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Abstract—The Model-Based Networked Control System (MB-
NCS) framework can be used to improve performance in appli-
cations where communication rates are limited. This framework
has been studied for linear systems with state feedback, but
little has been done for the nonlinear case or for the output
feedback case. This paper approaches the problem of networking
discrete-time nonlinear systems in the MB-NCS framework by
using dissipativity theory and output feedback measurements. By
combining the MB-NCS approach and aperiodic event-triggered
updates, the NCS may operate open loop for long time intervals.
Additionally, this paper considers model uncertainties and non-
vanishing input disturbances as these factors can be destabilizing
in the absence of continuous feedback. While these issues can
be mitigated, traditional notions of stability are simply not
achievable. The main contribution of this paper is a boundedness
result on the system output with a constructive bound. The bound
is guaranteed despite the presence of aperiodic updates, model
uncertainties, and input disturbances.

I. I NTRODUCTION

The presence of networks in control systems brings many
benefits including lower cost and the ability to easily reconfig-
ure. However, the use of networks introduces many new issues
[1]. Primarily, the network is multi-purpose and may not be
available to use continuously. It is possible to free the network
for critical tasks by reducing communication between nodes.
This problem was studied in [2] where a protocol was used
to allocate network resources in a control system. Alternative
approaches were used to reduce data rates by more efficiently
using the payload in a standard packet structure [3], [4].

The present paper uses the Model-Based Networked Control
System (MB-NCS) framework and the event-triggered control
framework to reduce the load on the network. In MB-NCS [5]–
[9], communication is reduced by implementing a model of the
plant on the controller side of the network. In the time intervals
between updates, the model is used to predict the state of the
system. This predicted state is used to produce a control input
that can improve performance over a zero order hold. When
the model is sufficiently accurate, communication rates may
be significantly reduced while performance is maintained.

Previous work in the model-based approach [5]–[9] mainly
focused on the linear case with nonlinear approaches only
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considering the state feedback case [7], [10], [11]. In contrast,
the present paper considers output stabilization of nonlinear
discrete time systems. When feedback measurements are inter-
mittent, sensitivity to model uncertainties and disturbances in-
creases greatly. To address this issue, this paper considers both
plant-model mismatch and non-vanishing input disturbances.
Initial work in this direction was presented in the report [12].

While the MB-NCS framework reduces communication,
data rates are further reduced by using aperiodic event-
triggered communication [9], [13]–[15]. Output feedback sta-
bilization has been recently addressed using event-triggered
control strategies [16]–[19]. Output feedback stabilization of
linear systems subject to external disturbances was considered
in [20]. The present paper addresses a similar problem with
the focus being on nonlinear discrete time systems. The use of
the model-based approach also provides significant reduction
of network communication, as it was discussed in [21] and
[22], compared to the zero-order-hold model used in [20].

When considering model uncertainty and disturbances, the
system output will not, in general, converge to zero. While
asymptotic stability orℓ2 stability are desirable, they are not
achievable. When considering input-output stability, the notion
of ℓ2 stability must be relaxed to a bound on the output.
The form of boundedness considered in this paper, an average
bound on the squared output, is shown in two parts. First the
problem is recast as a negative feedback design problem. Then,
dissipativity theory is applied to show boundedness for the
original MB-NCS. The notion of dissipativity was formalized
in [23], with the specific form of QSR dissipativity used in
this paper was given in [24].

The main contribution of this paper is in proposing an
alternative approach for analyzing MB-NCS with nonlinear
systems. This method is based on dissipativity theory and
is robust to model uncertainties, aperiodic updates, and non-
vanishing disturbances. Additionally, this approach is based on
an input-output model of the system and does not depend on
an internal model of the system dynamics. A brief background
on dissipativity and QSR dissipativity is provided in Section
II. Section III outlines the network structure including the
MB-NCS framework with event-triggered updates. Section IV
presents the main boundedness result of this approach. An
example is given in Section V and the paper is concluded
in Section VI.

