Relationships Among Passivity, Positive Realness, and
Dissipativity with an Application to Passivity Based
Pairing

Nicholas Kottenstette
WW Technology Group, Worcester, MA 01602
e-mail: nichol as. e. kottenstette@ eee. org@d. edu

Michael J. McCourt
Department of Mechanical Engineering
University of Florida, Shalimar FL 32579
e-mail: nctcourt@fl.edu

Meng Xia, Vijay Gupta, and Panos J. Antsaklis
Department of Electrical Engineering
University of Notre Dame, Notre Dame, IN 46556
e-mai |l . nxia@d. edu, vgupt a2@d. edu, ant sakl i s. 1@d. edu

January 2014

Technical Report of the ISIS Group
at the University of Notre Dame
ISIS-2014-003

The support of the National Science Foundation under the CPS Lamy® Gpo. CNS-1035655 is
gratefully acknowledged.



Abstract

The notions of passivity and positive realness are fund#mheoncepts in classical control theory,
but the use of the terms has varied. For LTI systems, thesectmwoepts capture the same essential
property of dynamical systems, that is, a system with thigperty does not generate its own energy but
only stores and dissipates energy supplied by the envirohnTéis paper summarizes the connection
between these two concepts for continuous and discretelfilngystems. Beyond that, the paper sum-
marizes relationships between classes of strictly passisgems and classes of positive real systems.
The more general framework of dissipativity is introduceccbnnect passivity and positive realness.
An application is included to demonstrate how these resaltsbe applied to input-output pairing in
MIMO control systems. Two case studies are provided to destnate the performance of the proposed
methods.

1 INTRODUCTION

In our recent research we have pursued constructive technigsed bn passivity theory to design networked-
control systems which can tolerate time delay and data loss, see e.g. Kottearsiettetsaklis (2007b) and
McCourt and Antsaklis (2012). As a result we have had to rediscowackarify key relationships between
three classes of systems. The first class is passive and strictly pagstgens, which are characterized by
a time-based input-output relationship, see e.g. Zames (1966a,b) anerBesoVidyasagar (1975). The
second class is stable dissipative systems, which satisfy a time-basedyptiogirelates an input-output en-
ergy supply function to a state-based storage function, see e.g. Wille@2a1 ®Villems (1972b), Hill and
Moylan (1980), and Goodwin and Sin (1984). The third class is thatsitige real and strictly positive real
systems, which are characterized by a frequency-based input-oelkgiibnship, see e.g. Anderson (1967),
Hitz and Anderson (1969), Tao and loannou (1990), Wen (19&8ig), Haddad and Bernstein (1994). Itis
noted in Willems (1972b) that, for the continuous time case, these relationshigalf derivable from the
same principles and are part of the same scientific discipline”. Howevenat dear that such connections
have been fully exploited, although recently Haddad and Chellaboin®)206vided an excellent exposi-
tion of some such connections. The goals of this paper are to (1) revieslatbscal notions of passivity,
dissipativity, and positive realness; (2) summarize existing relationshitpsbe these classes of systems
with appropriate references; and (3) provide original results to clénége relationships. Rather than at-
tempting to survey all major contributions to these fields, this paper insteasvsshtierature that addresses
the relationships between these concepts in order to identify discrepandigsovide clarifying results and
remarks.

Classical Results:The notion of passivity originated in electrical circuit theory where cirauiégle up
of only passive components were known to be stable. It was also knawarti two passive circuits could
be interconnected in feedback or in parallel and the resulting circuit vatilllde passive, see e.g. Anderson
and Vongpanitlerd (1973). This compositionality property greatly redtimeanalysis required to analyze a
network of circuits and assess stability. The property of passivity itself engrgy-based characterization
of the input-output behavior of dynamical systems. A passive systeneithahstores and dissipates energy
without generating its own. The notion of stored energy can be eitheritidreed physical notion of energy,
as it is with many physical systems, or a generalized energy, see Andaendovongpanitlerd (1973) and
Desoer and Vidyasagar (1975). Passivity and dissipativity were famlgfor general nonlinear state space
systems in Willems (1972a,b). These papers provided results for passpatifically that passive systems
were stable and that the passivity property was preserved when systenasombined in feedback or
parallel. Specific forms of dissipativity for nonlinear control affine sysavere studied further in Hill and
Moylan (1976), Hill and Moylan (1977), and Hill and Moylan (1980).€Be notions were studied for more
general nonlinear systems in continuous time in Lin (1995) and Lin (19%binattiscrete time in Lin (1996)
and Lin and Byrnes (1994).



As the focus of this survey is on the relationship between passive systehpositive real systems, the
Positive Real Lemma is of special importance. This is also known as the K¥fniaewhich originated in
Kalman (1963) which used results from Yakubovich (1962) and Pop@§1). Later this lemma would be
used to develop linear matrix inequality (LMI) methods to demonstrate passwitinéar systems in Boyd
et al. (1994).

There are two particularly valuable survey papers, Ortega et al. Y20@1Kokotovic and Arcak (2001),
that cover the history of dissipativity theory in control. Both papers makasa for analyzing systems
using dissipativity due to its strong connection to physics and conservdteareqyy. A more recent paper
highlighting new advances in energy-based analysis is Ebenbauer(20@®). In Willems (2007), the
classical work in dissipativity was reassessed from a modern pergpeStrong introductions to passivity
can be found in the textbooks Khalil (2002) and van der Schaft (1988 more general framework of
dissipativity is thoroughly covered in Bao and Lee (2007), Haddad dradl@boina (2008), and Brogliato
et al. (2007).

Recent Progress:For passivity and dissipativity, progress has been made recently in aushareas.
While passivity based control has traditionally been applied to electricalitgrcsee e.g. Anderson and
Vongpanitlerd (1973), and robotic manipulators, see e.g. Spong etO&i6)2recently this approach has
been expanded to chemical processes, where passivity can be wesigio robust controllers as in Bao
et al. (2003) and Bao and Lee (2007). Passivity has also been ssedesign tool for coordination in
multi-agent systems in Chopra and Spong (2006b) and Arcak (2007).

One patrticular application area that has seen recent growth is in telemaioipsisstems where a human
user operates a robotic arm remotely and is aided by tactile feedbacks@&log passivity in this field began
with the work in Anderson and Spong (1988) using the wave variableftnanation in Fettweis (1986).
This approach was greatly expanded through numerous papersysbieeneyer and Slotine (1991, 2004),
Stramigioli et al. (2002b), Secchi et al. (2003), Chopra et al. (208Brhe and Buss (2012). The study
of telemanipulation has led to promising approaches for control of pasgstems over a network, see e.g.
Chopra and Spong (2006a), Kottenstette and Antsaklis (2007b), Kitenest al. (2011), and Hirche et al.
(2009).

Another area that has seen much growth in recent years is the studgsdfifyaand dissipativity for
switched or hybrid systems. Passivity has been considered for consinuee in Zefran et al. (2001) and
discrete time in Bemporad et al. (2005) and Bemporad et al. (2008) swisgiséeins. These notions were
studied for the more general framework of dissipativity for switched syst@ continuous time in Zhao
and Hill (2008) and discrete time in Liu and Hill (2011). The related notiorasfjvity indices for switched
systems was studied in McCourt and Antsaklis (2010). Dissipativity wasidered for a class of hybrid
systems in Teel (2010) and a class of left continuous systems in Hadd&tLa(2009).

