
Foundations and Trends R© in Systems and Control
Vol. 1, No. 1 (2014) 1–172
c© 2014 H. Lin and P.J. Antsaklis

DOI: 10.1561/2600000001

Hybrid Dynamical Systems: An Introduction to
Control and Verification

Hai Lin
University of Notre Dame

hlin1@nd.edu

Panos J Antsaklis
University of Notre Dame

antsaklis.1@nd.edu

Contents

1 Introduction 2

2 Modeling of Hybrid Systems 7
2.1 Finite Automata . 8
2.2 Hybrid Automata . 13
2.3 Switched Systems . 30
2.4 Piecewise Affine Systems 33
2.5 Notes and Further Reading 38

3 Stability, Stabilization and Optimal Control 41
3.1 Stability of Hybrid Systems 42
3.2 Switching Stabilization 62
3.3 Optimal Control . 68
3.4 Notes and Further Reading 82

4 Verification of Hybrid Systems 85
4.1 Model Checking . 86
4.2 Bisimulation . 99
4.3 Timed Automata . 106
4.4 Hybrid Automata . 118
4.5 Notes and Further Reading 123

ii

iii

5 Hybrid Supervisory Control 126
5.1 Discrete Event Supervisory Control 127
5.2 Timed Language Supervisory Control 135
5.3 Hybrid Supervisory Control 138
5.4 Notes and Further Reading 155

6 Concluding Remarks 157

Acknowledgements 159

References 160

Abstract

Hybrid dynamical systems are a class of complex systems that involve
interacting discrete-event and continuous-variable dynamics. They
are important in applications in embedded systems, cyber-physical
systems, robotics, manufacturing systems, traffic management, bio-
molecular networks, and have recently been at the center of intense re-
search activity in the control theory, computer-aided verification, and
artificial intelligence communities. This paper provides a tutorial in-
troduction to this multidisciplinary research area. A number of funda-
mental topics, such as modeling, abstraction, verification, supervisory
control, stability analysis, stabilization, and optimal control of hybrid
systems are introduced and discussed. Additionally, more advanced
topics are briefly discussed at the end of each chapter with references
given for further reading.

H. Lin and P.J. Antsaklis. Hybrid Dynamical Systems: An Introduction to Control and
Verification. Foundations and Trends R© in Systems and Control, vol. 1, no. 1,
pp. 1–172, 2014.

DOI: 10.1561/2600000001.

1
Introduction

Hybrid dynamical systems contain heterogeneous dynamics that in-
teract with each other and determine their behaviors over time. By
heterogeneity, we mean systems containing two different kinds of dy-
namics: Time-driven continuous variable dynamics, usually described
by differential or difference equations; and event-driven discrete vari-
able dynamics, the evolutions of which depend on if-then-else type of
rules, usually described by automata or Petri nets. These two kinds
of dynamics interact with each other and generate complex dynami-
cal behaviors, such as switching once the value of a continuous vari-
able passes through a threshold, or state jumping upon certain discrete
event occurring to mention but a few.

As an example, consider a typical room temperature control sys-
tem in winter. Assume that the set point of the thermostat is 70 degrees
Fahrenheit. The furnace will turn on if the room temperature is below
the set point, and turn off otherwise. The room temperature control
system is actually a typical hybrid system as the furnace, along with
the heat flow characteristics of the room, form the continuous variable
dynamics, whereas the on-off thermostat can be modeled as a discrete
event system with two states “ON” and “OFF”. In addition, the tran-

2

3

sition between these two discrete states is triggered by the tempera-
ture in the room, while the evolution of the temperature depends on
whether the furnace is on or off, i.e., discrete state of the thermostat.
Hence, the temperature control system contains interacting discrete
and continuous dynamics, and can be modeled and studied as a hy-
brid system.

