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Abstract—Dissipativity is a valuable tool for analysis and
synthesis of dynamical systems, however, the search for an
appropriate storage function to show the property is often not
straightforward. This paper uses sum of squares (SOS) opti-
mization methods to determine whether a nonlinear or switched
system is dissipative. This is especially useful for switched systems
where notions of dissipativity involve finding multiple storage
functions. Examples and relevant software code are provided to
illustrate these methods.

I. INTRODUCTION

Dissipativity is an energy based property of dynamical

systems [1], [2]. A system is dissipative if it only stores and

dissipates energy provided by the environment without gener-

ating its own energy. While general dissipativity allows for the

most general results, the special case of QSR dissipativity [3],

[4] is of interest because of its more applicable form and it

has computational advantages. The special case of passivity is

of significance because passive systems are Lyapunov stable

and the property of passivity is preserved when systems are

combined in feedback or parallel [5], [6]. These results can

be used together to design stable large scale systems. In our

previous work, these methods have been used in analyzing

network control systems [7]–[9].

The results provided by dissipativity theory are useful when

it is possible to show that a given system is dissipative.

Demonstrating dissipativity requires finding an energy storage

function which is analogous to finding a Lyapunov function

when demonstrating stability. When dissipativity can be shown

computationally, the analysis and synthesis involved in control

system design is greatly simplified. Traditionally this could

be done for linear systems with quadratic supply rates using

Linear Matrix Inequalities (LMIs) [10]. Recently, this has been

extended to a class of nonlinear systems by using Sum of

Squares (SOS) methods [11].

The notions of passivity and dissipativity have been ex-

tended to switched systems in continuous [12], [13] and

discrete time [14]–[16]. Additionally, passivity indices have

been defined for switched systems [17]. These notions of

dissipativity rely on multiple storage functions which is based

on stability of switched systems using multiple Lyapunov

functions [18]. For dissipativity, multiple storage functions

capture the fact that energy may be stored differently for
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each mode of the system. While there are promising results

using multiple storage functions, the burden of demonstrating

dissipativity is increased significantly compared to finding a

single storage function in the non-switched case.

This paper explores computational methods to aid in demon-

strating dissipativity for nonlinear and switched systems. This

includes utilizing SOS methods to demonstrate dissipativity or

find passivity indices for nonlinear systems. These methods are

also used to find both storage functions and cross supply rates

for switched systems. Examples are provided to demonstrate

how these methods can be used in practice.

This paper is organized as follows. Section 2 contains

background material on dissipativity theory and existing SOS

methods. Section 3 covers SOS methods applied to finding

storage functions for non-switched systems. This includes an

example as well as the special case of passivity indices. Using

SOS methods for dissipativity of switched systems is given

in Section 4. Section 5 provides an illustrative example for

switched systems. Concluding remarks are given in Section 6.

II. BACKGROUND MATERIAL

A. Dissipativity Theory
For now, the systems of interest are nonlinear systems of

the form,
ẋ = f(x) + g(x)u
y = h(x) + j(x)u.

(1)

where the functions f, g, h, and j are of appropriate dimension
given by the system state x ∈ R

n, input u ∈ R
m, and output

y ∈ R
p. It is assumed that the vector field f is Lipschitz with

respect to x. It can be assumed without a loss of generality that
f(0) = 0 and h(0) = 0. This system is considered polynomial
when the functions f, g, h, and j are polynomial functions of
the state.

Nonlinear systems can be shown to be stable in the sense of

Lyapunov when there exists a function V (x) > 0, ∀x �= 0 such
that V̇ (x) ≤ 0. When the Lyapunov function is a polynomial
function of the state, it is referred to as a polynomial Lyapunov

function. This class of functions is more general than quadratic

Lyapunov functions.

A dissipative system is one that stores and dissipates en-

ergy supplied by the environment without generating its own

energy. Dissipativity theory provides sufficient conditions for

stability of single systems and for feedback interconnections.

As a property of dynamical state space systems, dissipativity

is more general than passivity and L2 gain. In many cases it is

possible to use stability results from dissipativity theory when

the passivity theorem or small gain theorem do not apply.



The notion of internally stored energy in a system is

captured by an energy storage function V (x) that is analogous
to a Lyapunov function. The rate energy is supplied to the

system is captured by an energy supply rate ω(u, y). This rate
can be varied to capture a range of dynamical behaviors.

