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ABSTRACT

Antificial Intelligence planning systems determine a sequence
of actions to be taken to solve a problem. This is accomplished by
generating and evaluating alternative courses of action. A special type
of Petri net is first defined and then used to model a class of Artificial
Intelligence planning problems. A planning strategy is developed using
results from the theory of heuristic search. In particular, the A*
algorithm is utilized. From the Petri net framework it is shown how to
develop an admissible and consistent A* algorithm. As an illustration
of the results three Artificial Intelligence planning problems are
modelied and solved.

1.0 INTRODUCTION

Given a goal to achieve, an Artificial Intelligence (AI)
planning system reasons from the state of its problem
domain to determine the sequence of actions that will move
the current state into the final goal state. Planning systems
are used, for example, in the intelligent control of robots. A
planner employs intelligent problem solving techniques that
are fundamental to many intelligent control systems.
Although many of the basic issues in planning systems are
well understood empirically, they have not been adequatelty
quantified in a mathematical framework. Formal
mathematical analysis will lead to quantitative and qualitative
results and it will produce modelling, analysis, and design
techniques for planning systems.

In this paper an appropriate Petri net framework is
introduced to quantitatively model, analyze, and design Al
planning systems. Based on this Petri net framework, a
planner which uses heuristic search techniques, the A*
algorithm, is developed. For Al planning problems that are
modelied by the Petri net it is shown that an admissible and
consistent A* algorithm can be implemented. This is done
by defining metric spaces associated with the Petri net and
using the metric in the A* algorithm (See Section 2.3). The
theoretical results are discussed in Section 2.4. To illustrate
the theory, the three Al planning problems given in Section
3.0 are modelled with the Petri net, metrics are specified,
and the A" algorithm is used to develop solutions. The
concluding remarks given in Section 4 consist of a
discussion of the examples.

In the following, some of the fundamental concepts
in Al planning theory are outlined, characteristics of the Petri
nets used to model the problem domain are discussed, and it
is explained how heuristic search is used to implement
planning strategies. Then an overview of relevant research
is given. L

General information on the theory of Al planning is
given in [1], [2], and [14]. A very brief overview is given
here to establish the terminology. An Al planning system
consists of the planner, the problem domain, their
interconnections, and the exogenous inputs. The outputs of
the planner are the inputs to the problem domain. They are
the control actions taken on the domain. The outputs of the
problem domain are inputs to the planner. They are
measured by.the planner and used to determine the progress
in the problem solving process. The measured exogenous
input to the planner is the goal. Itis the task of the planner
to examine the problem domain outputs, compare them to the
goal, and determine what actions to take so that the goal is
met. The problem domain is the domain (environment) that
the planner reasons about and takes actions on. One
develops a model of the real problem domain to study
planning systems called the problem representation. The
tunctional components of a typical Al planner are as follows

[1]: Plan generation is the process of synthesizing a set of
candidate plans to achieve the current goal. This can be done
for the initial plan or for replanning if there is a plan failure.
In plan generation, the system projects (simulates, with a
model of the problem domain) into the future, to determine if
a developed plan will succeed. The system then uses
heuristic plan decision rules based on resource utilization,
probability of success, etc., to choose which plan to execute.
The plan executor translates the chosen plan into physical
actions to be taken on the problem domain. The planners
considered here are domain independent since they are
applicable to a variety of problem domains.

A Petri net model, defined in Section 2.1, is used for
the problem representation. The definition is similar to the
definition given in [12] but it also allows for control inputs
to the Petri net and outputs. In {7} a "Controlled Petri Net"
was defined in a somewhat different manner. The definition
in Section 2 includes the so called "inhibitor arc", and
equation (2.2) was created to describe its effect on the the
operation of the Petri net described via state equations. The
Petri net defined here also allows for the specification of a
cost to fire a transition via the specification of the transition
cost function in Section 2.1. Such costs could, for example,
represent a measure of the resources consumed in
performing the actions associated with firing a transition.
Projection and plan generation are performed with the Petri
net model.

