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Abstract—The Model-Based Networked Control System (MB- considering the state feedback case [7], [10], [11]. In it
NCS) framework can be used to improve performance in appli- the present paper considers output stabilization of nealin
cations where communication rates are limited. This framework iscrete time systems. When feedback measurements are inter

has been studied for linear systems with state feedback, but _ . e e . .
little has been done for the nonlinear case or for the output mittent, sensitivity to model uncertainties and distud®Emin-

feedback case. This paper approaches the problem of networking Creases greatly. To address this issue, this paper cosdidtér
discrete-time nonlinear systems in the MB-NCS framework by plant-model mismatch and non-vanishing input disturbance
using dissipativity theory and output feedback measurements. 8 |nitial work in this direction was presented in the repor2]i1
combining the MB-NCS approach and aperiodic event-triggered While the MB-NCS framework reduces communication,

updates, the NCS may operate open loop for long time intervals. . S :
Additionally, this paper considers model uncertainties and non- data rates are further reduced by using aperiodic event

vanishing input disturbances as these factors can be destabilizing triggered communication [9], [13]-[15]. Output feedbacé-s
in the absence of continuous feedback. While these issues cardilization has been recently addressed using event-tegge
be mitigated, traditional notions of stability are simply not control strategies [16]-[19]. Output feedback stabilaatof
achievable. The main contrlbl_mon of this paper is a boundedness |inear systems subject to external disturbances was cenesid
result on the system output with a constructive bound. The boud . . .
is guaranteed despite the presence of aperiodic updates, model" [20]. The_present pa_per ad_dresses_ a similar problem with
uncertainties, and input disturbances. the focus being on nonlinear discrete time systems. Thefuse o

the model-based approach also provides significant remucti

of network communication, as it was discussed in [21] and

|. INTRODUCTION [22], compared to the zero-order-hold model used in [20].

The presence of networks in control systems brings manyWhe” considering model uncertainty and disturbances, the

benefits including lower cost and the ability to easily rdigon SyStem output will not, in general, converge to zero. While
ure. However, the use of networks introduces many new iss@YMPtotic stability o, stability are desirable, they are not
[1]. Primarily, the network is multi-purpose and may not bé\ch|evable_. _When considering input-output stability, tbéon
available to use continuously. It is possible to free thewoet Of ¢2 Stability must be relaxed to a bound on the output.
for critical tasks by reducing communication between node5he form of boundedness considered in this paper, an average

This problem was studied in [2] where a protocol was usé&pund on the squared output, is shown in two parts. First the
to allocate network resources in a control system. Altéraat ProPlem is recast as a negative feedback design problem, The

approaches were used to reduce data rates by more efficiefli§piPativity theory is applied to show boundedness for the
using the payload in a standard packet structure [3], [4]. original MB-NCS. The notion of dissipativity was formalte

The present paper uses the Model-Based Networked Conffbl23], With the specific form of QSR dissipativity used in
System (MB-NCS) framework and the event-triggered contrBiiS Paper was given in [24].

framework to reduce the load on the network. In MB-NCS [5] 1€ main contribution of this paper is in proposing an

[9], communication is reduced by implementing a model of tH¥ternative approach for analyzing MB-NCS with nonlinear
plant on the controller side of the network. In the time ingds  SYSEMS. This method is based on dissipativity theory and

between updates, the model is used to predict the state of ﬁé?b#St to. model uncertair.lt'ies, l?pekr]ilodic updatr]e§, amd no
system. This predicted state is used to produce a contrat inﬁfan's ing disturbances. Additionally, this approach isdubon

that can improve performance over a zero order hold. Wh&f InPut-output model of the system and does not depend on

the model is sufficiently accurate, communication rates m&y Internal model of the system dynamics. A brief background

be significantly reduced while performance is maintained. On dissipativity and QSR dissipativity is provided in Senti

Previous work in the model-based approach [5]-[9] main |. Section 1l outlines the network structure includingeth
focused on the linear case with nonlinear approaches o -NCS framework with event-triggered updates. Section IV
presents the main boundedness result of this approach. An
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. captured when) = R = 0 and S = 31, where[ is the
2 —~ 7 identity matrix. Systems that are finite-gafp stable can be
[[wk)ll; = Kgr—r&-loo — w (k)w(k) < oo (1) represented by = 0, Q = —%I, and R = I where~ is
k__o ) the gain of the system. The following theorems give stabilit
The extended’,; space, or’y, is the set of signals that haveyesyts for QSR dissipative systems and dissipative system

finite energy on any finite time interval, i.e. feedback.
K-1 . . .o
2 T Theorem 1. [24] A discrete-time system is finite-gaipn stable
s (R[], = kZO z" (k)z(k) < oo @ if it is QSR dissipative with) < 0.