Definition 1. [1] A system is dissipative if there exists a non-
negative energy storage function V (x) such that the energy
stored in the system is always bounded above by the energy
supplied to the system, i.e. for u(t) ∈ U and ∀t1, t2 s.t. t1 ≤ t2

∫ t2

t1

ω(u, y)dt ≥ V (x(t2))− V (x(t1)). (2)

For this paper, the input space will be assumed to be, U =
R

m. When V is continuously differentiable, which will be

assumed in this paper, dissipativity can be written, V̇ (x) ≤
ω(u, y). When using computational methods, it is not always
possible to use the general definition of dissipativity due to the

unconstrained form of ω. It is possible to use SOS methods
when ω is restricted to be polynomial as it is in the following
quadratic form.

Definition 2. [3] A system is QSR-dissipative if it is dissipative
with respect to the supply rate,

ω(u, y) =

[
y
u

]T [
Q S
ST R

] [
y
u

]
, (3)

where Q = QT and R = RT .

The parameters Q, S, and R can be chosen to assess a

variety of dissipative behaviors including passivity and finite-

gain L2 stability. QSR dissipative systems are L2 stable when

Q < 0. It is also possible to assess stability for the feedback
interconnection of two dissipative systems by analyzing the

QSR parameters of the two systems.

The special case of passivity is of interest as many prac-

tical systems are passive including many electrical circuits,

mechanical systems, and chemical processes. Passive systems

are Lyapunov stable and the property of passivity is preserved

when systems are combined in parallel or feedback. As a

result, stability of large scale systems may be assessed quickly

when the components are passive. For more details on passiv-

ity theory, refer to [5], [6].

Definition 3. [2] A system is passive if it is dissipative with
respect to the supply rate,

ω(u, y) = uT y. (4)

Passive linear time-invariant (LTI) systems are also known

as positive real systems [19]. A necessary and sufficient test

for an LTI system to be passive is the KYP Lemma [20]. This

result can be written as an LMI so that systems can be shown

to be passive using computational methods [10], [19]. The use

of SOS methods for analysis and control of nonlinear systems

arose from the success of LMI methods for LTI systems.

B. Sum of Squares Methods
Several problems in control systems can be formulated

as searches for a positive definite or positive semi-definite

function. It is clear that this is the case for Lyapunov stability,

by showing that V > 0 and −V̇ ≥ 0 the system is stable.

Traditionally, these problems are computationally efficient

to solve for linear systems using LMIs while they are np-

hard for the general nonlinear case [21]. Other problems

in control systems have been studied using SOS methods

including robustness [22], region of attraction [22], hybrid

system verification [23], and stability with delays [24], among

others.

These problems have recently been approached for nonlin-

ear systems using semi-definite programming. The key step

in formulating the optimization problem is in replacing the

positive semi-definite condition with an alternative sufficient

condition. This condition is that the function is instead a sum

of squares (SOS) of lower order polynomials [21].

F (x) =
∑
i

f2
i (x) ≥ 0 (5)

Clearly, a function being SOS implies that the function is

positive although it is not a necessary condition in general.

These methods can be directly applied to a given system

when the dynamics are polynomial. A detailed list of common

polynomial nonlinearities can be found in [11]. We consider

polynomials that are functions of an nth dimensional variable.

In order for a polynomial to be a sum of squares, the degree

m must be even. We take the function of interest F (x) and
write it in the following form,

F (x) = zT (x)Θz(x), (6)

where z is the stacked vector of monomials up to degree
m/2. It has been shown that F (x) has a sum of squares

decomposition if and only if it can be written as in (6) with

a positive semidefinite Θ [25]. This result enabled the use of

semi-definite programming for polynomial nonlinear systems.

When an appropriate matrix factorization of Θ can be found, it
is possible to determine the SOS representation of the function

F [26].

For SOS problems, the optimization problem is typically

written in the following way.

min c1u1 + ...+ cnun

subject to Pi(x) = Ai,0(x) +Ai,1(x)u1 + ...+Ai,n(x)un

for i = 1, ..., n
(7)

This problem can be shown to be convex and solvable using

semi-definite programming. Computational solvers are avail-

able such as SOSTOOLS [27] for MATLAB. SOSTOOLS relies
on semi-definite solvers such as SeDuMi.

A typical control problem using SOS methods begins with

a given system with polynomial dynamics and assumes a

polynomial form for the unknown functions, Ai,j in (7). The

functions are linearly parameterized by coefficients uj such

that, when appropriate coefficients are found, the system has



a desired property. Semi-definite solvers may be used to find

the coefficients subject to the constraints including the system

dynamics. When the problem is feasible, there exists a function

that is SOS, and positive semi-definite, which implies the

system has the desired property. Often the quantity to minimize

is not important as any feasible solution solves the problem.