II. BACKGROUND MATERIAL

A. Mathematical Preliminaries

The signal spaceℓ2 is the set of finite energy discrete time
signals. A functionw(k) is in ℓ2 if it has finite ℓ2 norm:



||w(k)||
2

2
= lim

K→+∞

K−1
∑

k=0

wT (k)w(k) < ∞. (1)

The extendedℓ2 space, orℓ2e, is the set of signals that have
finite energy on any finite time interval, i.e.

||wK(k)||
2

2
=

K−1
∑

k=0

xT (k)x(k) < ∞ (2)

∀K < ∞. The systems of interest in this paper map input
signalsu(k) ∈ ℓ2e to signalsy(k) ∈ ℓ2e. A system isℓ2
stable ifu(k) ∈ ℓ2 implies thaty(k) ∈ ℓ2 for all u(k) ∈ U .
An important special case of this stability is finite-gainℓ2
stability where there exists aγ andβ such that,

||yK(k)||
2
≤ γ ||uK(k)||

2
+ β (3)

∀K > 0 and∀uK(k) ∈ U . The ℓ2 gain of the system is the
smallestγ such that there exists aβ to satisfy the inequality.

The systems considered in this paper are nonlinear discrete-
time systems. While the systems are controlled using only out-
put feedback, internal models are used to study the dissipative
properties of a system. These state space models are given by,

x(k + 1) = f(x(k), u(k))
y(k) = h(x(k), u(k)),

(4)

wherex(k) ∈ R
n, u(k) ∈ R

m , andy(k) ∈ R
p.

B. Dissipativity Theory

Dissipativity is an energy-based property of dynamical
systems. This property relates energy stored in a system to
the energy supplied to the system. The energy stored in the
system is defined by an energy storage functionV (x). As a
notion of energy, this function must satisfyV (x) > 0 for
x 6= 0 andV (0) = 0. The supplied energy is captured by an
energy supply rateω(u, y). A system is dissipative if it only
stores and dissipates energy, with respect to the specific energy
supply rate, and does not generate energy on its own.

Definition 1. A nonlinear discrete-time system (4) is dis-
sipative with energy supply rateω(u, y) if there exists a
positive energy storage functionV (x) such that the following
inequality holds,

k2
∑

k=k1

ω(u(k), y(k)) ≥ V (x(k2 + 1))− V (x(k1)), (5)

for all timesk1 and k2 such thatk1 ≤ k2,

A particularly useful form of dissipativity with additional
structure is the quadratic form, QSR dissipativity.

Definition 2. A discrete-time system (4) is QSR dissipative if
it is dissipative with respect to the supply rate

ω(u, y) =

[

y

u

]T [

Q S

ST R

] [

y

u

]

. (6)

whereQ = QT andR = RT .

The QSR dissipative framework generalizes many areas of
nonlinear system analysis. The property of passivity can be

captured whenQ = R = 0 and S = 1

2
I, where I is the

identity matrix. Systems that are finite-gainℓ2 stable can be
represented byS = 0, Q = − 1

γ
I, andR = γI whereγ is

the gain of the system. The following theorems give stability
results for QSR dissipative systems and dissipative systems in
feedback.

Theorem 1. [24] A discrete-time system is finite-gainℓ2 stable
if it is QSR dissipative withQ < 0.

Fig. 1. The feedback interconnection of systemsG1 andG2.

Theorem 2. [24] Consider the feedback interconnection of
two QSR dissipative systems (Fig. 1). SystemG1 is dissipative
with respect toQ1, S1, R1 and systemG2 with respect to
Q2, S2, R2. The feedback interconnection isℓ2 stable if there
exists a positive constanta such that the following matrix is
negative definite,

Q̃ =

[

Q1 + aR2 −S1 + aST
2

−ST
1 + aS2 R1 + aQ2

]

< 0. (7)

QSR dissipativity can be used to assess stability of a
single system as well as systems in feedback. From a control
design perspective, the QSR parameters of a given plant can
be determined and used to find bounds on stabilizing QSR
parameters of a potential controller.

