[k] is computed as follows:

y[k] =
k

∑

i=0

h[k − i]u[i]

Then the following statements are equivalent:

i) H(z) is positive real.

17



ii) There existsP = PT > 0 to satisfy the discrete time Positive Real Lemma (37).

iii) With Q = R = 0, S = 1
2I there∃P = PT > 0 s.t. (33) is satisfied.

iv) For zero initial conditions (y[0] = 0), H(z) is passive

∞
∑

i=0

yT(i)u(i) ≥ 0.

Lemma 13 Let H(z) be anm × m matrix of real rational transfer functions of variablez. LetΣz be a
minimal realization ofH(z) which is Lyapunov stable. Furthermore we denoteh[k] as anm ×m impulse
response matrix ofH(z) in which the outputy[k] is computed as follows:

y[k] =

k
∑

i=0

h[k − i]u[i]

Then the following statements are equivalent:

i) H(z) is strictly positive real.

ii) There existsP = PT > 0 to satisfy the discrete time Strict Positive Real Lemma (37).

iii) Σz is asymptotically stable, and forQ = 0, R = −δI, S = 1
2I, ∃P = PT > 0, and∃δ > 0 s.t. (33)

is satisfied.

iv) Σz is asymptotically stable, and for zero initial conditions (y[0] = 0), H(z) is strictly input passive s.t.

∞
∑

i=0

yT(i)u(i) ≥ δ‖u(i)‖22.

4.2 Passivity Based Pairing Methods

In control systems, pairing methods are used to pair inputs and outputs for control of multi-input multi-
output (MIMO) systems. Passivity methods have been used for pairing asin Bao et al. (2007). Lemma 13
of this paper can be used to improve the performance of existing passivity based pairing methods.

Figure 2: Asymptotically stable feedback structure ifKp(z) is passive andHp(z) strictly positive real
(rS(k) = Sr(k)).

The passivity based pairing method scales and pairs inputsu(k) ∈ R
m to outputsy(k) ∈ R

m of a
stable discrete time plantH(z) and augments its output so that resulting systemHp(z) with input vector
up(k) ∈ R

m and output vectoryp(k) ∈ R
m is asymptotically stable and strictly input passive (strictly

positive real).Hp(z) is then integrated into the feedback structure depicted in Fig. 2 in which the controller
Kp(z) is passive and the matrixS is a permutation matrix resulting from the passivity based pairing method.
As depicted in Fig. 3 the plant is scaled, paired and rendered strictly positive real. The procedure to render
Hp(z) to be strictly positive real is as follows:
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Figure 3: Stable plantH(z) paired, scaled and rendered passive such thatHp(z) is strictly positive real.

1) DetermineHS(z) = SH(z). Select one of them! permutation matricesS such thatyS(k) = Sy(k).

2) DetermineHΓ(z) = HS(z)Γ. The matrixΓ = diag{γ1, . . . , γm} and the corresponding relationship
u(k) = Γup(k) are used to ensure that the steady state gain fromup(k) to yS(k) is positive by setting
the coefficients to be

γi = sgn
(

HS(i,i)(1)
)

. (54)

3) DetermineHp(z) = HΓ(z)+ahpHhp(z). Hhp(z) = diag{Hhp(1)(z), . . . , Hhp(m)(z)} in whichHhp(i)(z)
is an identical highpass filter. The highpass filter is synthesized by applyinga passivity preserving
sample and hold transform Kottenstette et al. (2011) to the continuous time filterHhp(s) = s

s+ωo
in

which ωo is a positive real coefficient. The real coefficientsahp andωo are determined by minimizing
R(ωo, ahp) = − ωo

ahp
while satisfying (37) for the state space realization ofHp(z) to be rendered strictly

positive real.

Figure 4: Final control structure in whichK(z) is realized for the plantH(z).