Lastly, it should be mentioned that there has been much recent work eivipafor sampled data
systems. This work in this area has taken two distinct approaches. Ttapfir®ach is to study conditions
under which passivity is guaranteed when a continuous time system istidisdrby the application of
the ideal sampler and zero-order hold in de la Sen (2000) and Oishd)2@he second approach is to
compensate for a potential loss of passivity due to the zero-order hatd Stsamigioli et al. (2002a),
Costa-Castello and Fossas (2006), and Kottenstette and Antsaklis Y2007b

Main Results of the PaperWhile passivity and dissipativity are typically applied to general nonlinear
systems, we choose to focus on the linear time invariant (LTI) case to einpliias connection to positive
real systems, as this notion only applies to LTI systems. Some of the badis eEstered in this paper are
summarized in Fig. 1. The foundational relationship is that, for LTI systenespithperty of passivity is
equivalent to the property of positive realness. Under mild technicahgsons, these systems are Lya-
punov stable. For LTI systemstrict passivityis equivalent to strict positive realness. For asymptotically
stable systems, strongly positive real is equivalent to strictly input p@$SN?). This will be covered in
Section 3. Other relationships will be covered that re@li strictly output passiveOB), and very strictly
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Figure 1: This Venn Diagram shows relationships between passivitifiveogalness, and, stability for
continuous and discrete tind'| systems.

passive YSB to notions of stability and of state strict passivity. While the figure showsSk#Rsystems

are passive and?y’ (15") stable it should be noted that this relationship is sufficient only. Systemaurhat
passive and.y® (I5*) stable are not necessarfyOP This fact will be demonstrated in Section 4 with a coun-
terexample. Also covered in that section is another connection from Filgatlsystems that are bo8iP

and L3" (I5*) stable must b&OP. Some preliminary results from this paper were presented in Kottenstette
and Antsaklis (2010). The current paper expands on those resdltg@sents additional clarifying results.

A more complete version of this paper Kottenstette et al. (2014) includes msuéis related to energy-
based control. The current paper covers a subset of these resuitieinto present an original application

in passivity based control.

Before the main results of the paper are presented, definitions of thamef@operties are provided in
Section 2. This section begins with some mathematical preliminaries and then maeedadine passivity,
dissipativity, and positive realness. Section 3 includes some fundamestdtsrinvolving passive and
positive real systems. The main results of the paper are given in Sectiection 5 demonstrates how to
use some of the results discussed in this paper by applying them to a palsas&ty input-output pairing
framework. Some preliminaries for this approach are covered and thenaseostudies are provided to
demonstrate achievable performance. Concluding remarks are pravi8edtion 6.

2 Defining the Properties of Passivity, Dissipativity and Positive Reakss

2.1 Mathematical Preliminaries

This paper covers both the continuous time and discrete time cases. Wheledrisvhich time series is
relevant or results apply to both continuous and discrete time, the time serigsoted7 . In continuous
time this is7 = R™, while for discrete timel” = Z*. The space of signals of dimensian with finite
energy in continuous time i55* andl3* in discrete time. When the context is clear, the general space
will be used to denote either. A continuous time signal7 — R™ is in H (x € H) if the signal has finite
LT-norm,

HIL‘H% = /0 xT(t)m(t)dt < 0. D



Likewise, a discrete time signal: 7 — R™ is in i (z € H) if the signal has finité;’-norm,

|23 = > T (i)a(i) < oo (2)
=0

The extended signal spacds;, andl3;, can be defined by introducing the truncation operator. The trunca-
tion of a continuous time signal(¢) to time7" is indicatedzr(t),

x(t), t < T,
vr(t) = {0 t>T

The truncation operator is

) z(2), 1 < T,
xT(Z):{O(i)>T

in discrete time. A continuous time signat 7 — R™ is in H,. if
T
27|53 = / T ()z(t)dt < co, VT €T. 3)
0
Likewise, a discrete time signal: 7 — R™ is in H, if
T-1
lzrl3 =) " ()z(i) < oo, VT €T. (4)
i=0

The inner product of signalsandu over the interval0, 7] in continuous time is denoted

T
ey = [T Outt)ar ©)
Similarly the inner product over the discrete time intedi@l1,...,7 — 1} is denoted
T-1
(y,uyr =Y yT (i)ui). 6)

A systemH is a relation onH{.. Foru € H., the symbolHu denotes an image af under H (Zames
(1966a)). Furthermoré/u(t) denotes the value dff v at continuous time while Hu(:) denotes the value
of Hu at discrete time. The following two definitions coveLs® stability in continuous time ani® stability
in discrete time.

Definition 1 A continuous time dynamical systéin: . — H. is L3* stable if
uwe Ly = Hue Ly
Definition 2 A discrete time dynamical systdih: H. — H. is [5* stable if

uely = Huely.



For both continuous and discrete time finite-gdi§t (I5*) stability can be defined by the following
input-output condition. For all tim& < 7 and for all inputsu € #H, a systemA is finite-gainL35* (15)
stable if there exisy > 0 andj such that

[(Hu)zll2 < ~|lurl2 + 6. (7)

The notion of finite-gain stability can be used to show stability of feedbaclkcioterections using the small
gain theorem, see e.g. van der Schaft (1999) or Isidori (1999).sfrtadl gain theorem has an important
relationship to the passivity theorem for feedback interconnections tefirst written in Anderson (1972).
There has been some effort recently to combine the benefits of theipatbeorem and small gain theorem,
see e.g. Griggs et al. (2007) or Forbes and Damaren (2010).

Another notion related to finite-gain is that of a system beiog-expansivévan der Schaft (1999)). A
system isnon-expansivé there exist constants > 0 and /3 such that

[(Hu)r (13 < 37 [lurll3 + 5. (8)

Remark 1 ((van der Schaft 1999, p. 4), (Kottenstette and Antsaklis 2007b, RebjeA continuous time
(discrete time) systetH is non-expansivéf it is finite-gain L (3*) stable.

For the remainder of the paper, when results involuiog-expansiver finite-gain Ly* (I5")-stability
arise, the notion dfinite-gain L5* (15")-stability will be used without loss of generality.

This paper focuses ddTl systems that are real and causal withnputs andm outputs. A system in
continuous time can be described by a proper square (n) transfer function matrix¥{ (s). This system

can be equivalently described by a minimal state space represerﬁaﬁ%n{A, B, C, D}, with state
x € R", inputu € R™, and outputy € R™, that can be written

&(t) = Az(t) + Bu(t), 9)
y(t) = Cx(t) + Du(t) (10)

where
H(s)=C(sI — A)"'B+D. (11)

Remark 2 A proper continuous time LTI systeHi(s) is L1 stable if and only if all poles have negative
real part (Antsaklis and Michel 2006, Theorem 9.5 p.488). This is iedieto as uniform BIBO stability.
Equivalently, the minimal state space realizatiins asymptotically stable (Antsaklis and Michel 2006,
Theorem 9.4 p.487).