The planners studied here utilize heuristic search to
solve problems. The results from the theory of heuristic
search using the A* algorithm outlined in Section 2.2 mainly
come from [$, 6, 3, 13]. Other information can be found in
[10,11]. Under certain conditions the A* algorithm can,
from an initial node of a graph, find a least cost path to some
goal node. When applied to planning problems the
algorithm can be used for the plan decisions discussed
above, to determine which plan will achieve some goal with
least cost in terms of, for instance, resource consumption.
Once the appropriate plan is found A* gives it to the plan
executor so that the actions can be taken on the problem
domain.

Other relevant résearch is given in [4]. There the
authors use a high level Petri net to represent both the
knowledge and inference strategy in expert systerns. Some
analysis results are obtained. Some planning systems are
implemented in the computer programming language named
PROLOG. An analysis of concurrency in PROLOG via
Petri nets is reported in [9]. Such results could be utilized in
an analysis of concurrency in Al planning systems.

2.0 PLANNING VIA HEURISTIC SEARCH IN A
PETRI NET FRAMEWORK

In this section, the Petri net appropriate for problem

domain representation is defined. Some of the theory of

heuristic search using the A* algorithm is outlined. The

main resuits on how to use the Petri net model to define a

metric which can be utilized to obtain an admissible and

consistent A* algorithm are given and discussed.

2.1 Modelling the Problem Domain with a Petri
Net
A Petri Net is used to model the problem domain.
Let R denote the set of reals and R* the strictly positive
euls. Let N denote the set of nonnegative integers. If
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x,y€ N®, x=[x1,X2, ... ;Xp]% y=[y1,¥2, ... ,yn]* (t indicates
transpose) the statement x2y is true iff x;2y; 1<i<n.
Similarly for >,<, and <. For any set X let IX| denote the
cardinality of X. A bag is a collection of objects over some
domain D, but unlike standard definitions of a set, bags
allow muhiple occurrences of elements [12]. Let B bea
bag, then #(x,B) represents the number of occurrences of

element x in bag B. The set D™ is the set of all bags over a
domain D. Let @ denote the null set.

The Petri Net structure is described by
Ps=(P,T,Ip,In,Op,A,U,P,Y) where:

(i) P={p1,p2, ... .pn} is a non-empty finite set of n=IPI
places which are represented graphically with circles
O

(i) T={t1.%2, ... ,tm}is a non-empty finite set of m=ITi
transitions which are represented graphically by line
segments or rectangles ( | , D ).

Note that PNT=0.

(iii) Ip:T—P> is a mapping from transitions to the set of
all bags over P. This mapping is represented graphically
by a directed arc (—») pointing from each input
place pielp(t) tot;.

(iv) In:T—P* is a mapping from transitions to the set of all
bags over P. This mapping is represented graphically
by a not arc (inhibitor arc) (——O ) pointing from each
input place pie In(t) to t;,

(v) Op:T—P>is a mapping from transitions to the set of all

bags over P. This mapping is represented graphically
by directed arcs (—») pointing from the transition

tje T to each owspus place pie Op().

For all pje P, there exists tj€ T and for all tje T there exists

pie P such that #(pi.Ip(tj)) + #(pi.IN(4})) + #(p1.Op(y)) 2 1.
That is, every arc has a transition on one end and a place on
the other, and no transition or place exists without being
connected to an arc.
(vi) A:'U>T is a mapping from a control input label
uie U={u1,u2, ..., um} m=ITl, to a transition e T.
This mapping is represented graphically by a labelled

. t:
control arc ( ‘5_4 J ) which connects an element

uje U to a single transition tje T.
(vii) W:P—Y is a mapping from a place p;eP to an outpus

label yie Y={y1,y2, .. s¥n} n={Y|l. This mapping
is represented graphically by a labelled output arc

(p; (}._Xj ) which connects an element pje P
to a single output yj.