For these feasibility problems, the value of the cost coefficients

cj are arbitrary.

III. SOS METHODS FOR DISSIPATIVITY

A. Finding Storage functions

Using SOS methods to demonstrate passivity or dissipativity

for a dynamical system can be done similarly to demonstrating

Lyapunov stability. Showing dissipativity requires finding a

non-negative storage function V (x) such that V̇ ≤ ω(u, y).
Both of these conditions can be relaxed to the following SOS

conditions where the functions pi(x) are polynomials. The
optimization problem has the form (7) subject to

V (x) =
∑
i

aipi(x)
2 (8)

ω(u, y)−
∂V

∂x
(f(x) + g(x)u) =

∑
j

bjpj(x)
2. (9)

Typically finding a single storage function is sufficient so

the values of ci are arbitrary. An important exception, finding
passivity indices, will be addressed later. Regardless of the

linear quantity to minimize, a solution to the problem may be

found using semi-definite solvers. This problem can be solved

using SOSTOOLS with the following constraints.

i n eq1 = V−a ∗ ( x ’∗ x ) ;
i n eq2 = u ’ ∗ ( h+ j ∗u)−dVdx ∗ ( f +g∗u ) ;
prog = s o s i n e q ( prog , i n eq1 ) ;

p rog = s o s i n e q ( prog , i n eq2 ) ;

The first inequality is used to ensure V (x) > 0. The parameter
a = .001 is chosen to ensure V (x) �= 0 for x �= 0. The second
inequality forces the dissipative inequality (2) to hold.

Like the other SOS problems, the existence of a SOS

storage function is only sufficient for showing passivity or

dissipativity. When the SOS solver fails to find a solution, the

system may or may not be dissipative.

SOS optimization methods have been employed to find

energy storage functions for dissipative polynomial systems

for specific energy supply rates [11], [28], [29]. These pa-

pers show that dissipation inequalities involving an unknown

storage function can be formulated as a SOS problem. The

authors investigate dissipative inequalities for the minimum

phase property, robustness, and synchronizing feedbacks.

B. Nonlinear System Example

It may help to illustrate how SOS methods can be used with

an example. This example demonstrates how a storage func-

tion can be found to show passivity. Consider a polynomial

nonlinear system,

ẋ =

⎡
⎣ −(x3

1 + x1x
2
3)(1 + x2

3)
−(x2

1x2 + x2)(1 + x2
3)

−(x3 + x2
1x3)(1 + x2

3)− 3x3

⎤
⎦+

⎡
⎣00
1

⎤
⎦u

y =
[
x3

]
.

(10)

A storage function is chosen to be of the form V (x) =
xTPx + a1x

4
1 + a2x

4
2 + a3x

4
3. Using SOSTOOLS in

MATLAB the system is shown to be passive with P =
diag{1.70, 1.29, 0.5}, a1 = 0.867, a2 = 0.815, and a3 = 0
which yields the storage function V (x) = 1.70x2

1 + 1.29x2
2 +

0.5x2
3 + 0.867x4

1 + 0.815x4
2. A quick check can be done to

verify passivity by evaluating V̇ (x) = ∂V (x)
∂x

[f(x) + g(x)u]
which will be bounded above by uT y.
It should be noted that this is just one such storage function

to show that this system is passive. By adjusting the coeffi-

cients ci of the cost function it is possible to find other storage
functions.

C. Finding Passivity Indices
A special case of QSR dissipativity that is of importance is

the passivity index framework. This framework is a general-

ization of passivity that allows for the level of passivity to be

captured with two indices. Passive systems may be analyzed

for the level of excess passivity while non-passive systems can

be analyzed for how close to a passive system the dynamics

are. Conceptually, a “nearly passive” but not passive system

can be stabilized by the feedback of an “excessively passive”

system. More details on passivity indices can be found in [6],

[30].

Definition 4. A system has passivity indices ρ and ν if it is
QSR dissipative with respect to the matrices

Q = −ρI, S =
1

2
(1 + ρν)I, and R = −νI (11)

where I is the identity matrix in the appropriate dimension.

Since showing that a system has specific passivity indices

is a special case of showing dissipativity, SOS methods may

be used to find an appropriate storage function. This approach

can be used to test whether a certain index pair (ρ, ν) is valid
for a given system.