III. N ETWORK STRUCTURE

One of the main problems in NCS is the design of control
schemes that account for the absence of feedback measure-
ments for possibly long intervals of time. While classical
closed loop control with continuous feedback reduces sensitiv-
ity to model uncertainties, this benefit is absent when feedback
measurements are missing. The MB-NCS approach considers
model uncertainties in the absence of continuous feedback.
This framework uses a model of the plant to compute the
control input based on the predicted state of the plant rather
than the actual state. In contrast to previous work in MB-NCS,
the work in this paper does not assume that the entire state
vector is available for measurement but only the output of the
system. It is assumed that the dynamics of each system in
the network (Fig. 2) are decoupled so the analysis can focus
on a particular system/model pair without loss of generality.
In MB-NCS the actuator/controller node with output feedback
can be represented as in Fig. 3.

This work considers Single-Input Single-Output (SISO)
uncertain and unstable nonlinear discrete-time systems that can
be described by:

y(k) = fio(y(k − 1), ..., y(k − n), u(k), ..., u(k −m)) (8)

and the dynamics of the model are given by:

ŷ(k) = f̂io(ŷ(k − 1), ..., ŷ(k − n), u(k), ..., u(k −m)) (9)



where the nonlinear function̂fio(·) represents the available
model of the system functionfio(·). This input-output repre-
sentation can be transformed into the state space form, shown
in [12], in order to evaluate the QSR parameters.
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Fig. 2. Representation of Networked Control Systems with actuator nodes
(A), sensor nodes (S), and external disturbances (ωi).
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Fig. 3. Model-Based Networked Control System actuator nodecontaining
the model and controller.

The main reason for using this configuration is to operate in
open-loop for as long as possible while maintaining desirable
boundedness properties. This is done by using the estimated
output ŷ provided by the model to generate the control input
u. When needed for the event-triggered control scheme, the
actual outputy is used to update the model without need
of implementing a state observer. The model requires the
current value and previousn values of the output based on the
dimension of the system (8). The sensor contains a copy of
the model and controller so it has access to the model output.
It continuously measures the actual output and computes the
model-plant output error:

e(k) = ŷ(k)− y(k). (10)

In the MB-NCS literature the update measurements are
implemented periodically. This paper discards the periodicity
assumption for updating the model, and instead uses an aperi-
odic event-triggered rule as in [9]. The sensor node monitors
the output error and communicates the plant output when an
event is triggered. In this case, the event is the errore(k) > α

whereα > 0 is a fixed positive threshold. At this time instant,
the model output̂y(k) is updated to equaly(k) and the output
error (10) is zero. Assuming no delay in updating the output,
the error is always bounded:

|e(k)| ≤ α. (11)

It should be noted that the reduction in network traffic
is significant compared to the case in which a measurement
of y(k) is sent at every sampling instant. This is true even

when the order of the systemn is large compared to the
inter-update intervals. In this case, nearly every sample of the
output is transmitted eventually. The average data rates are
still significantly reduced when considering that bandwidth
can be lost due to packet overhead and the minimum size
of payload for each packet. As the minimum payload in a
packet is typically much larger than a single measurement, by
saving measurements and sending them all at the same time,
a larger portion of the payload can be utilized, similar to the
approaches in [3], [4].

One of the original contributions of this paper is in re-
formulating the MB framework into a traditional feedback
problem as in Fig. 1. This is done by representing the output
of the modelŷ(k) as the sum of the plant outputy(k) and the
error e(k) which is now treated as an external input. In this
equivalent, model abstracted, representation the plant mapping
from inputup(k) to outputy(k) and controller mapping from
input uc(k) to outputyc(k) are directly interconnected as in
Fig. 4.

Fig. 4. This figure shows the feedback of the plant and controller/model. The
two disturbance signals arew1 andw2 while the error in the model output
is e.