A discrete time_TI system can be described by a proper square ¢n) transfer function matrixf (z).

This system has an equivalent minimal state space realizﬁ?’;joﬁ {4, B, C, D}, with statex € R",
inputu € R™, and outputy € R™, that can be written

x(k+ 1) =Ax(k) + Bu(k), (12)
y(k) =Cz(k) + Du(k) (13)

where
H(z)=C(zI — A)~'B+D. (14)

Remark 3 A discrete time LTI systetfi (z) is [5* stable if and only if all poles have magnitude less than
one (i.e. they are inside the unit circle of the complex plane) (Antsaklis doldel2006, Theorem 10.17
p.508). Again, this result is known as uniform BIBO stability. Equivalentlyctineesponding minimal state
space realizatiort, is asymptotically stable (Antsaklis and Michel 2006, Theorem 10.16 p.508).



2.2 Passive Systems

A system is passive if it only stores and dissipates energy without gengita own energy. This is captured
by an inequality where the energy supplied to the system by its environfdéatu)r, is an upper bound
on the loss of stored energy3. From an alternative perspective, the maximum energy that can betegtrac
from a system;-(Hu, u)r, is bounded above by the constahthat represents initially stored energy.

Definition 3 Consider a continuous or discrete time LTI systéBn H. — H.. Considering all inputs
u € H.and all timesT" € T, H is

i) passivaf 45 such that
(Hu, u)p > =, (15)

ii) strictly input passivéSIP) if 36 > 0 and 35 such that

(Hu,u)r > 8|lur|3 - B, (16)

i) strictly output passivéSOB if Jde > 0 anddgS such that

(Hu,u)r > | (Hu)r |3 - B, (17)

iv) very strictly passiv€VSP) if 3¢ > 0, > 0 and 34 such that

(Hu,u)r > 8llur |3 + €| (Hu)r|l3 - 5, (18)

Remark 4 There have been many subtle differences in the naming of these definititires literature.
In some references (Desoer and Vidyasagar (1975), for exaraple)ly input passivavas referred to as
strictly passive This will be avoided astrictly passiveften refers testate strictly passiveOther references
(e.g. Khalil (2002)) use the termiaput strictly passiveand output strictly passivehowever, these are
equivalent to the definitions africtly input passiveand strictly output passiverovided here.

Remark 5 If H is linear and initial conditions are assumed to be zero, ti¥ecan be set equal to zero
without loss of generality in regards to passivity. When initial conditions atezero,5 is a generalized
measure of initially stored energy. H is causal and finite-gaid.5* (I5*) stable then the notion gfositive
given in (Desoer and Vidyasagar 1975, p.174) is equivalepassivegiven here (assuming «(0) = 0).

Passivity is preserved when two passive systems are combined in egddbatk or parallel, see Khalil
(2002) or van der Schaft (1999). This provides valuable stabilityltsear small and large interconnections
of dynamical systems. An important related problem is to determine conditiates which a system can
be made passive so that these stability results may be applied. The ngecesghtions for passivating a
nonlinear system can be found for continuous time in Byrnes et al. (I&8ijor discrete time in Byrnes
and Lin (1994).

2.3 Dissipative Systems

The property of dissipativity is a generalization of passivity that relatemnallg stored energy of a system
to a generalized energy supply functioriu, y). The internally stored energy is measured by an energy
storage functior’/(z) that is analogous to a Lyapunov function. As a measure of engtgy) must be
non-negativeV (z) > 0,Vz. Without loss of generality, it is assumed that= 0 is an equilibrium and
V(z) = 0 at this point. As with passivity, the discussion of dissipativity can be géinedato non-linear
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systems, however for simplicity we will focus on the linear time invariant caseLFl systems it can be
assumed that’(x) has a quadratic form, see Khalil (2002),

V(x) =z Pz, (19)

whereP = PT > 0. The following definitions cover dissipativity arfd), S, R)-dissipativity in continuous
time and discrete time.

Definition 4 (Willems (1972a)) A continuous time systEns dissipative with respect to the energy supply
rate s(u, y) if there exists a non-negative storage functiofr) (19), such that for all input signals € R™,
all trajectoriesz € R", and allt, > ¢ the following inequality holds

V(a(ta) < V(a(t)) + / " s(ult), y(t))dt. (20)

t1

Additionally, the syster®l is (@, S, R)-dissipative if it is dissipative with respect to
s(u,y) =y Qy+2y" Su+u' Ru, (21)
whereQ = Q" andR = R'.

Dissipativity can be defined in discrete time with supply r&te, ) and energy storage functidon(z),
such thatl’(z) > 0 for all z andV (x) = 0 for x = 0,

V(z) =z Px. (22)

Definition 5 (Goodwin and Sin 1984, Appendix C) A discrete time sy&telis dissipative with respect to
the supply rates(u, ) iff there exists a matri¥> = PT > 0, such that for all: € R”, all timesl, j € T s.t.
I > j >0, and all input functions: € H.

-1
V(xll]) < V(xl5]) + ZS(U[i]vy[i]), holds. (23)

Additionally, the systeri is (Q, S, R)-dissipative if it is dissipative with respect to supply rate (21) where
Q=Q"andR = R".

Passivity and some related definitions can be given with respect to the defofiti@, S, R)-dissipativity.

Lemma 1 (Kottenstette and Antsaklis (2010)) Consider a minimal continuous timamsyste a discrete
time systenk, that is(Q, S, R)-dissipative. This system

i) is passive iff the system is
1 S
(0, 5[, 0)-dissipative (24)

ii) is strictly input passive if8§ > 0 such that the system is
(0, %I, —461)-dissipative (25)
iii) is strictly output passive ifie > 0 such that the system is

(—el, %I, 0)-dissipative (26)



iv) isvery strictlyiff 9 > 0,6 > 0 such that the system is
1 T
(—el, 5I, —41)-dissipative 27)

v) isfinite-gainLy* (15") stableiff 35 > 0 such that the system is

(—1I,0,4%I)-dissipative (28)

Remark 6 The reason that these conditions are necessary and sufficient is ¢thayskem& and X, are
minimal realizations of{ (s) and H (z) respectively. This implies they are controllable and observable and
therefore satisfy either (Hill and Moylan 1976, Theorem 1) or (Hill and Moy1980, Theorem 16).

From the above discussion the following two corollaries can be stated in consrand discrete time.
These results represent a generalization of the Positive Real Lemma l(EYimha) from necessary and
sufficient conditions for passivity to necessary and sufficient comditior (Q,S,R)-dissipativity.

Lemma 2 For continuous time LTI systems (9)-(10), a necessary and suffteigirfor Definition 1 to hold
isthat3P = PT > 0 such that the following LMI is satisfied:

ATP+PA—-Q PB-S -

(PB—8)T R =" (29)
in which
Q=0c"QC (30)
S=cTs+CTQD (31)
R=D"QD+ (D'S+S"D)+R. (32)

Lemma 3 (Goodwin and Sin 1984, Lemma C.4.2) For discrete time LTI system$i3p)a necessary and
sufficient test for Definition 1 to hold is thaf> = PT > 0 such that the following LMI is satisfied:

ATPA—P-Q A'™PB-S
R X < 33
(ATPB-S)T —-R+B"PB| ~ 0, (33)

in whichQ, S, and R are specified by (30), (31), and (32), respectively.