The controllerK(z) is implemented afterHp(z) is determined. As depicted in Fig. 4 the controller gain
K(z) is determined as follows

K(z) = ΓKp(z)× [I + ahpHhp(z)Kp(z)]
−1 S. (55)

Thefinal control lawK(z) selected will be the one which results from theS which minimizesR(ωo, ahp)
over all possible permutation matrices.

5 Case Studies Demonstrating Performance in Passivity Based Pairing

The passivity based pairing method presented in Section 4.2 can lead to improved performance when com-
pared to controllers derived using the scaled passivity index pairing method presented in Bao et al. (2007).
The reason being is that by minimizingR(ωo, ahp) we are able to explicitly minimize the steady-state gain
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ahp and maximizing the poleωo of the discrete time high-pass filterahpHhp(z) used to realize a strictly pos-
itive real systemHp(z). In addition solving the feasibility of (37) is a necessary and sufficient test to realize
thatHp(z) is strictly positive real instead of requiring the permutation matrixS and filterahpHhp(z) are
chosen such that the frequency dependent scaled passivity index is rendered equal to zero (a sufficient test
for the system to be positive real). This improvement in performance will be demonstrated by comparing
our final controller performance to two of the illustrative case examples studied in Bao et al. (2007). Case
1 involving the3× 3 distillation column will be considered in which additional feasible pairings are deter-
mined possible which includes a better performing1/2-2/3-3/1 pairing. Case 2 involving a2×2 process is
considered in which we can compare the improved step tracking response.The remaining subsections are as
follows: i) Subsection 5.1 presents the discrete time high pass filter realization;ii) Subsection 5.2 presents
our discrete time proportional-integral control realization; iii) Subsection 5.3presents Case 1 results; and
iv) Subsection 5.4 presents Case 2 results.

5.1 High Pass Filter Synthesis

In this section we derive the discrete time passive filterHhp(z) from the continuous time filterHhp(s) by
using the inner product equivalent sample and hold transform as presented in (Kottenstette and Antsaklis
2007a, Section-IV-A). By preserving the inner product of input andoutput from continuous time to discrete
time, the passivity property is guaranteed. The passivity preserving bilinear transform could be applied as
well (Hitz and Anderson (1969)); however, frequency prewarpingwould also be required. The continuous
time filterHhp(s) =

s
s+ωo

used to synthesizeHhp(i)(z) has the following state-space realization:

ẋhp(i)(t) =− ωoxhp(i)(t) + up(i)(t)

yhp(i)(t) =− ωoxhp(i)(t) + up(i)(t)

The outputyhp(i)(t) is then cascaded with an integrator such that:

ẋI−hp(i)(t) =AoxI−hp(i)(t) +Boup(i)(t)

yI−hp(i)(t) =CoxI−hp(i)(t)

in which Ao =

[

−ωo 0
−ωo 0

]

, Bo =
[

1 1
]T

, Co =
[

0 1
]

. The final passive discrete time state space

realization forHhp(i)(z) with sampling rateTs seconds is

xhp(i)(k + 1) =Φhp(i)−oxhp(i)(k) + Γhp(i)−oup(i)(k)

yhp(i)(k) =Chp(i)−pxhp(i)(k) +Dhp(i)−pup(i)(k)

in which

Φhp(i)−o = eAoTs

=

[

e−ωoTs 0
(

e−ωoTs − 1
)

1

]

Γhp(i)−o =

∫ Ts

0
eAoηdηBo

=
1− e−ωoTs

ωo

[

1
1

]

Chp(i)−p =
1

Ts
Chp(i)−o

(

Φhp(i)−o − I
)
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=
1

Ts

[(

e−ωoTs − 1
)

0
]

Dhp(i)−p =
1

Ts
CoΓo =

1− e−ωoTs

Tsωo
.