A complete description, which also includes the
execution characteristics of the Petri Net, is given by

PN=(PS »Xprxpo,ErsUp,Yp,d’,Z) Where:

(i) Ps is described above.

(i) Xp:PxN—N is the marking function, a mapping from a
place and a nonnegative integer k representing a time
step into a nonnegative integer representing the marking
of the place. The n-dimensional column vector xp(k)=
[(Xp(p1:k), Xp(p2.K), ... Xp(pn.K)]t is used to denote
the state of the Petri net. The state space of Py is N0,
The state of the Petri net is represented graphically by

fokens( @) that are put inside places (e.g. if Xp(pi,k)=2
is represented as B @).

(iii) Xpo is a non-empty finite set of initial conditions for
the state of the Petri Net; N"2Xpo.

(iv) E:NtxNnxN—2T is the enable rule, a mapping from
xp(k), xp(k+1), and a nonnegative integer k represent-
ing a time step into subsets of transitions that are said to
be enabled at step k. The notation tj€ Er is used to
indicate that t; is enabled at step k.

As an example, if the enable rule only depends on
xp(k), then a candidate for the enable rule is given by
(xp(K))={1; | Xp(pi.k)2#(pi.In(1}),

and Xp(pi.k)=0 if pje In(tj), for all pje P} @.1)

A transition can fire whenever it is enabled. Tokens are

redistributed in the Petri net when a transition fires. The

next state function below describes token movement. First,
the input to the Petri net which controls the firing of the
transitions is defined.

(v) Up:UxN—{0,1} is a mapping from an input label
uje U and a nonnegative integer k representing a time
step to 0, indicating that the transition tje A(uj) cannot
fire, or to a 1 indicating that a transition tje A(uj) is to
fire (tj E). The vector up(k)=[Up(uy,k),Up(uz.k), ...
,Up(um,k)]‘ is the control inpus 1o the Petrinet. Let Up
be the set of column vectors of an mxm identity matrix.
Only one transition is allowed to fire at once, therefore
up(k)e Up for all k. For example, if up(k)=[00...0
Up(ui,k) 0...0 0], and Up(uj,k)=1 is in the jth
position, 1<j<m, then transition tje Er (tje A(uj)) is
fired. If Up(uj,k)=0 then no transition is fired.

(vi) Yp:YxN—-N is a mapping from an output label y;e Y
and nonnegative integer k representing a time step to
Xp(pik) such that y;e ¥(p)). The n-dimensional
column vector yp(k)={Yp(y1.k), Yp(y2.k), ...

»Yp(yn, k)1t is the owsput of the Petri net and yp(k)e N-
for all k.

(vii) D:NPxUpxN—»NP is the next state function, a
mapping from the current state xp(k), a control input
vector up(k) that fires a transition tjcEr,and a
nonnegative integer k representing a time step, into the
next state xp(k+1). The next state function is defined iff
for a control input up(k)e Up the associated transition
tje T is enabled at step k.

(viil) Z:TxNaxNoixR+U{0} - R is the rransition cost

Jfunction, a mapping from a transition tje Er, xp(k) and
xp(k+1), and a nonnegative real number into a strictly
positive real number that represents the cost of firing t;.
Since the firing of a transition often represents some
computation or action performed Z is a measure of the
cost to process the state xp(k) into xp(k+1) by firing t.
The transition cost function is defined iff the transition
tje T is enabled at step k. Furthermore, Z is chosen so

that for all re R+U (0}, Z(tj,xp(k),xpk+1),r)>r. The
significance of the value of r will be discussed in the
next section.