The matrix inequalities covered in this paper are linear in the decision vari@pto(they can be solved
using traditionaLMI optimization methods in Boyd et al. (1994).

2.4 Positive Real Systems

The property of positive realness is a condition on the transfer functia.®l system. A minimal transfer
function with this property must be BIBO stable, minimum phase, and haveveetiggree of zero or one.
Positive realness can be shown by an equivalent frequency basdiicn.

Definition 6 ((Anderson and Vongpanitlerd 1973, p.51)(Tao and loannou 18&8inition 1.1)(Haddad
and Chellaboina 2008, Definition 5.18)) Consider a continuous time LTesysepresented by am x

m rational and proper transfer function matrikl (s). This system is positive real (PR) if the following
conditions are satisfied:



i) All elements offf (s) are analytic inRe[s] > 0.
iy H(s) is real for all real positive values of.
i)y HT(s*)+ H(s) > 0forRe[s] > 0.
FurthermoreH (s) is strictly positive real (SPR) tle > 0 s.t. H(s — ¢€) is positive real. Finally,H(s) is

strongly positive real iff (s) is strictly positive real and) + DT > 0 whereD 2 H().

It should be noted that the definition BR implies that the poles of(s) are in the closed left-half
plane, i.e. a minimal internal realization of the system is Lyapunov stable. dfiv@tobn of SPRimplies
that the poles off(s) are in the open left-half plane, i.e. the systenLis stable with a minimal internal
realization that is asymptotically stable. The conditionsHBand SPRcan be verified directly or the test
can be simplified to a frequency domain condition.

Theorem 1 ((Willems 1972b, Theorem 1)(Anderson and Vongpanitlerd 19736j{l2dddad and Chellaboina
2008, Theorem 5.11)) L€ (s) be a square, proper, and real rational transfer functioH(s) is positive
real iff the following conditions hold:

i) All elements off (s) are analytic inRe[s| > 0.
i) HT(—jw) + H(jw) > 0, Vw € R for which jw is not a pole for any element &f s).
iii) Any pure imaginary polgw, of any element off (s) is a simple pole, and the associated residue matrix
H, 2 limg_, o, (s — jwo) H (s) is nonnegative definite Hermitian (i.&l, = H} > 0).
A similar test is given for strict positive realness.

Theorem 2 (Tao and loannou 1988, Theorem 2.1) lEé{s) be am x m, real rational transfer function
and supposé/ (s) is non-singular. ThetH (s) is strictly positive real iff the following conditions hold:

i) All elements offf (s) are analytic inRe[s] > 0.
i) H(jw)+ H"(—jw) > 0for vw € R.
i) Either limy, oo [H (jw) + H' (—jw)] = D+ D" > 0orif D+ DT > 0 thenlim,, o w?[H (jw) +
HT(—jw)] > 0.
To finish the discussion on continuous time positive real systems, we statesiigd’Real Lemma and

the Strict Positive Real Lemma.

Lemma 4 ((Anderson 1967, Theorem 3), (Anderson and Vongpanitlerd,}9238)) LetH (s) be anm xm
matrix of real proper rational functions of a complex variaileLetY be a minimal realization ot (s).
ThenH (s) is positive real iff there exist® = PT > 0 s.t.

T o7
[A P+PA PB-C }_0 (34)

(PB—-CMT —(DT+ D)

Lemma5 (Sun et al. 1994, Lemma 2.3) LEt(s) be anm x m matrix of real proper rational functions of
a complex variable. LetY be a minimal realization off (s). ThenH (s) is strongly positive real iff there
existsP = PT > 0 s.t. ¥ is asymptotically stable and

ATP+PA PB-CT
(PB-CTT —(D"+ D)

} <0. (35)
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This section up to this point covered continuous time positive real systemisnilarspresentation can
be made for discrete time systems.

Definition 7 (Hitz and Anderson (1969), Xiao and Hill (1999), (Haddad and Chellah 2008, Defini-
tion 13.16) (Tao and loannou 1990, Definition 2.4, 2.5)) A square trarfafection matrix H(z) of real
rational functions is a positive real matrix if:

i) all the entries ofH (z) are analytic in|z| > 1 and
i) H,=H(z)+ H"(2*) >0, V|z| > 1.
FurthermoreH (z) is strictly positive real iHp (0 < p < 1) s.t. H(pz) is positive real.

Remark 7 For the discrete time case, there is no need to define strongly positive rbal ddfinition of

strictly positive real implies thatD + DT) > 0 whereD 2 H (o). This satisfies the analogous definition
for strongly positive real for discrete time systems, see (Lee and Chén Réthark 4). The terms “strictly
positive real” and “strongly positive real” may be used interchangeablydimcrete time systems.

The test for a discrete time positive real system can be simplified to a fregtestas follows:

Theorem 3 ((Hitz and Anderson 1969, Lemma 2), (Haddad and Chellaboina Z00&rem 13.26)) Let
H(z) be a square, real rationain x m transfer function matrix. H(z) is positive real iff the following
conditions hold:

i) No entry ofH(z) has a pole inz| > 1.
i) H(el%) + H"(e77%) >0, VO € [0, 2x], in whiche’? is not a pole of any entry dff (z).

i) If el is a poIeA of any entry ofi(z) it is at most a simple pole, and the residue matfy 2

lim__ (2 — e/?)G(z) is nonnegative definite.

The test for a strictly positive real system can be simplified to a frequestasdollows:

Theorem 4 (Tao and loannou 1990, Theorem 2.2) Li#{z) be a square, real rationain x m transfer
function matrix in whichf (z) + HT(z*) has rankm almost everywhere in the complesplane. H(z) is
strictly positive real iff the following conditions hold:

i) No entry ofH(z) has a pole inz| > 1.
i) H(el) + HT(e77%) > el >0, VO € [0,27], 3e > 0.

Finally, we state the Positive Real Lemma and the Strictly Positive Real Lemmaefalidbrete time
case.

Lemma 6 (Hitz and Anderson 1969, Lemma 3) Li&tz) be ann x n matrix of real, proper, and rational
transfer functions and leX, be a minimal stable realization df (z). ThenH(z) is positive real iff there
existsP = PT > 0 s.t.
ATPA-P ATPB-CT
[(ATPB -cNHT —(D"+ D)+ BTPB

Lemma 7 ((Lee and Chen 2000, Corollary 2)(Haddad and Bernstein 1994 na.2)) LetH (z) be an
n xn matrix of real, proper, and rational transfer functions andigtbe an asymptotically stable realization
of H(z). ThenH (z) is strictly positive real iff there exist® = PT > 0 s.t.