Alternatively, the approach can be used to actually find

each index. In the stability results using passivity indices it

is desirable to know the largest ρ or ν that holds for a given
system. This allows for the greatest flexibility when designing

stabilizing controllers. Often it is known that a particular

index is zero. A SOS program can be setup to maximize

the other index. In general, SOS methods cannot be used to

simultaneously maximize both indices. This is due to the S
matrix in (11) where the product ρν appears. SOS methods
can only be used when the functions of interest are linear with

respect to the unknowns.

An alternative approach can be used where the value of ρ is
fixed in order to maximize ν and vice versa. A range of fixed
values can be tested for each index and the results recorded



to arrive at an appropriate pair of indices. This approach is

not a blind grid search, and typically produces a number of

satisfactory (ρ, ν) pairs. More on this approach can be found
in the technical report [30].

IV. SOS METHODS FOR DISSIPATIVE SWITCHED SYSTEMS

SOS methods facilitate the process of demonstrating that a

system is passive or dissipative by finding an energy storage

function. This approach is particularly useful for switched sys-

tems where multiple storage functions are typically required.

When a system has more than a few discrete modes, this notion

of dissipativity becomes overly cumbersome to apply without

relying on computational methods.

A. Dissipativity for Switched Systems
A nonlinear switched system has the following form, where

x ∈ Rn, u ∈ Rm, and y ∈ Rp,

ẋ = fσ(x, u)
y = hσ(x, u).

(12)

It is assumed that for each subsystem i ∈ {1, ...,M}, fi is
Lipschitz with respect to x, fi(0, 0) = 0, and hi(0, 0) = 0.
The function σ : R+ → {1, ...,M} is piecewise constant and
indicates the index of the current active subsystem. At any

given time, σ(t) = i for i ∈ {1, ...,M} and the dynamics
are nonlinear and time-invariant. The switching in the system

is caused by discrete behavior from an underlying hybrid

process. Each subsystem of the switched system represents

a discrete mode of that process so the terms mode and
subsystem will be used interchangeably. The state variable x(t)
is continuous at all times including switching instants where

it is typically not differentiable.

A single switching instant is denoted by tik , which is the
kth time that the ith subsystem becomes active. This system
becomes inactive at time t(ik+1) and becomes active again at

time ti(k+1)
. The values of i are a subset of Z+ (the positive

integers) from 1 to M , and k take on values in Z
+ that is

allowed to be infinite. To avoid Zeno behavior, it is assumed

that on any finite time interval, t0 to arbitrary time T , the
system switches a finite number of times K, where K may

depend on the time T chosen. To avoid trivial asymptotic

analysis, it is assumed that the system switches an infinite

number of times on the infinite time horizon.

The notion of dissipativity for switched systems uses mul-

tiple storage functions. This is based on existing notions

including [13], [15], [16]. Each storage function Vi captures

the internal energy storage when mode i is active. The storage
functions are positive and bounded by class-K∞ functions αi

and αi,

αi(||x||) ≤ Vi(x) ≤ αi(||x||). (13)

Recall that a function α(x) is class-K∞ if α(0) = 0, α(x) > 0
for x > 0, α is strictly increasing, and α is unbounded [5].

Definition 5. [16] A switched system (12) is QSR dissipative
if there exist positive definite storage functions Vi(x), energy

supply rates ωi(u, y) and cross supply rates ωi
j(u, y, x, t) such

that the following conditions hold.
1) Each subsystem i is QSR dissipative while active, i.e.
for tik ≤ t1 ≤ t2 ≤ tik+1 and ∀i, k,
∫ t2

t1

[
y
u

]T[
Qi Si

ST
i Ri

][
y
u

]
dt≥Vi(x(t2))−Vi(x(t1)). (14)

2) Each subsystem j is dissipative with respect to ωi
j when

the ith subsystem is active, i.e. ∀j �= i, and for tik ≤
t1 ≤ t2 ≤ tik+1,∫ t2

t1

ωi
j(u, y, x, t)dt ≥ Vj(x(t2))− Vj(x(t1)). (15)

3) For all i and j there exist absolutely integrable functions
φi
j(t) and some input u∗(t) that may depend on the
state x(t) such that the following three conditions hold,
∀t ≥ t0,
a) fi(0, u

∗(t)) ≡ 0,
b) ωi

i(u
∗, y) ≤ 0, and

c) ωi
j(u

∗, y, x, t) ≤ φi
j(t), ∀j �= i .