VK < oo. The systems of interest in this paper map input
signalsu(k) € ¢s. to signalsy(k) € fa.. A system ists
stable ifu(k) € ¢5 implies thaty(k) € ¢, for all u(k) € U.

An important special case of this stability is finite-gain
stability where there exists @ and 8 such that,

lyr (K)lly <y lluk ()l + 8 ©)

VK > 0 andVug (k) € U. The ¢y gain of the system is the
smallesty such that there exists @to satisfy the inequality.
The systems considered in this paper are nonlinear discretéeorem 2. [24] Consider the feedback interconnection of
time systems. While the systems are controlled using only otitvo QSR dissipative systems (Fig. 1). Systenis dissipative
put feedback, internal models are used to study the dissipatwith respect toQ);, Si, R; and systemG,; with respect to
properties of a system. These state space models are giverfhy Sa2, R2. The feedback interconnectionds stable if there
2(E+1) = flak),ulk) @ i)és;vae %c;sf:::\i/tz constant such that the following matrix is
y(k) h(z(k), u(k)), ’

S Ql + aRs -5 + aST
wherexz(k) € R™, u(k) € R™ , andy(k) € RP. Q= ST 448 R+ aQ; < 0. (7

Fig. 1. The feedback interconnection of systefis and Ga.

o QSR dissipativity can be used to assess stability of a

B. Dissipativity Theory single system as well as systems in feedback. From a control
Dissipativity is an energy-based property of dynamic@lesign perspective, the QSR parameters of a given plant can
systems. This property relates energy stored in a systemp® determined and used to find bounds on stabilizing QSR

the energy supplied to the system. The energy stored in fh@&ameters of a potential controller.
system is defined by an energy storage funcliofx). As a

notion of energy, this function must satiskj(z) > 0 for I1l. NETWORK STRUCTURE

x # 0 andV(0) = 0. The supplied energy is captured by an one of the main problems in NCS is the design of control
energy supply rates(u,y). A system is dissipative if it only schemes that account for the absence of feedback measure-
stores and dissipates energy, with respect to the specéigen ments for possibly long intervals of time. While classical
supply rate, and does not generate energy on its own.  cjosed loop control with continuous feedback reduces tensi
Definition 1. A nonlinear discrete-time system (4) is disily to model uncertainties, this benefit is absent when faekib
sipative with energy supply rates(u,y) if there exists a measurements are missing. The MB-NCS approach considers

inequality holds, This framework uses a model of the plant to compute the

control input based on the predicted state of the plant rathe

k}g . .
than the actual state. In contrast to previous work in MB-NCS
> — o X
Z wlu(k),y(k) 2 V(z(ks +1)) = V(z(kr)),  (5) the work in this paper does not assume that the entire state
k=Fk . .
_ vector is available for measurement but only the output ef th
for all timesk, and k, such thatk; < ks, system. It is assumed that the dynamics of each system in
A particularly useful form of dissipativity with additioha the network (Fig. 2) are decoupled so the analysis can focus
structure is the quadratic form, QSR dissipativity. on a particular system/model pair without loss of generalit

In MB-NCS the actuator/controller node with output feedbac
Definition 2. A discrete-time system (4) is QSR dissipative #an be represented as in Fig. 3.

it is dissipative with respect to the supply rate This work considers Single-Input Single-Output (SISO)
T 0 s uncertain and unstable nonlinear discrete-time systeat#m
w(u,y) = m [ST R] [ﬂ : (6) be described by:
WhereQ = QT and R = RT. y(k) = fw(y(k - 1)3 ay(k - n)a U(k)7 ,U(k - m)) (8)

The QSR dissipative framework generalizes many areas,aoq’d the dynamics of the model are given by

nonlinear system analysis. The property of passivity can bej(k) = fw(gj(k —1),.., 9k —n),u(k),...,u(lk —m)) (9)



where the nonlinear functiogﬁ»o(-) represents the availablewhen the order of the system is large compared to the
model of the system functioffi,(-). This input-output repre- inter-update intervals. In this case, nearly every sampthe
sentation can be transformed into the state space form,rshawtput is transmitted eventually. The average data rates ar

in [12], in order to evaluate the QSR parameters. still significantly reduced when considering that bandtvidt
, can be lost due to packet overhead and the minimum size
"v "v of payload for each packet. As the minimum payload in a
System 1 System 2 packet is typically much larger than a single measurement, b
saving measurements and sending them all at the same time,
a larger portion of the payload can be utilized, similar te th
‘ NETWORK ‘ approaches in [3], [4].
One of the original contributions of this paper is in re-
formulating the MB framework into a traditional feedback
System 3 problem as in Fig. 1. This is done by representing the output
e of the modelj(k) as the sum of the plant outpytk) and the

error e(k) which is now treated as an external input. In this
equivalent, model abstracted, representation the plappimg
from inputu, (k) to outputy(k) and controller mapping from
input u.(k) to outputy.(k) are directly interconnected as in
A To System Flg 4.

u
W] + up
. Plant

y
Controller — Model

Fig. 2. Representation of Networked Control Systems witluator nodes
(A), sensor nodes (S), and external disturbancg$.