[ ATPA-P ATPB - CT

] <0. (36)

(ATPB—CTT —(DT+ D)+ BTPB] <0 (37)

11



3 Preliminary Results for Passivity, Dissipativity, and Positive Realess

Preliminary results related to the properties of passivity and positive ssadme covered in this section. The
following result from Desoer and Vidyasagar (1975) summarizes assafifeequency-based conditions that
are equivalent to passivity or strict input passivity.

Theorem 5 (Desoer and Vidyasagar 1975, p.174-175) Consider a LTI sydiemhich has a minimal
realizationX (X,) that is asymptotically stable.

() If H is a continuous time system then
(@) H is passive iffH (jw) + H' (—jw) > 0, Yw € R.
(b) H is strictly input passive ifld > 0 s.t.
H(jw)+ H" (—jw) > 61, Yw € R. (38)

(i) If H is a discrete time system then
(@) H is passive iffd (e’%) + H (e=7%) > 0, V0 € [0, 27].
(b) H is strictly input passive iffl§ > 0 s.t.
H(e) + H(e79%) > 61, V6 € [0, 2n]. (39)

While there are existing results for frequency based conditions foivitsisand strict input passivity,
there isn’t an established test for strict output passivity. One suctiitcam is proposed in the following
theorem.

Theorem 6 Consider a single-input single-output LTI strictly output passive systéimtransfer function
H(s) (H(z)), real impulse responsi(t) (h(k)), and corresponding frequency response:

H(jw) = Re{H (jw)} + jIm{H(jw)} (40)

in whichRe{H (jw)} = Re{H(—jw)} for the real part of the frequency response ahi{ H (jw)} =
—Im{H(—jw)} for the imaginary part of the frequency responseHlfis SOP then the constaatin the
definition may be found by the following inequality:

. Re{H (jw)}
0<e< f 41
€= welio) Re{H ()2 + In{H(jw) )2 (41)
for the continuous time case. Similarly for discrete time case,
H(e'’) =Re{H(e/")} + jIm{H(e/)} (42)

in whichRe{H (¢7%)} = Re{H (e~} in which0 < # < = for the real part of the frequency response and
Im{H (%)} = —Im{H (e=7%)} for the imaginary part of the frequency response. The constémt (17)
satisfies:

Re{H (e??
0 <e< min e{A(e)}

~ 0elo,x] Re{H(e7?)}2 + Im{H (e7?)}? (43)

for the discrete time case.
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Proof: Since a strictly output passive system has a finite integrable (summable) impsgemse (i.e.
Jo© B2 (t)dt < 0o (352, h2[i] < o0)) then the condition foBOP(17) can be written as

| B WG Pdoze [P Ge) Pdo (44)
for the continuous time case or
H() U)o > e | |H()*U ()0 (45)

for the discrete time case. (44) can be written in the following simplified form:

/ " Re{H(jw)} U (ju) P > (46)

—00

[ et(i))? + Ta{H (i) )|U ()P

—00

in which (41) clearly satisfies (46). Similarly (45) can be written in the followsirgplified form:

/ﬂ Re{H (e/")}|U ()P0 > (47)

-7

c / (Re{H(e/%)}2 + In{H (¢))?)|U () 2d0
in which (43) clearly satisfies (471

The frequency based conditions for passivity and strict input pas§iheorem 5) appear to be closely
related to the frequency based conditions for positive realness amg gtogitive realness.

Remark 8 Itisimportant to note that the valugn (41) or (43) corresponds to the output feedback passivity
(OFP) indexp, see e.g. Bao and Lee (2007) or McCourt and Antsaklis (2009).do éBd Lee 2007, p.29),
an alternative method of calculating the OFP index is given for minimum phase kystems. We did not
pose such constraints on the system when calculating this value using (@B) 0

Lemma 8 Let H(s) (with a corresponding minimal realizatioR) be am x m, real rational transfer
function that is non-singular. Then the following are equivalent:

i) H(s) is strongly positive real
i) X is asymptotically stable and strictly input passive s.t.

H(jw) + H"(—jw) > 61 >0, Vw € R (48)

Proof: ii = i
Since Y is asymptotically stable then all poles are in the open left half plane, theréf@erem 2-i is
satisfied. Next (48) clearly satisfies Theorem 2-ii. Also, (48) impliesfhatDT > 51 > 0 which satisfies
2-iii which satisfies the final condition to be strictly positive real and alsangtyopositive real as noted in
Definition 6.
i = i
First we note that Theorem 2-i impliéswill be asymptotically stable. Next, from Definition 6 we note that
361 > 0 s.t.

HT(—joo) + H(joo)=DT + D >61>0

13



Lastly, we assume thald, < 0 s.t.
HT(—jw) + H(jw) > 621, Vw(—00,00) (49)

however this contradicts Theorem 2-ii thereféile > 0 s.t. (49) is satisfied which implies (48) is satisfied
in whichd = min{6q,d2} > 0. ®

Remark 9 Note that Lemma 8-ii is equivalent & being asymptotically stable anH (s) being strictly
input passive as stated in Theorem 5-ib.

The previous development will be given for discrete time systems. Recathénadefinition for strictly
positive real and strongly positive real are equivalent in discrete time.

Lemma 9 Let H(z) (with a corresponding minimal realizatiol,) be a square, real rationain x m
transfer function matrix in whiclff (z) + HT(z*) has rankm almost everywhere in the complexplane.
Then the following are equivalent:

i) H(z) is strictly positive real
i) X, is asymptotically stable and strictly input passive s.t.

H(e) + H(e79%) > 61, V0 € [0, 27] (50)

Proof: ii = i
SinceY, is asymptotically stable then all poles are strictly inside the unit circle, therétogerem 4-i is
satisfied. Next (50) clearly satisfies Theorem 4-ii.
i = i
First we note that Theorem 4-i impliés, will be asymptotically stable. Finally Theorem 4-ii clearly satisfies
(50).m

4 Main Results

4.1 Connection Between Passive and Positive Real

This section covers the important relationships presented in this paperfirShisart focuses on the re-

lationships between the various definitions of passive and positive réa.following lemma covers the

connection between passive and positive real for continuousliirheystems. Recall that positive real is
defined for square transfer functions that are assumed to have #e&locionditions so the connection will

be shown for zero initial conditions. The next result is the connectiondmivetrongly positive real and
strictly input passive for asymptotically stable systems. The relationship betstdctly passive and strictly

positive real will not be covered but the reader is directed to Hadda€hellaboina (2008) or Khalil (2002)

for more details. The remainder of this subsection cover these connefctidhe discrete time case.

Lemma 10 Let H(s) be anm x m matrix of real, proper, and rational transfer functions of a complex
variable s. LetX be a minimal realization of (s). Denoteh(t) as them x m impulse response matrix of
H (s) from which the outpug(¢) can be computed by,

t
y(t) = / h(t — 7yu(r)dr.
0
Then the following statements are equivalent:

14



i) The transfer functiorf{ (s) is positive real.
i) There exists® = PT > 0 to satisfy the Positive Real Lemma (34) .
iii) The systenk is (0, 51,0)-dissipative, i.edP = PT > 0 s.t. (29) is satisfied.
iv) The system is passive, i’
[ v =
for zero initial conditions.