Switched systems are passive when Qi = 0, Ri = 0,
and Si(u, y) = 1

2I for all i. When considering passivity
the input u∗(t) = 0 satisfies (3a) and (3b), however, the
existence of functions ωi

j and φ
i
j in (3c) is not trivial. This final

condition may be satisfied for all switching sequences or for

state restricted switching. More detail on satisfying (3c) can be
found in [13]. Passive switched systems are Lyapunov stable

when all storage functions satisfy Vi(0) = 0. Additionally, the
feedback and parallel interconnections of two passive systems

forms a new passive system as expected.

Dissipative switched systems are stable when Qi < 0 for
all i. The feedback of two switched systems can be analyzed
from the QSR parameters of each system since the feedback

forms a new QSR dissipative system. More details on these

results can be found in [16].

B. SOS for Storage Functions
For SOS methods to directly apply, the switched system

must have polynomial dynamics. For all i the functions
fi(x, u) and hi(x, u) must be polynomial in x and u. Ad-
ditionally, all functions involved in showing dissipativity must

be polynomial. This includes the energy storage functions Vi

and the cross supply rates ωi
j .

The first step in showing dissipativity for a switched system

is in specifying the energy supply rates. When passivity is the

property of interest, these are ωi(u, y) = uT y,∀i. For QSR
dissipativity, the rates may be chosen in advance or an appro-

priate rate may be found for each mode by the optimization

program. For each mode i, the rates are parameterized by the
elements of matrices Qi, Si, and Ri. These values may be

found by the solver simultaneously with the storage functions.

The next step in showing dissipativity is to find an energy

storage function for each mode of the system. These storage

functions are dependent on the energy supply rate specified

previously (14). A SOS optimization program can be specified



to find each storage function assuming that a form is chosen

for the storage function. Fortunately, the forms for the storage

functions may be generated automatically when the variables

of interest {x1, · · · , xn} and the desired order of the storage
function are specified. For linear systems, a quadratic form

can be chosen, Vi(x) = xTPix where Pi = PT
i . For nonlinear

systems, a 4th or 6th order storage function may be preferred.
In general, the storage function can be written

Vi(x) = zT (x)Θiz(x) (16)

where Θi = ΘT
i . The form is fully specified when z(x) is

chosen and the SOS program finds the elements of Θi.

The optimization problem to find each storage function can

be written in as a semi-definite program (7) subject to

Vi(x) =
∑
k

akpk(x)
2 (17)

ωi(u, y)−
∂Vi

∂x
fi(x, u) =

∑
l

blpl(x)
2 (18)

This optimization problem can be solved in MATLAB using
SOSTOOLS. In this case, i = 1 and ωi = uT y.

i n eq1 = V1− .001∗ ( x ’∗ x ) ;
i n eq2 = u ’∗ h1−dV1dx∗ f1 ;

The SOS program can be repeated for each mode of the

system to find all storage functions or the problem can be

combined into a single large SOS program. This guarantees

that condition (14) of dissipativity for switched systems holds.

C. SOS for Cross Supply Rates
In addition to storage functions, showing dissipativity for

switched systems requires finding as many as M(M − 1)
different cross supply rates (15). Like storage functions, a form

must be chosen for the cross supply rates and the coefficients

may be determined by the optimization problem. For two

modes i and j, a good form for the cross supply rates can be
chosen by comparing the dynamics of the two modes and the

storage functions Vi and Vj determined in the previous SOS

program. Since these are both known quantities, the forms can

be specified computationally.

For example, consider the cross supply rate ω2
1 which

captures the rate energy is supplied to mode 1 when mode
2 is active. The rate depends on the energy storage for mode
1 (V1(x)) and it depends on the energy dissipation of mode 2
which includes V2(x), ω

2
2 , and the dynamics of mode 2. The

quantity of interest is the difference between the energy being

stored for subsystem 2 and for subsystem 1.

ω2
2(u, h2(x, u))−

∂V2

∂x
f2(x, u) +

∂V1

∂x
f2(x, u) (19)

All functions in this expression are known so the expression is

fully specified. Additionally, the functions are all polynomial.