In the absence of disturbances, the input to the plant is
the output of the controller and the input to the controller is
the predicted plant output̂y. This is consistent with the MB-
NCS framework in Fig. 3 and consistent with the definition
of the output error,̂y(k) = e(k)+ y(k). The errore(k) is still
present in the absence of external disturbances due to model
uncertainties. It is not possible to showℓ2 stability since the
error signale(k) is not anℓ2 signal.

Feedback systems with periodic feedback have a low sensi-
tivity to disturbances and unmodeled dynamics. This property
is not guaranteed when considering aperiodic communication.
This paper explicitly considers a plant input disturbancew1(k)
and a controller input disturbancew2(k). Both signals are
assumed to have bounded magnitude for all timek but
may be non-vanishing. These signals can capture unmodeled
dynamics as well as error introduced by discretization. These
disturbances are unknown but have magnitude bounded by

|w1(k)| ≤ W1(k) + c1 (12)

where the signalW1(k) > 0 is an ℓ2 signal andc1 ≥ 0 is
a constant. Likewise, forℓ2 signal W2(k) > 0 and positive
constantc2,

|w2(k)| ≤ W2(k) + c2. (13)

An example of such a disturbance and the appropriate bounds
is given in Fig. 5.
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Fig. 5. This figure provides an example of an allowable disturbancew(k)
that is bounded by the sum of anℓ2 signalW (k) > 0 and a constantc > 0.

IV. B OUNDEDNESSRESULTS

This section considers the problem of bounding the size
of the system output when operating nonlinear discrete-time
systems in the network configuration described in the previous
section. As discussed previously, there are two issues with
traditional stability for this network setup. The first is due
to the aperiodic control updates. Between update events the
feedback system is temporarily operating open-loop. With
even small model mismatch between the actual plant and the
model, the outputs between the two can drift significantly
over time. Typically, the system output does not go to zero
thus cannot be bounded as in finite-gainℓ2 stability. The
second issue with traditional notions of stability is that this
work allows non-vanishing input disturbances. Traditional
dissipativity theory shows stability for disturbances that are in
ℓ2, i.e. the disturbance must converge to zero asymptotically.
We generalize existing results to disturbances that may notgo
to zero but do have an ultimate bound.

While notions of asymptotic stability or finite-gainℓ2 sta-
bility are appealing, they are simply not achievable in this
framework. Instead we relax this to a boundedness result.
As this paper considers systems described by an input-output
relationship, the notion ofℓ2 stability is relaxed to a bound
on the output as time goes to infinity. With output error and
disturbances that are non-vanishing, the output may fluctuate
over a large range. It may be difficult to find an ultimate bound
the size of the output for all time. Instead, this paper considers
an average bound on the squared system output.

Definition 3. A nonlinear system is average output squared
bounded if after timēk, there exists a constantb such that the
following bound on the output holds for all timesk1 and k2
larger than (k̄ ≤ k1 < k2),

1

(k2 − k1)

k2−1
∑

k=k1

yT (k)y(k) ≤ b. (14)

This form of boundedness is a practical form of stability
on the system output. While the output does not necessarily
converge to zero, it is bounded on average with a known bound
as time goes to infinity. It is important to note that this concept
is not useful for an arbitrarily large boundb. However, the
concept is informative for a small, known bound. The notion

should be restricted to being used in the case when the bound
is constructive and preferably when the bound can be made
arbitrarily small by adjusting system parameters.

The following boundedness theorem can be applied to
the analysis of a plant and controller in the model-based
framework. The plant and the model of the plant must be
QSR dissipative with respect to parametersQP , SP , andRP .
Although the plant dynamics are not known exactly, sufficient
testing can be done to verify that the dissipative rate bounds
the actual dissipative behavior of the system. The model-
stabilizing QSR dissipative controller has been designed with
parametersQC , SC , andRC .