Proof: i) < ii): Stated in Lemma 4.
i) < iv): Remark 5 states that iv) is an equivalent test for passivity andlaoy 2 states that iii) is an
equivalent test for passivity wheé, S, R) = (0, %I, 0).
i) = iii): A passive systen¥ (s) is also passive ifkH (s) is passive fovk > 0. Therefore (29) for
kH(s)inwhichY = {4, B,kC,kD} and(Q, S, R) = (0,31,0),Q =0, S = 4CT, R=%(DT + D):
ATP+PAT  PB-ECT

<
(PB—%CT)T —g(DT—i-D) —07 (51)

which for k = 2 satisfies (34).
iif) = 1ii): The converse argument can be made in which a positive real syStemis positive real iff
kH s) is positive realk > 0 in which we choosé = ;.

Remark 10 The key to the proof was connecting the work of Anderson and Voiligpai§1973), Desoer
and Vidyasagar (1975) and Hill and Moylan (1980). Doing so highlighesdbnnection between positive
real system theory and dissipative system theory. This connection wedlypanade previously in (Willems
1972b, Theorem 1) and Desoer and Vidyasagar (1975). Similaremimms are discussed recently in (Had-
dad and Chellaboina 2008, Theorem 5) which relied on Parseval’s fEneoThe benefit of the approach
in the current paper is that it does not rely on Parseval’'s Theoremwt@nnot be applied to systems with
poles on the imaginary axis. As a result, the connection between passigesyand positive real systems
holds for systems with poles on the imaginary axis. Finally, it should be nogdhis result was given
previously with a different proof in Brogliato et al. (2007).

Lemma 11 Let H(s) be anm x m matrix of real, proper, and rational transfer functions of a complex
variable s, with H(oco) < co. LetX be a minimal realization off (s). Furthermore we denotk(t) as an
m X m impulse response matrix &f (s) in which the outpuy(¢) is computed as follows:

y(t) = /0 h(t — 7)u(r)dr

Then the following statements are equivalent:
i) The transfer functiorf{ (s) is strongly positive real.
ii) There exists® = PT > 0 to satisfy the strict Positive Real Lemma (35).

iif) X is asymptotically stable and, %, —61)-dissipative, i.edP = PT > 0 such that (29) is satisfied, i.e.

the system is strictly input passive ahgt stable.
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iv) X is asymptotically stable, and for zero initial conditiong() = 0),

/O T yT(0u() > olut) 3

in whichd = inf_ o <,,<c Re{H (jw)} for the single input single output case.

Furthermore, iii) implies that fo@, S, R) = (—el, 31,0) there3P = PT > 0 s.t. (29) is also satisfied
(strictly output passive). Thusg{0) = 0 then

/0 T Tt > ellu(n)]3

Remark 11 In order for the equivalence between strongly positive real and strictlytippgsive to be
stated, the strictly input passive system must also have finite gain{iie.asymptotically stable). For
example the realization foH (s) = 1 + %, Y={A=0,B=1,C=1,D = 1},§ = 1is strictly input
passive but is not asymptotically stable. Howel#rk) = jj;f;, Y={A=-a,B=(b—0a),C =D =
1},0 = min{1, 2} is both strictly input passive and asymptotically stable forall > 0.

Proof: i) < ii): Stated in Lemma 5.
i) < iv): Stated in Lemma 8.
iil) < iv): Stated in Definition 11

Remark 12 Itis known that if anL3" (15") stable system is strictly input passive then it is also strictly-output
passive (van der Schaft 1999, Remark 2.3.5) , the converse hosen@ralways true (i.einfy,, Re{H (jw)}

is zero for strictly proper (strictly output passive) systems). It has lsbewn for the continuous time case
(van der Schaft 1999, Theorem 2.2.14) and discrete time case ((Kettensnd Antsaklis 2007b, Theo-
rem 1) and (Goodwin and Sin 1984, Lemma C.2.1-(iii))) that a strictly oytpasive system is passive and
L3 (13%) stable but it remains to be shown if the converse is true or not true.eshdee can show that an
infinite number of continuous time and discrete time linear time invariant sgsdenexists which are both
passive and.3® (15") stable and are neither strictly output passive nor strictly input passive.

Theorem7 Let H : H. — H. (in whichy = Hu, y(0) = 0, and for the case when a state-space
description exists foH that it is zero-state observablg & 0 implies that the state = 0) and there exists
a positive definite storage functigt{z) > 0,z # 0, 5(0) = 0) have the following properties:

a) [lyrll2 < 7llurl2
b) (y,u)r > —dl|ur3
c) There exists a non-zero norm inpusuch that(y, u)7 = —§||lur||3 and||yr||3 > 62|lur|3 for § < ~.

Then the following systerff;, in which the output; is computed using; = y + du has the following
properties:

|. Hyis passive.
Il. Hyis Ly (I3") stable.

lll. Hy is not strictly output passive (also not strictly input passive )
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Proof: 7-1: Solving for the inner-product between andu we have

{y1, w)r = (y, u)r + 8llurll3 = (=0 +8)ljur|3 =0

7-1I: Solving for the extended-two-norm fgi we have

1G)rll3 = [y + du)rll3 < [lyrll3 + 8% (lurl3
IG)rll3 < (3% + 6% Jur3
7-1ll: From 7-I, the solution for the inner-product betwegnandw can be substituted in Assumption c) to

give, (y1,u)r = (=6 + 0)||ur|5 = 0.
It is obvious that no constant> 0 exists such that

(y1.u)r = 0> 8llur|3 =0

since it is assumed thdtr |3 > 0, henceH, is not strictly-input passive. In a similar manner, noting that
the added restriction holdsr||3 = §2||ur||3 for the same input function when (y, u)r = —§|lur||3, it is
obvious that no constaat> 0 exists such that

(y1,u)r = 0> €| (y1)7]l3 =0
0> €(|lyrll3 — 6*|url3)

holds.

Remark 13 Theorem 7 shows that a system that is passive &fidstable is not necessarilgOP. The
continuous time systefd (s) given by

2

- (52)

His) —
() $2 4+ 2wps + w2’

for w, > 0 satisfies the assumptions of the theorem required of a sy&témwhiché = % and an input-
sinusoidu(t) = sin(v/3wyt) is a null-inner-product sinusoid such that
1 w2

1
Hi(s)= -+ H(s) = = n
1) =g+ HO) = 5+ oy (53)

is both passive and?3’ stable but neither strictly-output passive nor strictly-input passive.

This section will be finished with the connections between passivity andyms#al in discrete time.
The proofs are omitted because they closely follow the continuous time case.