Hybrid systems actually arise in a great variety of applications,
such as manufacturing systems [Pepyne and Cassandras, 2000], air
traffic management [Tomlin et al., 1998], automotive engine control
[Balluchi et al., 2000], chemical processes [Engell et al., 2000], to men-
tion but a few. Hybrid systems also arise from the hierarchical organi-
zation of complex systems, and from the interaction of discrete plan-
ning algorithms and continuous control algorithms in autonomous,
intelligent systems. Hybrid systems have a central role in networked
embedded control systems that interact with the physical world, and
as such play a key role in the understanding of the evolution of
systems that contain an information and networking core and inter-
act tightly with the physical world and human operators; such sys-
tems are also referred to as Cyber-Physical Systems (CPS) [Lee, 2008,
Baheti and Gill, 2011]. Studies in hybrid systems could provide a uni-
fied modeling framework for CPS, and systematic methods for perfor-
mance analysis, verification, and design.

Besides their enormous practical importance, hybrid systems also
represent a fascinating and highly challenging area of study that en-
compasses a variety of theoretical research questions. Actually, the
introduction of switching and state jumps in hybrid systems non-
trivially extend the dynamical behaviors that can be modeled by hy-
brid system models compared with traditional modeling frameworks,
such as ordinary differential equations and automata. Hence, hy-
brid system models are of interest in themselves, and have been suc-
cessfully used to model a large variety of complex systems, such as
gene-regulatory networks [De Jong, 2002], communication networks
[Hespanha, 2004b] and robotic systems [Egerstedt, 2000]. However,
the price associated with the increased modeling power is the dif-
ficulty in analyzing properties of the evolution or solution of a hy-

4 Introduction

brid system model, such as the existence and uniqueness of a so-
lution, and the continuity of trajectories with respect to initial con-
ditions. These difficulties have motivated significant and intense re-
search activities targeting formal analysis and synthesis of hybrid sys-
tems. On the other hand, the introduction of switching logic into con-
trollers may help to achieve performance that exceeds any fixed classi-
cal linear or nonlinear smooth controller; for example, there are some
nonlinear systems that cannot be stabilized by any smooth feedback
control law, but can be asymptotically stabilized by a hybrid con-
troller [Hespanha et al., 1999]. Moreover, to meet challenging high-
performance design requirements that reflect multiple objectives such
as response speed, accuracy, optimality, robustness, and disturbance
attenuation, a multi-modal (hybrid) control architecture may be the
proper choice. When the requirements are represented by time and
event-based behaviors or when the plant to be controlled has tight
interactions of continuous variable and discrete event dynamics, one
needs to employ hybrid control methods [Antsaklis and Nerode, 1998,
Antsaklis, 2000].

The history of hybrid system research can be traced back at least
to the 1960s to the study of engineering systems that contained re-
lays and/or hysteresis, see e.g., [Witsenhausen, 1966]. However, hy-
brid systems began to seriously attract the attentions of researchers
in the early 1990s, mainly because of the widespread development
and implementation of digital micro controllers and embedded de-
vices. The last two decades have seen considerable research activities
in modeling, analysis and synthesis of hybrid systems. The investi-
gation of hybrid systems is a fascinating discipline bridging control
engineering, mathematics and computer science.

Computer scientists tend to look at hybrid systems primarily as
discrete (computer) programs interacting with the physical environ-
ment. They extend their computational models, such as finite state
machine, automata and petri nets, from discrete systems to hybrid
systems by embedding the continuous variable dynamics into these
discrete models, see e.g., [Alur et al., 1993, 1995]. Typically, these ap-
proaches are able to deal with complex discrete dynamics and empha-

5

size analysis results (verification) and simulation methodologies. Such
approaches typically ask whether certain properties, such as safety,
liveness and fairness that are formulated in temporal logic formu-
las, hold true or not for a given hybrid system model. This is called
the verification of hybrid systems, and one of the main verification
methods is symbolic model checking, which is based on the compu-
tation of reachable sets for hybrid systems. Consequently, a good deal
of research effort has focused on developing sophisticated techniques
drawn from optimal control, game theory, and computational geom-
etry to calculate or approximate the reachable sets for various classes
of hybrid systems, see e.g., [Chutinan and Krogh, 2003, Tomlin et al.,
2003].