Theorem 3. Consider a plant and controller in the MB-NCS
framework (Fig. 2-3) where model mismatch may exist between
the plant and model. The network structure contains event-
triggered, aperiodic updates and non-vanishing disturbances.
This feedback system is average output squared bounded if
there exists a positive constanta such that the following matrix
is negative definite,

Q̃ =

[

QP + aRC aST
C − SP

aSC − ST
P RP + aQC

]

< 0. (15)

Proof. The plant and controller being QSR dissipative implies
the existence of positive storage functionsVP and VC , such
that

∆VP (xP ) ≤

[

y

uP

]T [

QP SP

ST
P RP

] [

y

uP

]

and a similar bound on∆VC . A total energy storage func-
tion can be defined,V (x) = VP (xP ) + aVC(xC), where
x = [xT

P xT
C ]

T . The total energy storage function has the
dissipative property,

∆V (x) ≤









y

yC
w1

(w2 + e)









T

[

Q̃ S̃

S̃T R̃

]









y

yC
w1

(w2 + e)









.

where

Q̃ =

[

QP + aRC aST
C − SP

aSC − ST
P RP + aQC

]

,

S̃ =

[

SP aRC

−RP aSC

]

, and R̃ =

[

RP 0
0 aRC

]

.

Due to Q̃ < 0 (15), there exists a constantq such thatQ̃ ≤
−qI. As S̃ and R̃ are constant matrices, the largest singular
values can be found,s = σ(S̃) andf = σ(R̃). This yields the
following bound on∆V

∆V (x) ≤ −q[yT y + yTc yc] + 2s[yTw1 + yTc (w2 + e)]+

r[wT
1 w1 + (w2 + e)T (w2 + e)].

Completing the square can be used to remove the cross terms,

∆V(x)≤−
q

2
[yT y+ yTc yc] +

(4s2+2qr)

2q
[wT

1w1 +wT
2w2 + eTe].



Summing this inequality fromk1 to k2 yields the following,

V (x(k2)) ≤ V (x(k1))−
q

2

k2−1
∑

k=k1

[yT y + yTc yc]+

(4s2 + 2qr)

2q

k2−1
∑

k=k1

[wT
1 w1 + wT

2 w2 + eT e].

The effect of the non-vanishing disturbancesw1 andw2 can be
bounded by constantsǫ1 andǫ2 after some timēk, |wi(k)| ≤
ǫi, for k ≥ k̄. Additionally, |e(k)| < α for all k. A single
bound can be definedǫ2 = ǫ21 + ǫ22 + α2. At this point, either
the average output squared is bounded by the following,

1

(k2 − k1)

k2−1
∑

k=k1

yT y ≤
(4s2 + 2qr)ǫ2

q2(1− δ)
, (16)

where0 < δ < 1, or not bounded by it,

1

(k2 − k1)

k2−1
∑

k=k1

yT y >
(4s2 + 2qr)ǫ2

q2(1− δ)
. (17)

When it is larger than this quantity, it is possible to show,

V (x(k2)) ≤ V (x(k1))−
qδ

2

k2−1
∑

k=k1

yT y−

(4s2 + 2qr)

2q

k2−1
∑

k=k1

[ǫ2 − wT
1 w1 − wT

2 w2 − eT e].

This can be used to show a bound ony,
k2−1
∑

k=k1

yT y ≤
2

qδ
V (x(k1)). (18)

As the sum ofyT y is bounded, the average is also bounded.
Either (16) or (18) holds which shows that the average
squared system output is bounded, satisfying Definition 3.
Furthermore, the parameterδ can be adjusted to vary (and
potentially lower) the relative size of the two bounds.

�

One important takeaway is that the bound on the system
output is constructive. The bounds can be made smaller by
adjusting the values of controller which changesq, s, and
r. The bounds also depend on the value of the output error
thresholdα which can be made smaller, to an extent. The
effect of the non-vanishing disturbances may be significant
depending onǫ1 andǫ2. When these disturbances are vanish-
ing, the bound on the output depends mainly onα which may
be made arbitrarily small. The value ofα may be chosen to
tradeoff decreased communication with reduced output error.