Lemma 12 Let H(z) be anm x m matrix of real rational transfer functions of variable LetX, be a
minimal realization ofH (z) which is Lyapunov stable. Furthermore we denbflgl as anm x m impulse
response matrix off (z) in which the outpuy[k] is computed as follows:

Then the following statements are equivalent:

i) H(z) is positive real.
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ii) There exists® = PT > 0 to satisfy the discrete time Positive Real Lemma (37).
i) With @ = R =0, S = 11 there3P = PT > 0 s.t. (33) is satisfied.

iv) For zero initial conditions ¢[0] = 0), H(z) is passive
>yt (Duli) 2 0.
=0

Lemma 13 Let H(z) be anm x m matrix of real rational transfer functions of variable LetX, be a
minimal realization ofH (z) which is Lyapunov stable. Furthermore we denbjte] as anm x m impulse
response matrix off (z) in which the outpuy[k] is computed as follows:

Then the following statements are equivalent:
i) H(z) is strictly positive real.
ii) There exists® = PT > 0 to satisfy the discrete time Strict Positive Real Lemma (37).

iii) ¥, is asymptotically stable, and f@p = 0, R = —61, S = 31,3P = PT >0, and3§ > 0 s.t. (33)
is satisfied.

iv) X, is asymptotically stable, and for zero initial conditiong(] = 0), H(z) is strictly input passive s.t.
Dy (@uli) > 6l|u(@)]3.
=0

4.2 Passivity Based Pairing Methods

In control systems, pairing methods are used to pair inputs and outputerfsolcof multi-input multi-
output (MIMO) systems. Passivity methods have been used for pairimgBeo et al. (2007). Lemma 13
of this paper can be used to improve the performance of existing passagiggdipairing methods.

-y, (k)

Figure 2: Asymptotically stable feedback structurekif(z) is passive andd,(z) strictly positive real
(rs(k) = Sr(k)).

The passivity based pairing method scales and pairs infféts € R™ to outputsy(k) € R™ of a
stable discrete time plari (z) and augments its output so that resulting systépz) with input vector
up(k) € R™ and output vectoy, (k) € R™ is asymptotically stable and strictly input passive (strictly
positive real).H,(z) is then integrated into the feedback structure depicted in Fig. 2 in which thetten
K, (z) is passive and the matriis a permutation matrix resulting from the passivity based pairing method.
As depicted in Fig. 3 the plant is scaled, paired and rendered strictly mosstf. The procedure to render
H,(z) to be strictly positive real is as follows:
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Figure 3: Stable plantl (z) paired, scaled and rendered passive suchAhét) is strictly positive real.

1) DetermineHg(z) = SH(z). Select one of then! permutation matriceS such thats(k) = Sy(k).

2) DetermineHr(z) = Hg(z)I'. The matrixI" = diag{v1, ...,V } and the corresponding relationship
u(k) = I'uy(k) are used to ensure that the steady state gain frgih) to ys(k) is positive by setting
the coefficients to be

vi = sgn (Hg(i (1)) - (54)

3) Determine‘Ip(z) = Hp(z)—l—athhp(z). th(Z) = diag{th(l) (Z), - 7th(m) (Z)} in WhiChth(i) (Z)
is an identical highpass filter. The highpass filter is synthesized by appdyipassivity preserving
sample and hold transform Kottenstette et al. (2011) to the continuous timeHiljgs) = s1oo In
which w, is a positive real coefficient. The real coefficienis andw, are determined by minimizing
R(w,, app) = — 2= while satisfying (37) for the state space realizatiortf ) to be rendered strictly

-y ahp
positive real.

Figure 4: Final control structure in whichi(z) is realized for the plani/ (z).

The controllerK (z) is implemented afteff,(z) is determined. As depicted in Fig. 4 the controller gain
K (z) is determined as follows

K(2) = TKy(2) x [ + anyHyp(2)Kp(2)] 7 S. (55)
Thefinal control law K (z) selected will be the one which results from thievhich minimizesR(w,, ay)
over all possible permutation matrices.
5 Case Studies Demonstrating Performance in Passivity Based Pairing

The passivity based pairing method presented in Section 4.2 can lead to édmerformance when com-
pared to controllers derived using the scaled passivity index pairing chetlesented in Bao et al. (2007).
The reason being is that by minimizir¢(w,, ax,) we are able to explicitly minimize the steady-state gain
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anp @and maximizing the pole, of the discrete time high-pass filter, H}, (=) used to realize a strictly pos-
itive real systent,,(z). In addition solving the feasibility of (37) is a necessary and sufficienteagalize
that H,,(z) is strictly positive real instead of requiring the permutation mastiand filteray, Hy,,(2) are
chosen such that the frequency dependent scaled passivity indmdisred equal to zero (a sufficient test
for the system to be positive real). This improvement in performance willepeodistrated by comparing
our final controller performance to two of the illustrative case examplesestuid Bao et al. (2007). Case
1 involving the3 x 3 distillation column will be considered in which additional feasible pairings aterde
mined possible which includes a better performiri@-2/3-3/1 pairing. Case 2 involving & x 2 process is
considered in which we can compare the improved step tracking respidresezmaining subsections are as
follows: i) Subsection 5.1 presents the discrete time high pass filter realizafiSupsection 5.2 presents
our discrete time proportional-integral control realization; iii) SubsectiorpBe3ents Case 1 results; and
iv) Subsection 5.4 presents Case 2 results.

5.1 High Pass Filter Synthesis

In this section we derive the discrete time passive filig(2) from the continuous time filteff;,(s) by
using the inner product equivalent sample and hold transform asnpeesi (Kottenstette and Antsaklis
2007a, Section-IV-A). By preserving the inner product of input aatput from continuous time to discrete
time, the passivity property is guaranteed. The passivity preservingdiilirensform could be applied as
well (Hitz and Anderson (1969)); however, frequency prewarpiuogld also be required. The continuous
time filter Hy,,(s) = -=*- used to synthesizH},,;) (2) has the following state-space realization:

s+wo

Thp(s) (1) = — WoTpp(a) (t) + Up(iy ()
Ynp(i) (t) = — Wohp(iy () + upei (1)

The outputy;,;(t) is then cascaded with an integrator such that:
T1_pp(i) (1) = Ao 1_pp(i) (1) + Botpgs (1)

Y1—np(i) (1) =CoT1_pp(i ()

in which 4, = [:g" 8} B, = [1 1]T, C, = [0 1]. The final passive discrete time state space

realization forH},,;)(z) with sampling raté/; seconds is

xhp(z’)(k + 1) :(I)hp(i)—oxhp(i) (k) + th(i)—oup(i)(k)
Ynp(i) (k) =Chp(i)—pThp(i) (k) + Dpp(s)—ptip(i) (k)

in which

Ts
Thpo = [ "anB,

1= e~woTs 1
= I

1
Chti—p = 77 Chti—o (®hp(i)—o — 1)
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= [ 1)

T
1 1 — e wols
Dhp(iy—p = iCoFo = T,

All matrices are diagonalized in order to implement theidentical highpass filters in which we denote

?Chp : [J:Zp(l)’ e ’pr(m)]T’ Up = [up(l), R 7up(m)]T, Yhp = [yhp(l), R ,yhp(m)]T, the m dimensional
identity matrix asl,,, x.» and the Kronecker tensor product@such that

Thp(k + 1) =Ppp_oTpp(k) + Thp_oup(k)
yhp(k) :Chp—pxhp(k:) + th—pup(k)

in which (I)hp—o = Imxm ® (I)hp(l)—01 th—o = Imxm ® th(l)—o’ Chp—p = Imxm ® Chp(i)—pv th—p =
Iimxm @ Dpp(1)—p-

5.2 Proportional-Integral Controller Synthesis

In Kottenstette et al. (2012) we presented a multi input multi output passeeete time proportional
integral (PI) control law. We shall consider the simplified case when tk#iy® definite matrices(; and

K, used in (Kottenstette et al. 2012, eqn. (36)) are of the following f&fm= k;l,x,m and K, =
kplnxm in wWhich k; andkp are positive real numbers. The resulting passive discrete time control law
Kp(z) = diag{ Kp1)(2), - - -, Kpm)(2) } in which K,;) (2) is a discrete time Pl-controller derived from the
application of the inner product equivalent sample and hold transfornetoahtinuous time Pl-controller
Ky(s) = kp + % Denote the: discrete time controller state veatgik) € R™; controller inpute, (k) =

S (r(k) —y(k)) € R™; and the passive controller outputas(k) € R™. The discrete time state space
implementation of,,(z) is

zp(k + 1) =2p(k) + Tsep(k)
up(k:) Zk‘]l‘p(k) + |:€sk7[ + k‘p:| €p(k‘).