All matrices are diagonalized in order to implement them identical highpass filters in which we denote
xhp = [xThp(1), . . . , x

T

hp(m)]
T, up = [up(1), . . . , up(m)]

T, yhp = [yhp(1), . . . , yhp(m)]
T, them dimensional

identity matrix asIm×m and the Kronecker tensor product as⊗ such that

xhp(k + 1) =Φhp−oxhp(k) + Γhp−oup(k)

yhp(k) =Chp−pxhp(k) +Dhp−pup(k)

in whichΦhp−o = Im×m ⊗ Φhp(1)−o, Γhp−o = Im×m ⊗ Γhp(1)−o, Chp−p = Im×m ⊗ Chp(i)−p, Dhp−p =
Im×m ⊗Dhp(1)−p.

5.2 Proportional-Integral Controller Synthesis

In Kottenstette et al. (2012) we presented a multi input multi output passive discrete time proportional
integral (PI) control law. We shall consider the simplified case when the positive definite matricesKi and
Kp used in (Kottenstette et al. 2012, eqn. (36)) are of the following formKi = kIIm×m andKp =
kP Im×m in which kI andkP are positive real numbers. The resulting passive discrete time control law
Kp(z) = diag{Kp(1)(z), . . . ,Kp(m)(z)} in whichKp(i)(z) is a discrete time PI-controller derived from the
application of the inner product equivalent sample and hold transform to the continuous time PI-controller
Kp(s) = kP + kI

s . Denote the: discrete time controller state vectorxp(k) ∈ R
m; controller inputep(k) =

S (r(k)− y(k)) ∈ R
m; and the passive controller output asup(k) ∈ R

m. The discrete time state space
implementation ofKp(z) is

xp(k + 1) =xp(k) + Tsep(k)

up(k) =kIxp(k) +

[

Ts

2
kI + kP

]

ep(k).

The final control gainskI andkP used to computeKp(z) will be determined by minimizing the following
performance measure

J(N) =
N
∑

k=0

(k + 1)
√

eT(k)e(k) (56)

in which the tracking errore(k) = r(k)− y(k). The control gainskI andkP used to minimizeJ(N) were
found using the simplex search method detailed in Lagarias et al. (1998)1. In order to minimize system
overshoot an additional low-pass filter is applied to the reference set-point r(t) in which the analog filter

Htraj(s) =
ω2
traj

s2+2ζtrajωtrajs+ω2
traj

. The discrete time filterHtraj(z) = diag{Htraj(1)(z), . . . , Htraj(m)(z)} in

whichHtraj(i)(z) (i = 1, . . . ,m) results from application of the inner product equivalent sample and hold
toHtraj(s).

5.3 Case 1: Distillation Column

The3× 3 distillation column has the following transfer function matrix

H(s)=







−1.986e−0.71s

66.67s+1
5.24e−60s

400s+1
5.984e−2.24s

14.29s+1
0.0204e−4.199s

5s+1
−0.33e−1.883s

3.904s+1
2.38e−1.143s

10s+1
0.374e−7.75s

22.22s+1
−11.3e−14.78s

35.66s+1
−9.881e−1.59s

11.35s+1






(57)

1Mathwork’s fminsearch was used.
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A periodicTs second zero order hold (ZOH) is applied to (57) in order to deriveH(z). In order to compute
feasibility of (37) forHp(z) and minimizeahp we used CVX (Grant et al. (2006)), in order to initially bound
the range forωo in Hhp(z) we used a modified golden section search to determineωo ∈ [ωo−min, ωo−max],
and then proceeded to use Brent’s Method to minimizeR(ωo, ahp) (Brent 1973, pp. 79–80). The resulting
controller parameters and corresponding performance measures for the top three configurations are summa-
rized in Table 1. The resulting closed loop tracking responses are plotted inFig. 5 in which it is clear that the
1-2/2-3/3-1 pairing (Γ = diag{1,−1, 1}) leads to best tracking performance. In addition the1-1/2-3/3-2
pairing (Γ = diag{−1,−1, 1}) is the one identified in Bao et al. (2007) by using the frequency dependent
passivity index in which we are able to synthesize a feasible controller for.Finally the1-1/2-2/3-3 pairing
(Γ = diag{−1,−1,−1}) has similar tracking performance to the1-1/2-3/3-2 pairing.