As an example of a next state function, consider one that
depends only on the current state and transition fired. Let
®=[01,02, ... nl". Let A'=[a,], where & =#(pi.In(t)) and
A*=[a], where 2 =#(piOp(1)). Let A=A™ - A", Let
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B={bjj] where bj;=0 if tje In(pi) and b;j=1 if tje In(pi). Let
', and bj refer to the jth columns of A” and B respectively.

en the example enable rule (2.1) can be stated as
Ex(xp(k))={tj | xp(k)a"j and xp(k)%;=0}

If up(k) is chosen so that t;e E is fired, where E: is given by
(2.2), then

(2.2)

$i=Xp(Pi-k+1)=Xp(pik) - #(pi,Ip(t)) +

#p;,Op(y) for all i, 1<isn  (2.3)
o (et 1=xp() + Aup(k) @2.4)
xp(k+ + .
ot

which are the state equations describing the Petri net [12).

Next the some of the results from the theory of heuristic
search using the A* algorithm are outlined. These results
will be combined with the Petri net model to obtain the
results in Section 2.3.

2.2 Heuristic Search: The A* Algorithm
Some results from the theory of a heuristic search, in

particular the A* algorithm, are outlined below [5, 6, 3, 13].
The problem space is represented explicitly by a 8-
Graph where:
i) X={x1,X2,X3, ... } is the non-empty possibly infinite
set of nodes.
(i) E=[eij}=[(xi,xj)| x;,x;j€ X} is the non-empty possibly
infinite set of directed arcs pointing from x; to Xj.
@iii) C={cj}={cijle;jeE) is the non-empty possibly infinite
set of costs associated with each arc. Also, for all
cije C, ¢i28>0.
An implicit representation of the 8-Graph G is given by a
set of source nodes and a successor operator I':X—»2%XxC,
When T'is applied to a node x it is expanded. The 8-Graph
is generated by repeated application of the successor operator
T" to nodes that are generated in expanding nodes.
The subgraph Gy from any xe X is the graph defined
implicitly by a single source node x and some I" defined on

X. Each node in Gy is accessible from x. A path from x;
to xi is an ordered set of nodes <x},X2, ... ,Xg> such that

xj+1€ (1) for all 1<i<k-1. There exists a path from x; to x;
iff x; is accessible from x;. Every path has a cost which is
obtained by adding the costs of each arc ¢ji+1€C. An
optimal path from xj to x; is a path having the smallest cost
over the set of all paths ffom x; to x;, call this cost h(xj,x;).

Denote an estimate of this cost by ﬁ(xi,Xj). The concem is
with the subgraph Gx, from a single specified start node

xpe X. Define the non-empty set Xg, X0Xg of nodes in
Gx as goal nodes. For any node x in Gyxg an element

xg€ Xy is a preferred goal node of x iff the cost of the
optimal path from x to x; does not exceed the cost of any

other path from x to any other member x'e X.

The objective is to find the optimal path from the start
node to preferred goal node. To help guide the search an
evaluation function v:X—R*U{0] is used to rank how
promising it is that a node is on an optimal path. The
evaluation function is defined so that the node with the
smallest value of v(x) is chosen for expansion. One
algorithm that performs heuristic search is the A* algorithm

628

which is now defined:

Let L be the set of information about ("closed™) nodes
which have been expanded, and L, the set of information
about ("open") nodes which are candidates for expansion.
The elements of L. and L, are triples (x',v(x'),x) where
x'eI'(x) and x represents a pointer from x' to x. The

notation x'e L¢, x'e Lo is used to reference element
(x',v(x),x).
The A Algorithm:
Set Le=0 and Lo={xp}, the start node.
While [Lo>0 do
Choose xe L, so that x has the lowest value of v(x)
(Resolve ties arbitrarily).
If xeXq,

then Exitwithsucoessandthesoluﬁonpathis
found by tracing back through the pointers,

else Place x in L.

For eachx'eI'(x) do

Calculate v(x").

(1) If x'e¢L¢and x'e¢ L, then place (x',v(x"),x) in
Le.