Controller

From Network

Fig. 3. Model-Based Networked Control System actuator nom@aining
the model and controller. Fig. 4. This figure shows the feedback of the plant and cdetYaiodel. The

two disturbance signals are; andws while the error in the model output

The main reason for using this configuration is to operate {h*

open-loop for as long as possible while maintaining desgrab ) . ,
boundedness properties. This is done by using the estimated! the absence of disturbances, the input to the plant is
output§j provided by the model to generate the control inpdfi€ output of the controlier and the input to the controlier i
u. When needed for the event-triggered control scheme, #¢ Predicted plant outpyl. This is consistent with the MB-
actual outputy is used to update the model without nee!CS framework in Fig. 3 and consistent with the _deflmtlon
of implementing a state observer. The model requires tREthe output error(k) = e(k) +y(k). The errore(k) is stil
current value and previousvalues of the output based on thdresent in the absence of external disturbances due to model
dimension of the system (8). The sensor contains a copy Lg}certainties. It _is not possib_le to shd stability since the
the model and controller so it has access to the model outgiifr Signale(k) is not anf, signal. _
It continuously measures the actual output and computes thé&eedback systems with periodic feedback have a low sensi-

model-plant output error: tivity to disturbances and unmodeled dynamics. This pityper
R is not guaranteed when considering aperiodic communitatio
e(k) =g(k) — y(k). (10)  This paper explicitly considers a plant input disturbangék)

In the MB-NCS literature the update measurements &80 @ controller input disturbance; (k). Both signals are
implemented periodically. This paper discards the pecigdi 2SSumed to have bounded magnitude for all timebut
assumption for updating the model, and instead uses an ap&fy b€ non-vanishing. These signals can capture unmodeled
odic event-triggered rule as in [9]. The sensor node mmitOQynamlcs as well as error introduced by discretization.s€he

the output error and communicates the plant output when gijturbances are unknown but have magnitude bounded by

event is triggered. In this case, the event is the effby > «
wherea > 0 is a fixed positive threshold. At this time instant, jwi (k)| < Wi (k) + 1 (12)
the model outpufj(k) is updated to equal(k) and the output

error (10) is zero. Assuming no delay in updating the outpJere the signal¥i (k) > 0 is an(; signal ande; > 0 is
the error is always bounded: a constant. Likewise, fofy signal W5 (k) > 0 and positive

constantcs,

le(k)| < a. (11) lwa (k)| < Wa(k) + ca. (13)

It should be noted that the reduction in network traffic
is significant compared to the case in which a measuremdut example of such a disturbance and the appropriate bounds
of y(k) is sent at every sampling instant. This is true eves given in Fig. 5.
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o ‘ ‘ ‘ should be restricted to being used in the case when the bound
1 is constructive and preferably when the bound can be made
arbitrarily small by adjusting system parameters.

The following boundedness theorem can be applied to
the analysis of a plant and controller in the model-based
framework. The plant and the model of the plant must be
QSR dissipative with respect to parametéxs, Sp, and Rp.
Although the plant dynamics are not known exactly, sufficien
testing can be done to verify that the dissipative rate beund
the actual dissipative behavior of the system. The model-
Time (s) stabilizing QSR dissipative controller has been designiéld w

parameter€)c, Sc, and Re.