On the other hand, researchers from the areas of dynamical sys-
tems and control theory have approached hybrid systems as a col-
lection of differential/difference equations with discontinuous or
multi-valued right-hand sides. Representative modeling frameworks
in this category include piecewise affine/linear systems [Sontag,
1981, Johansson, 2003a] and switched systems [Liberzon, 2003,
Lin and Antsaklis, 2009]. They extend the models and methodologies
for traditional continuous variable systems, such as ordinary differ-
ential/difference equations, by including discrete variables so as to
describe the jumping or switching phenomena. Typically, these ap-
proaches are able to deal with complex continuous variable dynamics
and focus mainly on stability, controllability, robustness and synthesis
issues.

The methods for hybrid systems are distributed across a wide
spectrum, ranging from methods known in the discrete (cyber-) do-
main at one end, to traditional approaches for the continuous physical
systems at the other. Rooted at opposite ends, both computer scien-
tists and control theorists have made significant contributions to the
field of hybrid systems by extending traditional methods from the
purely discrete or continuous domain to deal with hybrid systems.
However, in general, there has been little work on integrating methods
from these two domains. This is possibly because the formal methods
pursued in computer science traditionally lie in the realm of discrete

6 Introduction

mathematics, while control theory approaches lie mainly in the realm
of continuous mathematics. A noticeable trend in the recent hybrid
system literature emphasizes the synthesis of hybrid controllers for
continuous or hybrid dynamical systems to satisfy complicated tem-
poral logic specifications. This is known as symbolic control or hybrid
supervisory control, which can be seen as a crosstalk between these
two schools of thoughts.

This tutorial paper seeks to balance the emphasis on methods from
both computer science and control theory, and hopefully gives the
readers a relatively complete picture of the whole field of hybrid dy-
namical systems. For such a purpose, the rest of paper is organized
as follows. First, several modeling frameworks for hybrid systems,
namely hybrid automata, switched systems and piecewise affine sys-
tems, are introduced in Chapter 2. Chapter 3 briefly reviews the results
on stability, stabilization and optimal control of hybrid systems. Then,
Chapter 4 investigates the verification problems for hybrid systems
with a particular focus on model checking approaches. Finally, Chap-
ter 5 reviews the developments of hybrid supervisory control, also
known as symbolic control, which can be seen as an effort to combine
the results and approaches from both systems and control theory and
computer sciences.

2
Modeling of Hybrid Systems

In this chapter, we will introduce several modeling frameworks for
hybrid systems. First, we start with a very general modeling frame-
work, that of hybrid automata. Hybrid automata models can be seen
as extensions of finite automata by embedding continuous dynamics
in each of the discrete modes. In this chapter, we will first give a very
brief review of discrete event systems and the formal automata the-
ory. Then, hybrid automata will be introduced with focus on the char-
acterization of their trajectories and well-posedness. Hybrid automata
were proposed in the computer science literature to model hybrid sys-
tems arising from computer programs interacting with the physical
world. In contrast, control engineers usually consider hybrid systems
arising from physical dynamical systems controlled by digital circuits.
The introduction of digital circuits causes difficulties because of the
switching of dynamics and resetting of states. In response, control
engineers have extended traditional models, e.g., state space models,
by explicitly introducing switchings and state jumps to model hybrid
systems. In particular, two popular modeling frameworks for hybrid
systems proposed in control, namely switched systems and piecewise
affine systems, are reviewed. It is also shown that both switched sys-

7

8 Modeling of Hybrid Systems

tems and piecewise affine systems can be written in the form of hybrid
automata. In addition, piecewise affine systems can be seen as a spe-
cial case of switched systems with linear dynamics in each mode and
mutual exclusive partitions of the state space.