(ii) If x'eLgthen denote this x' with
(x',v1(x"),x1), where v1(x") was the value of
the evaluation function, and x) was the parent
node of x', computed in a previous step. If
v(x)<vi(x') then replace (x',v1(x"),x1) with
(xl5v(x')9x) m LO‘

(ili) If x'eLc then denote this x' with
(x',v1(x"),x1), where vi(x"} was the value of
the evaluation function, and x; was the parent
node of x', computed in a previous step. If
v(x")<vi(x") then remove (x',vi{x),x1) from
L and place (x',v(x"),x) in L.

end
Exit with failure,

The evaluation function v(x) must be chosen. Let f(x)
be the actual cost of an optimal path constrained to go
through x from the start node xg to a preferred goal node
xge Xg. Let f(x)=g(x)+h(x) where g(x) is the actual cost of
an optimal path from xg to x and h(x) is the cost of an
optimal path from x to a preferred goal node of x, ie.,

h(x)ﬁgg‘ig(h(x,xg)). Since f(x), g(x), and h(x) are not
known apriori, the estimates $(x), £(x), and fi(x) are used.
Therefore, choose v(x)=F(x)=g(x)+fi(x). The function
ﬁ(x), called the heuristic component of the evaluation
function, is used to capture information from the problem
domain to guide the search. If fix) satisfies certain
properties then the A* algorithm performs well.

If some goal node is accessible from the start node and
0$ﬁ(x)sh(x) for all xe X, then A® is admissible i.., it is
guaranteed to find an optimal path from the start node to a
preferred goal node for any 8-Graph. The heuristic fix) is
said to be consistent if h(xix+A(xp2fixp) for all x;,xje X.
The heuristic fi(x) is said to satisfy a monotone restriction if
for all xje I'(x;), xi€ X, h(xi,x+Aaxpficxs). If fix) is
consistent then it automatically satisfies the monotone
restriction. If ﬁ(x) satisfies the monotone restriction then (i)
if A* selects x for expansion Q(x)=g(x), and the value of
?(x') for x' on the path from x¢ to x is nondegreasing;
consequently (ii) step (iii) in the A* algorithm is vacuous and
can be removed. Suppose that there are two versions of the
A* algorithm called A; and Ay which use evaluation
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functions ?i(x)=§i(x)+ﬁi(x) where Osﬁi(x)sh(x) for all
xe X, i=1,2. The algorithm A3 is said to be more informed
than A; if for all nongoal nodes x, ﬁz(x)>ﬁl(x). The

following optimality result was obtained. If ﬁz(x)>ﬁ1(x)
then at tha termination of their searches every node expanded
by A2 was also expanded by Aj. It follows that Aj expands
at least as many nodes as does Aj.

2.3 Heuristic Search in a Petri Net Framework

Utilizing these resuits on heuristic search outlined in
Section 2.2 and the Petri net model defined in Section 2.1 it
is shown how to develop an admissible and consistent A*
algorithm for a certain class of problems. First, a metric and
a metric space is defined [8].

Let X be an arbitrary non-empty set and let p: XxX—R
where p has the following properties:

(i) p(x,y)20 for all x,y=X and p(x,y)=0 iff x=y,
(ii) p(x,y)=p(y.x) for all x,y=X,

(iii) p(x,y)<p(x,y)+p(z,y) for all x,y,z=X (Triangle
Inequality).

The function p is called a metric on X and the mathematical

system consisting of p and X, denoted {X;p}, is called a
metric space. Equivalently, p is a metric iff, (i) p(x,x)=0 iff

x=y, and (ii) p(y,z)Sp(x,y)+p(x,z) for all x,y,ze X.
The next theorem says that if the nodes of a certain 8-

Graph and the heuristic function ﬁ(xi,xj) form a metric
space, then the A* algorithm is both admissible and
consistent.

Theorem 1: Define nj:R+*U{0}—>R* and n;j(x)>x for all
xe R+*U{0}. Let G=(X,E,C) be a 8-Graph where for all

cije C, cij=nijhi(x,x))>8>0 with x'e [(x). If {X:Atxix;))
is a metric space then A* is both admissible and consistent.