The resulting polynomial terms in the expression can be

extracted and used in the candidate for the cross supply rates

with unknown coefficients. The coefficients can be found by

running a SOS program. Additional terms may be added to

the cross supply rate if desired. When an appropriate form is

chosen, the optimization program can be executed with the

condition

ωi
j(u, y, x, t)−

∂Vj

∂x
fi(x, u) =

∑
k

akpk(x)
2. (20)

This constraint can be implemented in SOSTOOLS when i =
1 and j = 2.

i n eq = omega 12−dV2dx∗ f1 ;

Overall, finding cross supply rates is more involved than

finding storage functions. For one, there are as many as

M(M−1) cross supply rates so there are many more functions
to determine. Additionally, each function is dependent on more

terms so each SOS program may take longer to execute. How-

ever, this analysis method is expected to run off-line. Once the

storage functions and cross supply rates are determined, further

analysis can use these functions without running additional

SOS programs.

The third condition of dissipativity involves the search for

an input u(t) that has certain properties. These properties with
such an input has a strong parallel with control Lyapunov

functions that are used to find stabilizing inputs. In some

cases the existence of such an input is obvious from the

dynamics and the cross supply rates. In other cases it may

be very difficult to find such an input. However, for passivity

of switched systems the input u(t) = 0 often satisfies these
conditions. For now, there does not appear to be a SOS method

to find such an input which is a limitation to this approach.

V. SWITCHED SYSTEMS EXAMPLE

The SOS methods discussed above is applied to a nonlinear

switched system with two modes to demonstrate that the

system is passive. Mode 1 has dynamics given by

ẋ =

[
−0.6x3

1 − 2x1 + 2x2

−1.2x1 − 3x2 + u

]

y =
[
x2

]
,

(21)

and mode 2 has dynamics given by

ẋ =

[
−2x3

1 + 0.5x2

−0.6x1 − 3x2 − x3
2 + u

]

y =
[
x2

]
.

(22)

Both modes are passive when active so ωi(u, y) = uT y for
i = 1, 2. SOS methods can be used to find storage functions
to demonstrate passivity when active. The form of storage

function is assumed to contain all terms quadratic or quartic

in x1 and x2. The optimization problem results in the storage

functions,
V1(x) = 0.3x2

1 + 0.5x2
2

V2(x) = 0.6x2
1 + 0.5x2

2.
(23)

Now SOS methods can be used to find cross supply rates. The

following form was chosen for the cross supply rates,

ωj
i (u, y, x, t) = uT y + a1x

2
1 + a2x1x2 + a3x

2
2 + a4x

4
1

+a5x
3
1x2 + a6x

2
1x

2
2 + a7x1x

3
2 + a8x

4
2.
(24)



The optimization problem yields the cross supply rates,

ω1
2(u, y, x, t) = uT y − 1.2x4

1 − x4
2 + 0.0075x2

1 − 3x2
2

ω2
1(u, y, x, t) = uT y − 0.7x4

1 − 2.4x2
1 + 1.2x1x2 − 3x2

2.
(25)

Some terms are not present in the final cross supply rates due

to the optimization problem returning a zero value for those

coefficients. For both cross supply rates, the input u(t) = 0 is
considered for condition (3c) of Definition 5. There are many
functions φ(t) that can bound ω2

1 by substituting u(t) = 0
and studying the remaining terms, e.g. φ(t) = ||x(t0)|| e

−t

for all x ∈ R
2. It is not possible to bound the rate ω1

2 for

all x. Considering u(t) = 0, a region in R
2 may be defined

where ω1
2 is positive. A switching rule may be defined to avoid

this region. For this example, the set is small and defined by

X = {x ∈ R
2| ||x1|| < 0.0866, ||x1|| > 20 ||x2|| For this

set, only mode 2 may be active. With this restriction to the
switching, the system is passive and also stable for zero input.

This process can be repeated as needed to determine passiv-

ity, passivity indices, or more general forms of dissipativity.

The only restriction is that the energy supply rates and cross

supply rates are polynomials that are linear in the decision

variables. As SOS methods are sufficient only, the failure of

a test for a specific energy supply rate does not imply that

the system is not dissipative with respect to that supply rate.

It only implies that the property cannot be shown using SOS

methods for the chosen forms of storage functions and cross

supply rates.

VI. CONCLUSIONS

This paper discussed SOS methods for automating the

process of demonstrating that a given dynamical system is

dissipative or passive. This included showing dissipativity

for nonlinear systems with emphasis on the special case of

passivity indices. Then the case of switched systems was

covered where SOS methods can be used to find both en-

ergy storage functions and cross supply rates. As a given

switched system has many modes, there may be several energy

storage functions and even more cross supply rates. These

automated methods allow results from dissipativity theory to

be more readily applicable to real systems. Examples and

relevant pieces of MATLAB code were provided to illustrate
and facilitate using these methods.
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