Table 1: Summary of Controller Results for3×3 Distillation Column (Ts=1.0 seconds,ζtraj=.9, ωtraj=π/1000).

Pairing R(ωo,ahp) ao ωo J(3e4) kP kI

1-2/2-3/3-1 −.0081 2.728 .0222 10,206 1.07 .055

1-1/2-3/3-2 −.0014 6.051 .0084 26,690 1e3 1e6

1-1/2-2/3-3 −.0012 5.719 .0068 29,662 1e3 1e6

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

t (sec)

y 1/
*−

2/
*−

3/
* m

(t
)

 

 

y
1/2−2/3−3/1

1

y
1/2−2/3−3/1

2

y
1/2−2/3−3/1

3

y
1/1−2/3−3/2

1

−[30]

y
1/1−2/3−3/2

2

−[30]

y
1/1−2/3−3/2

3

−[30]

y
1/1−2/2−3/3

1

y
1/1−2/2−3/3

2

y
1/1−2/2−3/3

3

Figure 5: Case 1: closed loop filtered step responser(t) = [−2, 2, 3], (Ts = 1.0 seconds,ζtraj = .9,
ωtraj = π/1000).

5.4 Case 2:2× 2 Process

The2× 2 process to be considered is as follows

H(s) = e−s

[

−2
10s+1

1.5
s+1

1.5
s+1

−2
10s+1

]

. (58)

A periodic Ts second zero order hold (ZOH) is applied to (57) in order to deriveH(z). Feasibility and
optimal solutions forHhp(z) were computed in the same manner as discussed in Section 5.3.

An optimal solution was computed for the two possible input-output pairings in which the diagonal
pairing1-1/2-2 (Γ = −I2×2) results in the smallestR(ωo, ahp). The results are summarized in Table 2. The
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pairing in Bao et al. (2007) was1-1/2-2 and for simplicity of discussion we assume the sameHhp(z) was
used to renderHp(z) strictly positive real. The key improvement is that the simplex search optimization
step resulted in a significant improvement in tracking performance in which thecostJ(2686) was reduced
from 7, 458 to 1, 307 and is evident in the step responses depicted in Fig. 6. The second pairing1-2/2-1
(Γ = I2×2) performed as poorly as indicated in Bao et al. (2007).

Table 2: Summary of Controller Results for2×2 Process (Ts=.2 seconds,ζtraj=.9, ωtraj=π/75).

Pairing R(ωo,ahp) ao ωo J(2500) kP kI

1-1/2-2 −.0868 1.649 .1432 1,177 1.66 .10

Bao(2007) −.0868 1.649 .1432 6,730 .02 .02
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Figure 6: Case 2: closed loop step responser(t) = [1,−2] (Ts = .2 seconds,ζtraj = .9, ωtraj = π/75).

6 Conclusions

This paper provided relationships between various energy-based properties for LTI systems. Since an entire
survey could be written on classical results from passivity and dissipativity theory, the current paper focuses
instead on results that(1) demonstrate relationships between frameworks and(2) provide new insight into
energy-based theory. The fundamental connections between definitions of passive and positive real, and
their stability results, were summarized in the Venn Diagram in Fig. 1. These connections are valid for
continuous time or discrete time LTI systems. The connection between the two wasdemonstrated using dis-
sipativity theory. While the notions of passivity or positive realness may be restrictive for some application
areas, dissipativity is a more general concept that can be applied to a large class of systems, but it may be
difficult to apply without a previously defined notion of energy. The paper also surveys the energy-based
frameworks of passivity index theory and conic systems theory. As was shown, for systems with a state
space representation, the frameworks are identical. Either can be used as a framework that is more general
than passivity theory but more easily applied than dissipativity theory.

Lastly, the Case Study section included the application of some of these resultsto a passivity-based
input-output pairing method forMIMO control. The method was covered in detail by working through some
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of the application details and then covering two case studies from a previouspaper. Improved performance,
in the sense of reduced tracking error, was demonstrated in the examples.
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