Proof: For admissibility it must be shown that
0<hi(xi,xg)<h(xi,xg) for all xie X, xge X,. Since fitxi,xg) is
a metric ﬁ(xi,xg)ZO so all that must be shown is
ﬁ(xi,xg)sh(xi,xg). Let <xg,Xx1, ... ,Xk> be a path generated
by A*. From the triangle inequality, fi(xi,xg)<h(xj,xi1)+
fi(xj1,%50) for all i, 0<i<k-1.Therefore

k-1
R x< T Aixixicn).
i=0
Selecting mj; as stated in theorem above, it follows that

k-1

fixi o< P M+ 1 (Bexi xis 1))=h(xixp).
By assumption, the node x; is accessible, therefore for some
path generated by A*, Xk=Xg, hence A* is admissible. To
prove consistency it must be shown that h(xi,Xj)+ﬁ(xj)2ﬁ(xi)
for all xj,xje X. By the triangle inequality ﬁ(xi,xj)+
fi(xjxg)2fi(xi,xg) and from admissibility h(xix2h(x;,x;) so

that h(x;,x;)+A(xjxg)2fi(xixg). Note that the monotone
restriction 1s also satisfied.

Note that for R"2X if {R®;p} is 2 metric space then so

is {X;p} [8). A few candidate metrics are listed below:

(i) pa(x,y)=0 if x=y and 1 if xsy is a metric on X (an
arbitrary non-empty set) called the discrete metric.

Denote elements x,ye R™ by x=[£1,E2, ... ,En]! and

y=[A1,A2, ... ,An]t where &j,Aie R for i=1,2, ... ,n.

(ii) Let X=R" and pe R, 1<p<ss, then {R™;pp} is a metric
space where

n 1
pp<x,y>{_zlsai : xilp} e @.5)
1=
Let W be a positive definite matrix. Then if
p2x.y)=[ x-y)W(x-y) ] (2.6)

{R";p2}is a metric space.
P2

@iii) Let X=R" and x,ye R", and
Pw(x,}')=max(|§1 - A’llrléz = lei .o Jén - lﬂl} (2'7)

then {R™;p} is a metric space.
The next theorem is an application of Theorem 1.

Theorem 2: Suppose that a system is described with the
Petri net Py and that an initial state and a reachable desired
state are specified. Then there exists an admissible and
consistent A* algorithm that can select the appropriate
sequence of transition firings to move the initial state to the
desired state with least cost.

Proof: First, a 8-Graph representation of the Petri net Py is
given. Let X=NDB, the state space of the Petri net Py.
Suppose that the enable rule E; is given by (2.2) and the next
state function by (2.4). Let IXgl=1 and xg denote the desired
state (goal node). The start node xg=xp(0)e Xp, and the
edges and costs are generated by

T (xp(K))={ (xp(k+1),0)! xp(k+1)=xp(k) + Aup(k), tj E; and
c=Z(tj,xp(K), xp(k+1),1)} (2.8)

with Fﬁ(xp(k),xp(kﬂ)). Note that II'(xp(k))! is finite for all
xp(k) and the assigned cost ¢>8>0. The assigned cost

depends on the value of the metric ﬁ(xp(k),xpac+l)). Note
that for a particular Petri net model if it is the case that

xp(k)#xp(k+1) for all k then Theorem 1 is also valid for

Mij(r)2r for all re R. In this case the transition cost function
can be chosen as Z(tj,xp(k),xp(k+1),1)2r and used in (2.8).

Next, choose X=X, and ﬁ(xi,xj) equal to any valid
metric such as pg, Pp, P2, OF Pe. Then by Theorem 1, A® is
both admissible and consistent and thus finds a least cost
path. To choose the sequence of transition firings A* traces
back through the pointers from xg to x.