2.1 Finite Automata

Finite automata are popular models for discrete event systems. A
discrete event system(DES) is a dynamical system which has dis-
crete valued states and the evolution among states is triggered by
the occurrence of discrete events [Cassandras and Lafortune, 2008,
Ramadge and Wonham, 1989]. For example, the operation of a vend-
ing machine can be seen as a discrete event system. Usually the ma-
chine remains in the “ready” mode or state, which can be seen as the
initial state of the system. When a customer inserts enough coins, the
vending machine will change into “waiting” mode and wait for the
customer’s choice for the drink. According to the customer’s choice,
the machine will respond with either “Coke” or “Pepsi” respectively
and deliver the product. After this round of service, the machine will
return back to the “ready” state and wait for the next customer.

Thus the system has four states - “ready”, “waiting”, “Output
Coke” and “Output Pepsi”, and four events - “coins received”, “Coke
being chosen”, “Pepsi being chosen” and “Drink being taken.” Let’s
denote the set of states as a set X = {q0, q1, q2, q3}, which is a dis-
crete finite symbol set and corresponds to the four discrete states of
the vending machine respectively. For simplicity, we denote the event
set as Σ = {coin, Coke, Pepsi, taken}.

Then, the behavior of the system can be described by a collection
of sequences of triples consisting of states, events and time instants of
the form (q0, σ1, t1)(q1, σ2, t2) · · · , where q0 ∈ X is the initial state (here
it is q0), and for each i ≥ 1, qi ∈ X stands for the ith state of the system,
σi ∈ Σ denotes the ith event, and ti ∈ R+ is the time instant when the
ith event σi occurs. A typical state trajectory of the vending machine
example is plotted in Figure 2.1.

Usually in DES, we ignore the timing information and focus on

2.1. Finite Automata 9

Figure 2.1: A typical state trajectory of the vending machine example, and the transi-
tion of states is triggered by discrete events.

the ordering of state and event pairs. The reasons are twofold. First,
when exactly an event happens is not as significant as what the con-
sequences of the event will be. In our case, the consequences are re-
flected by state transitions in the DES. Secondly, the relationships
between state transitions and events are complex and cannot be de-
scribed using differential or difference equations. In addition, no one
can predict when exactly such an event is going to occur. Hence, a log-
ical model is sufficient to study the qualitative properties of the DES.
Finite automata are popular logical models that have been used in
practice successfully. Our treatment of finite automata mainly follows
a classical textbook [Hopcroft et al., 2006].

Definition 2.1. A finite automaton A is a tuple (Q, Q0, Σ, δ, F) where

• Q is a finite set of states;

• Q0 ⊆ Q is the set of initial states;

• Σ is a finite set of symbols representing inputs;

• δ : Q× Σ → 2Q represents the state transition relation;

• F ⊆ Q is a set of accepting states.

Here, 2Q stands for the collection of all subsets of Q, i.e., the power
set of Q. Note that the map δ(q, σ) specifies the set of states that the

10 Modeling of Hybrid Systems

current state q can move into when it reads the symbol σ. It is worth
pointing out that the set δ(q, σ) maybe empty for all σ ∈ Σ, which
means that the automaton A gets stuck at the state q and has nowhere
to go. When this happens, the automaton A is called blocking. Namely,
∃q, such that for ∀σ ∈ Σ, δ(q, σ) = ∅. Otherwise, A is non-blocking.

On the other hand, the set δ(q, σ) may contain more than one
states, which means that there may exist many possible transitions
for each state and symbol. Hence, the automaton A is called non-
deterministic for this case. A non-deterministic finite automaton can
have many different runs on a given input word. In contrast, an au-
tomaton A is deterministic if |Q0| = 1 and |δ(q, σ)| ≤ 1 for all q ∈ Q,
and σ ∈ Σ. Here, | · | denotes the cardinality of a set. A deterministic
finite automaton can have at most one run on a given input word.

The dynamical behavior of a finite automaton is conveniently de-
scribed by the strings of its state evolution. Formally, we have the fol-
lowing definitions and notations.

Definition 2.2. A set of symbols, Σ = {a1, a2, · · · }, is called an alpha-
bet. A word s is a sequence of symbols chosen from the alphabet Σ.

Next we define some notations on words that will be used later.

• The length of a word s is denoted as |s|. Let s = a1a2 · · · am, then
|s| = m, the i-th symbol of s, denoted as s(i) = ai for i ≤ |s|.
Prefix of s with length i, s[i] = a1a2 · · · ai.