[w(k)|

Fig. 5. This figure provides an example of an allowable distodew (k)
that is bounded by the sum of #p signalW (k) > 0 and a constant > 0. Theorem 3. Consider a plant and controller in the MB-NCS

framework (Fig. 2-3) where model mismatch may exist between
the plant and model. The network structure contains event-
triggered, aperiodic updates and non-vanishing disturdem

This section considers the problem of bounding the sizhis feedback system is average output squared bounded if
of the system output when operating nonlinear discrete-tirthere exists a positive constansuch that the following matrix
systems in the network configuration described in the pteviois negative definite,
section. As discussed previously, there are two issues with
traditional stability for this network setup. The first iselu ~  [Qp+aRc aSL —Sp
to the aperiodic control updates. Between update events the aSc — St Rp+aQc
feedback system is temporarily operating open-loop. With
even small model mismatch between the actual plant and fiof. The plant and controller being QSR dissipative implies
model, the outputs between the two can drift significantijie existence of positive storage functiovis and V¢, such
over time. Typically, the system output does not go to zetbat
thus cannot be bounded as in finite-gain stability. The y T Qp Spl[y
second issue with traditional notions of stability is thhist AVp(zp) < [ } [5}2 RP:| { }
work allows non-vanishing input disturbances. Traditiona
dissipativity theory shows stability for disturbancestthee in and a similar bound om\V,. A total energy storage func-
¢5, i.e. the disturbance must converge to zero asymptoticalfipn can be definedy (z) = Vp(zp) + aVeo(zc), where
We generalize existing results to disturbances that magaotx = [#5 2Z]T. The total energy storage function has the

IV. BOUNDEDNESSRESULTS

} <0. (15)

up up

to zero but do have an ultimate bound. dissipative property,

While notions of asymptotic stability or finite-gaify sta-
bility are appealing, they are simply not achievable in this Yy T Y
framework. Instead we relax this to a boundedness result. e Q S Yo
As this paper considers systems described by an input-butpu AV(z) < wq [S*T R] wy
relationship, the notion of, stability is relaxed to a bound (wg + €) (wa + €)

on the output as time goes to infinity. With output error and

disturbances that are non-vanishing, the output may fltetusvhere

over a large range. It may be difficult to find an ultimate bound T

the size of the output for all time. Instead, this paper abers o= {Qp + aRTc aSéH — Sp] ’
an average bound on the squared system output. aSc —Sp  Rp+aQc

= S R ~ R 0
Definition 3. A nonlinear system is average output squared S = [;P Zsﬂ , andR = { OP aRc] .
bounded if after timé:, there exists a constantsuch that the
following bound on the output holds for all timés and k-

- Due toQ < 0 (15), there exists a constagtsuch thatQ <
larger than (k < ki < ks), Q <0 (15) 7 Q <

—ql. As S and R are constant matrices, the largest singular

= values can be found, = (S) and f = (R). This yields the
T .
(ks — ) >y (k)y(k) <. (14) following bound onAV
k=F1

AV (@) < —qly"y +ye ye] + 2slyTwi + e (wa + €)]+
This form of boundedness is a practical form of stability rlwlwy + (wa + €)T (ws + €)].
on the system output. While the output does not necessarily
converge to zero, itis bounded on average with a known boug@mpleting the square can be used to remove the cross terms,
as time goes to infinity. It is important to note that this oepic
is not useful for an arbitrarily large bound However, the (45%4+2qr)

q; T T T T T
concept is informative for a small, known bound. The notioév(x)g_i[y Y+ Ye yel + 2 [wy w1 +wyws +e7e].



Summing this inequality fronk; to k- yields the following, The model can be shown QSR dissipatiis(= 0.04, Sp =

fep—1 0.15, and Rp = 0.1) by using the storage function:
q
V(z(k) <V(z(k) — 5 > "y + vl vel+ o038 042] .
=t V@) =" o 49 o73] (20)

452 + 2gr) "2
<8;qu) Z [wl wy 4w ws 4 eTe].
k=k;
The effect of the non-vanishing disturban@elsar_lde can be
bounded by constants ande, after some time, |w; (k)| <

e, for k > k. Additionally, le(k)| < « for all k. A single

An example of a stabilizing controller is given byt = 0.2,

Be = 0.6, Cc = 0.8, and D = 1. This controller is QSR
dissipative Q¢ = —0.35, S¢ = 0.15, and R = —0.3) which
can be shown using storage functidnz.) = 0.31x,2. The
controller can be shown to stabilize the model by evaluating

bound can be defined = €7 + €3 + o?. At this point, either (15) with a =1,
the average output squared is bounded by the following, 0= {—026 0 ] 0 1)
0 —0.25 ’
ka—1
1 2 4s% + 2 2
W Z y'y < (52(1_(1;;6, (16) As mentioned earlier, the actual plant is dissipative with
2 Y =k q respect to the same QSR parameté)s (Sp, and Rp), and
where0 < § < 1, or not bounded by it, is given by:
ky—1 —0.71 0.55 1
1 452 4+ 2qr)e? — _ _ _
— R ( oy q5§6 . an A {0.95 0.35}, B M C=[0.75 2.3], D=1.1. (22)
2 — K1) [~ -
h=k The QSR parameters can be verified using storage function