2.4 Discussion

The significance of the results contained in the two
theorems is discussed here.

Does Theorem 1 provide a method to pick the value of
the heuristic function fi(xi,x;) to obtain admissibility and
consistency for any 8-Graph? No. There is a restriction
placed on the costs allowed that depends on the choice of the
metric. However, costs may be able to be redefined to fit the
particular problem at hand and Theorem 1. The flexibility in
the choice of the metric will help here. Another question left
to be answered is how good the metrics are? This is a
standard problem in the theory of the A* algorithm. For
instance, if the chosen metric is such that it gives an
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extremely conservative estimate of the cost from all nodes x

to a the preferred goal node, then A* may expand too many
nodes in finding a solution. The computational complexity
involved in computing the metric itself must also be
considered when studying the computational demands of a
particular A* algorithm,

Theorem 2 allows the planning system designer to
transfer the work of choosing the heuristic function h(x;,x;)
to forming the Petri net model of the problem domain under
consideration. This can be valuable if it is not clear how to
pick the heuristic function for a particular problem domain.
However, if the problem domain cannot be modelled via the
Petri net defined the result cannot be utilized. Also,
practically speaking, the Petri net model may be too complex
to be utilized in the implementation of the A* algorithm.

3.0 EXAMPLES

This section contains three examples to illustrate
some of the results in Section 2. These include the blocks
world planning problem, a "think and jump" game, and the
missionaries and cannibals problem. Many details were
omitted to-save space.

Blocks World: The first example is the so called "blocks
world" [1]. In this classic Al planning problem there are
three blocks labelled "a", "b", and "¢" which are placed on a
table "t". Using a robot arm, the objective is to move the
blocks, by stacking and unstacking them, so that from an
initial configuration of the blocks, a final desired
configuration can be obtained. Let ab, ct, and cab represent
the facts that "block a is on b", "block ¢ is on the table”, and
"block ¢ is on a which is on b" respectively. Also let abt;ct
represent the fact that block a is on block b which is on the
table and block c is-on the table. The initial configuration is
ca;bt, and the desired one is abet. A Petri net model was
constructed. This net had 9 places, 18 transitions and used
inhibitor arcs. A planning strategy was specified by
choosing the metric fi(xi,xj)=pa(xi,xj) defined in (2.6) with
W=Igy9, the 9x9 identity matrix. The A* algorithm was
implemented to generate the sequence of actions to be taken
by the planner. A* expanded 5 nodes before it found the
optimal path. The sequence of positions of blocks
considered in solving the problem (expanded by A*) was:
cat;bt, cat;be, at;bt;ct, cbt;at, bet;at, then the solution
was found. The solution was optimal relative to the number
of steps required.

Notice that W is a parameter to be chosen to load
heuristic information into the A* algorithm. Let W=[wj;]
where wij=0 if i#j and wy>0 for all i. Each weight wi;
corresponds to a place p;. If it is important for tokens to be
in a place pj then the corresponding value of wj; should
chosen to be small relative to wgy where ki, If it is
important pot to have tokens in a particular place p; then wij;
should be chosen large relative to wgy where k#i. A
particular set of weights was chosen for blocks world to
reflect the importance of achieving the goal state, and that it
may be important to unstack the blocks to solve the problem.
When A”* is executed with this new choice for W it expanded
only 4 nodes in finding a solution: cat;bt, cat;bc, at;bt;ct,
bet;at.

Think and Jump Game: The second example is a "think-
and-jump” game involving a triangular board with ten holes
in it, and 9 pegs which fit into the holes. The 9 pegs are put
in the holes. Pegs are removed if they are "jumped” by other
other pegs. A peg can jump another peg only if there is an
empty hole directly on the other side of the peg. See Figure
3.1.