The final control gaing; andkp used to computés,(z) will be determined by minimizing the following

performance measure
N

J(N) = (k+1)y/eT(k)e(k) (56)
k=0
in which the tracking erro¢(k) = r(k) — y(k). The control gaing; andkp used to minimize/ (V) were
found using the simplex search method detailed in Lagarias et al. 11988prder to minimize system
overshoot an additional low-pass filter is applied to the reference sat4d®) in which the analog filter

2 s - . . . .
Hiraji(s) = s2+2ctr:c:r:ijs+w§mj' The discrete time filtefia;(2) = diag{ Hyyqj(1)(2); - - -, Hirajem)(2)} In
which Hy,.q;:(2) (i = 1,...,m) results from application of the inner product equivalent sample and hold
to Htraj (S)

5.3 Case 1: Distillation Column

The3 x 3 distillation column has the following transfer function matrix

—1.986e~0-71s 5.24e—60s 5.984¢ 2245
66.67s+1 4005+1 14.29s+1
H(s)— 0.02046_4‘1995 —0.336_1‘8835 2.386_1‘ 43s (57)
- 5s+1 3.9045+1 10s+1
0.374e= 7755 —11.3e"'178  _9.881¢—!-59¢
22.225+1 35.665+1 11.355+1

!Mathwork’s fminsearch was used.
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A periodicTs second zero order hold (ZOH) is applied to (57) in order to defiye). In order to compute
feasibility of (37) forH,(z) and minimizes, we used CVX (Grant et al. (2006)), in order to initially bound
the range fotw, in Hy,(2) we used a modified golden section search to determine [wo—min, Wo—max
and then proceeded to use Brent's Method to mininktze,, an,) (Brent 1973, pp. 79-80). The resulting
controller parameters and corresponding performance measures foptthree configurations are summa-
rized in Table 1. The resulting closed loop tracking responses are plottégl i in which it is clear that the
1-2/2-3/3-1 pairing " = diag{1, —1,1}) leads to best tracking performance. In addition thie/2-3/3-2
pairing C = diag{—1, —1, 1}) is the one identified in Bao et al. (2007) by using the frequency depé¢nde
passivity index in which we are able to synthesize a feasible controlleFiiwally thel-1/2-2/3-3 pairing

(' = diag{—1,—1, —1}) has similar tracking performance to thd /2-3/3-2 pairing.

Table 1: Summary of Controller Results fors Distillation Column (=1.0 SECONAS¢;,.;=.9, wiraj=/1000).

Pairing R(Wo\ahp)  @o wo  J(3ed) kp kg

1-2/2-3/3-1  —.0081  2.728 .0222 10,206 1.07 .055
1-1/2-3/3-2  —.0014  6.051 .0084 26,690 1e3 16
1-1/2-2/3-3  —.0012 5719 .0068 29,662 1e3  1e6

Yin-as-an

Yin-213-311,

Yi-23-311,
--- y1/1—213—3/21_[30]7
y1/1-2/3—3/2;[30] i
--- y1/1_2/3_3/237[30]
== Yin-an-as,

Yin-2r2-313,
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Figure 5: Case 1: closed loop filtered step respotige = [—2,2,3], (I = 1.0 seconds(raj = .9,
Wiraj = 7/1000).

5.4 Case 22 x 2 Process

The2 x 2 process to be considered is as follows

—2 1.5
HG) = [ . (58)
s+1 10s+1
A periodic Ts second zero order hold (ZOH) is applied to (57) in order to defie). Feasibility and
optimal solutions fotH},,(z) were computed in the same manner as discussed in Section 5.3.
An optimal solution was computed for the two possible input-output pairings ichahe diagonal
pairing1-1/2-2 (I' = —Ix») results in the smallest(w,, arnp). The results are summarized in Table 2. The
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pairing in Bao et al. (2007) was1/2-2 and for simplicity of discussion we assume the sdig(z) was
used to rendeH (=) strictly positive real. The key improvement is that the simplex search optimization
step resulted in a significant improvement in tracking performance in whicbatte/ (2686) was reduced
from 7,458 to 1,307 and is evident in the step responses depicted in Fig. 6. The second paiji2gl

(I' = Is«2) performed as poorly as indicated in Bao et al. (2007).

Table 2: Summary of Controller Results for2 Process®;=.2 Secondsg;,.;=.9, wiraj=r/75).

Pairing R(Wo,anp)  @o wo  J(2500)  kp  kr
1-1/2-2 —.0868  1.649 .1432 1,177  1.66 .10
Bao(2007) —.o0868  1.649 .1432 6,730 .02 .02

Yin-zrz,

y1/1—2/2
2

--- y1/1—2/21_[30]

-[30]

Yin-arz,
-15) .

-2 I I ! I I 1 I
0 50 100 150 200 250 300 350 400

t (sec)

Figure 6: Case 2: closed loop step resparige = [1, —2] (T = .2 seconds(iraj = .9, Wiraj = 7/75).

6 Conclusions

This paper provided relationships between various energy-baspérties for LTI systems. Since an entire
survey could be written on classical results from passivity and dissityatieory, the current paper focuses
instead on results th&l) demonstrate relationships between frameworks(@pgrovide new insight into
energy-based theory. The fundamental connections between definifiggassive and positive real, and
their stability results, were summarized in the Venn Diagram in Fig. 1. Thesgectians are valid for
continuous time or discrete time LTI systems. The connection between the twaewesstrated using dis-
sipativity theory. While the notions of passivity or positive realness magseictive for some application
areas, dissipativity is a more general concept that can be applied teeeclags of systems, but it may be
difficult to apply without a previously defined notion of energy. The pagso surveys the energy-based
frameworks of passivity index theory and conic systems theory. As hasrs for systems with a state
space representation, the frameworks are identical. Either can besiaddamework that is more general
than passivity theory but more easily applied than dissipativity theory.

Lastly, the Case Study section included the application of some of these mesalfsassivity-based
input-output pairing method favlIMO control. The method was covered in detail by working through some
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of the application details and then covering two case studies from a prepapes. Improved performance,
in the sense of reduced tracking error, was demonstrated in the examples.
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