When it is larger than this quantity, it is possible to show,

it vin=er [ 0.
Via(ks)) < Viw(k) = 5 Y oy | 30 0.55]
k=Fk1 By assumption, the controller also stabilizes the plant and
(452 + 2qr) ka—1 satisfies the inequality for boundedness. This MB-NCS was
Sl > [ —wlwy — wjwy —e"e].  simulated with input-output models for the plant, modeld an
24 k=k; controller. The external disturbances (k) andw. (k) for this
This can be used to show a bound gn example are shown in Fig. 6.
ko—1 2 0.8
> uTy < 5Via(h). (18)

k=k1 0.4

0.2

As the sum ofy”y is bounded, the average is also bounded.
Either (16) or (18) holds which shows that the average s ‘ ‘ ‘
squared system output is bounded, satisfying Definition 3. o 50 100 150 200
Furthermore, the parametércan be adjusted to vary (and
potentially lower) the relative size of the two bounds.

ok

Disturbance wi(k)

0.5

O
One important takeaway is that the bound on the system ?0'5
output is constructive. The bounds can be made smaller by -1 - o e -
adjusting the values of controller which changgss, and Time (k)

r. The bounds also depend on the value of the output error i o

. . 6. This f hows th - hing disturb dwa (k).
thresholda: which can be made smaller, to an extent. The® 's figure shows the non-vanishing disturbancegk) andws (k)
effect of the non-vanishing disturbances may be significant

depending ore; andey. When these disturbances are vanisfw

|bng, th% boug?{ oqlthe Oultlpl_]rthdepelnds r?amlyogwmrc];h ma;: guarantee that the output error stay less thanThe threshold

€ made arbitrartly smafl. 1he value otmay be Chosen 10 {q e output error was chosen to 6. These systems were
tradeoff decreased communication with reduced OUtpUT.errQ; . 1 -ted and the system outputs are shown in Fig. 7. The
evolution of the output error over time is shown in the first

) subplot of Fig. 8. This plot shows the error after each update
The following example was chosen to be LTI for ease qfyes place, that is, when the error is reset to zero. As dyesu

following, but the results apply to nonlinear systems. TIBRQ e error is always bounded as stated in (11). The second
parameters were found using state space models, but the NG5, 0t shows the time instants at which output measurement
is simulated using the equivalent input-output models. Thge sent from the sensor node to the controller node. The rest
plant of interest is unstable with model given by: of the time the networked system operates in open-loop.
i [—0.7 0.52} Fig. 7 shows that the outputs of the MB-NCS are bounded,
o as expected. Clearly the outputs do not converge to zero,

The disturbances are bounded by after time k = 50.
ith this magnitude of disturbance, it is not possible to

V. EXAMPLE

, b= H C=[0.73 2.2], D=1.2. (19)

0.88 04 0



the parameters of the controller and by reducing the thidsho
on the acceptable error of the model output. An example
was provided to illustrate how these methods can be used in

Plant output

0 50
4 [1]

(2]

100 150

Model output

(3]
(4]

-1 i i i
0 50 100 150

Time (k)

200

Fig. 7. This figure shows the output of the plant (top) and theeh¢bottom). [5]

The model tracks the plant closely within the update threshol
(6]

(7]
(8]

Error after updates

[

i . ] [10]

(11]

Network comm. instants
o
S

[12]

i i i
0 50 100 150
Time (k)

200
[13]

Fig. 8. This figure shows the output error (top) and commurocaitistants.
A value of 1 indicates data is transmitted whileindicates no data sent. The
communication instants align with the error growing to above

[14]
[15]
but the model output tracks the plant output closely. In this
example, communication is relatively constant for the fat
time instants as the system responds to the large distigbanc
After this point, the communication rate drops significantl [17]
While the error stays bounded Y2, the communication rate

is reduced by88.9%. For comparison, a simulation was run
with the output being transmitted at every time instant.thagr [18]
case, the output error grew to as largelakr after k& = 50.

The continuous output feedback provides a small reductipm
in output error, with an average data transmission rateishat
nearly 10 times higher. (20]

VI. CONCLUSIONS

This paper presented a boundedness result for discrege-tiai]
nonlinear systems in the MB-NCS framework with only outpu[t
measurements. It is assumed that the system has uncer
dynamics and is perturbed by non-vanishing disturbandes. T
magnitude of the disturbances were bounded by the sumlo?
an ¢, signal with a constant offset. The MB-NCS framework
and the event-triggered feedback are both utilized to redueé4l
communication rates. While the output does not converge
to zero, the squared output is on average bounded with a
constructive bound. This bound can be made small by varying

2]

practice.
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