First, the Petri net model was constructed by letting
the places pj correspond to the holes i in the board and the
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Figure 3.1 Think and Jump Game
(A version of Chinese checkers)

tokens correspond to the pegs. The initial configuration of
pegs is to have one in all the holes except for hole 3, and the
goal configuration is to have all pegs removed from the
board except for one in hole 2. The heuristic function is

chosen to be ﬁ(xi,x,')=p2(xi,xj) where W is a diagonal
matrix with weights chosen to reflect the importance of
attaining a token in places p4,ps,p7, and po since in the step
before solving the problem, the algorithm must have tokens
in two of these places. The function Z can also be used to
capture heuristic information about the problem domain. A
heuristic used in this problems solution is to try to keep the
pegs in the middle of the board. To capture this heuristic
information high values of the cost function are assigned to
transitions that fire and move tokens from the middle of the
board. For these choices A* was used to find a solution to
the think and jump problem above. It expanded 58 nodes.
The solution generated by the planner used only 8 jumps.

Missioparies and Cannibals Problem: Three missionaries
and three cannibals are trying to cross a river. As their only
means of navigation, they have a small boat, which can hold
one or two people. If the cannibals outnumber the
missionaries on either side of the river, the missionaries will
be eaten; this is to be avoided. Find a way to get them all
across the river.

For the Petri net construction P={p;}, i=1,2, ... ,6,
and T={t;}, j=1,2, ... ,10 and the net is given in Figure 3.2.

Figure 3.2 Petri Net Mode! of the Missionaries and Cannibals Problem

Let tokens in: (i) p1 (p4) represent that cannibals are on the
left (right) side of the river, (ii) p (ps) represent that the boat
is on the left (right) side of the river, (iii) p3 (p¢) represent
that missionaries are on the left (right) side of the river. The
initial state is xp(0)={3 1300 0]t, and the goal state is xg=[0
003 1 3]t. The next state function (2.3) and the state
equations (2.4) were used.

Note that the above Petri net graph does not represent
the complete problem. The fact that cannibals cannot
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outnumber missionaries is not yet represented. Rather than
using the graphical representation for this fact, this
information is loaded directly into the enable rule.
Therefore, choose
E (xp(k),xp(k+1))={t;| xp(k)2a5;, and Xp(p3.k+1)=
P PP (pek+1)=0 or
Xp(P3.k+l)>0 then X (p3,k+1)2X (p1.k+1),
p(P6,k+1)>0 then X, (P5,k+1)-X (p4,k+l)}
The transmon cost function i)(xp(k) xp(k+1),r)—r for all
re R, and this is valid since xp(k)#xp(k+1) for all k.
The heuristic function is chosen to be ﬁ(xl,x_,)-

p2(xi,xj) where W=Igx6, the 6x6 identitly matrix. A*
expanded 13 nodes in determining the solution. The
solution generated by the planner is the sequence of
transition firings: t6,18,12,13,19,15,t9:13,12,18,t6. Thesymmetry
in the solution sequence is interesting. The solution 1nvolves

11 boat trips which is the minimum number of trips needed
to solve the problem.

4.0 CONCLUDING REMARKS

The examples given in the Section 3.0 are discussed
here briefly. In the blocks world planning problem the Petri
net graph that was generated was omitted due to space
limitations. Thhe metric was chosen via the guidelines given
by the Theorems; but there is still much flexibility allowed in
capturing heuristic information about the problem domain
since any valid merric is allowed. In this example it was
demonstrated that an appropriate choice for the metric (via
W) can lead to a more efficient A* algorithm. In the think
and jump problem it was shown how to use the transition
cost function to capture heuristic information about the
problem domain. Notice that this provides another way to
capture heuristic information about the problem domain.
Hence, the metric can be used to capture heuristic
information pertaining to a desire to have tokens in places
and the transition cost function can be chosen to capture
heuristic information pertaining to the desire to fire a
transition. The missionaries and cannibals example
demonstrated the flexibility of the Petri net model. All
characteristics of the problem need not be modelled with the
Petri net graph since certain information can be captured in,
for instance, the enable rule of the Petri net.
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