V. EXAMPLE

The following example was chosen to be LTI for ease of
following, but the results apply to nonlinear systems. The QSR
parameters were found using state space models, but the NCS
is simulated using the equivalent input-output models. The
plant of interest is unstable with model given by:

Â=

[

−0.7 0.52
0.88 0.4

]

, B̂=

[

1
0

]

, Ĉ=
[

0.73 2.2
]

, D̂=1.2. (19)

The model can be shown QSR dissipative (QP = 0.04, SP =
0.15, andRP = 0.1) by using the storage function:

V̂ (x̂) = x̂T

[

0.38 0.42
0.42 0.73

]

x̂. (20)

An example of a stabilizing controller is given by:AC = 0.2,
BC = 0.6, CC = 0.8, andDC = 1. This controller is QSR
dissipative (QC = −0.35, SC = 0.15, andRC = −0.3) which
can be shown using storage function,Vc(xc) = 0.31xu

2. The
controller can be shown to stabilize the model by evaluating
(15) with a = 1,

Q̃ =

[

−0.26 0
0 −0.25

]

< 0. (21)

As mentioned earlier, the actual plant is dissipative with
respect to the same QSR parameters (QP , SP , andRP ), and
is given by:

A=

[

−0.71 0.55
0.95 0.35

]

, B=

[

1
0

]

, C=
[

0.75 2.3
]

, D=1.1. (22)

The QSR parameters can be verified using storage function

V (x) = xT

[

0.37 0.36
0.36 0.55

]

x. (23)

By assumption, the controller also stabilizes the plant and
satisfies the inequality for boundedness. This MB-NCS was
simulated with input-output models for the plant, model, and
controller. The external disturbancesw1(k) andw2(k) for this
example are shown in Fig. 6.
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Fig. 6. This figure shows the non-vanishing disturbancesw1(k) andw2(k).

The disturbances are bounded by0.1 after time k = 50.
With this magnitude of disturbance, it is not possible to
guarantee that the output error stay less than0.1. The threshold
for the output error was chosen to be0.2. These systems were
simulated and the system outputs are shown in Fig. 7. The
evolution of the output error over time is shown in the first
subplot of Fig. 8. This plot shows the error after each update
takes place, that is, when the error is reset to zero. As a result,
the error is always bounded as stated in (11). The second
subplot shows the time instants at which output measurements
are sent from the sensor node to the controller node. The rest
of the time the networked system operates in open-loop.

Fig. 7 shows that the outputs of the MB-NCS are bounded,
as expected. Clearly the outputs do not converge to zero,
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Fig. 7. This figure shows the output of the plant (top) and the model (bottom).
The model tracks the plant closely within the update threshold.
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Fig. 8. This figure shows the output error (top) and communication instants.
A value of1 indicates data is transmitted while0 indicates no data sent. The
communication instants align with the error growing to above0.2.

but the model output tracks the plant output closely. In this
example, communication is relatively constant for the first20
time instants as the system responds to the large disturbances.
After this point, the communication rate drops significantly.
While the error stays bounded by0.2, the communication rate
is reduced by88.9%. For comparison, a simulation was run
with the output being transmitted at every time instant. Forthis
case, the output error grew to as large as0.17 after k = 50.
The continuous output feedback provides a small reduction
in output error, with an average data transmission rate thatis
nearly10 times higher.

VI. CONCLUSIONS

This paper presented a boundedness result for discrete-time
nonlinear systems in the MB-NCS framework with only output
measurements. It is assumed that the system has uncertain
dynamics and is perturbed by non-vanishing disturbances. The
magnitude of the disturbances were bounded by the sum of
an ℓ2 signal with a constant offset. The MB-NCS framework
and the event-triggered feedback are both utilized to reduce
communication rates. While the output does not converge
to zero, the squared output is on average bounded with a
constructive bound. This bound can be made small by varying

the parameters of the controller and by reducing the threshold
on the acceptable error of the model output. An example
was provided to illustrate how these methods can be used in
practice.
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