• Σk stands for the set of all strings of length k with symbols from
Σ. In other words, Σk = {s, |s| = k}.

• Σ∗ stands for the set of all words of finite length with symbols
from Σ, that is

Σ∗ = Σ0 ∪ Σ1 ∪ Σ2 ∪ · · · ,

where Σ0 = {ε} (empty string).

• Σω stands for the set of all words of infinite length with symbols
from Σ.

2.1. Finite Automata 11

Definition 2.3. A run r of a finite automaton A = (Q, Q0, Σ, δ, F) on a
finite word s = a0a1 · · · an−1 is a sequence q0, q1, · · · , qn of n + 1 states
in Q such that q0 ∈ Q0, and qi+1 ∈ δ(qi, ai) for 0 ≤ i < n.

To illustrate the definitions, we revisit the vending machine exam-
ple.

Example 2.1. Formally, the vending machine can be modeled as a
finite automaton A = (Q, Q0, Σ, δ, F), where

• Q = {q0, q1, q2, q3};

• Q0 = {q0};

• Σ = {coin, Coke, Pepsi, taken};

• δ(q0, coin) = {q1}, δ(q1, Coke) = {q2},
δ(q1, P epsi) = {q3}, δ(q2, taken) = {q0}, δ(q3, taken) = {q0};

• F = {q0}.

Intuitively, the dynamics of the system can be modeled by the fol-
lowing digraph.

���������	
������q0

coin

���������	q1

Coke

����
��

��
��

�
P epsi

���
��

��
��

��

�������	q2

taken

��

�������	q3

taken

��

Here, the nodes stand for the discrete states in Q respectively,
while the double-circled nodes represent the marked states in F , and
the initial state q0 is pointed by a small arrow without source nodes.
The edges between nodes correspond to the state transition relation
δ with the triggering events labeled. A run of the system S could be:
q0 −→

coin q1 −→
Coke q2 −→

taken q0 · · · . It means that a customer in-
serts a coin to the vending machine, and the machine asks the cus-
tomer to choose between “Coke” and “Pepsi”. After the customer

12 Modeling of Hybrid Systems

chooses “Coke”, the machine responds and returns to the ready state
q0. It can be easily verified that the automaton for the vending machine
example is deterministic and non-blocking. �

If a word s has a valid run in the sense of Definition 2.3, then s

is called a generated word of the automaton A. The collection of all
such generated words is called the language generated by A, denoted as
L(A). A run r = q0, q1, · · · , qn is accepting if qn ∈ F , and the word s

is accepted by A if A has an accepting run on s. The collection of all
finite words s ∈ Σ∗ accepted by A is called the (marked) language ac-
cepted by A, denoted as LM (A). Given a finite automaton A, the pair
(L(A),LM (A)) is called the language model of A. Two automata are
called language equivalent if they have the same language model.

2.1.1 Properties of Finite Automata

An important property of finite automata is their closure under
Boolean operations, i.e., the union or intersection of two finite au-
tomata is also finite automaton; so is the negation of a finite automa-
ton. To be more precise, we formally state the property in the follow-
ing propositions:

Theorem 2.1. Let A1, A2 be two finite automata. Then

• there exists a finite automaton A such that
L(A) = L(A1) ∪ L(A2) and LM (A) = LM (A1) ∪ LM (A2);

• there also exists a finite automaton A′ such that
L(A′) = L(A1)

⋂
L(A2), and LM (A′) = LM (A1)

⋂
LM(A2).

• Furthermore, there exists a finite automaton Ā1 such that
LM (Ā1) = L(A1)− LM(A1) and L(Ā1) = L(A1).

The proof can be found in any textbooks on automata theory, e.g.,
[Hopcroft et al., 2006]. Another important result about finite automata
is language equivalence between deterministic finite automata and
non-deterministic finite automata as stated in the following theorem.

Theorem 2.2. Let A be a non-deterministic finite automaton. Then
there exists a deterministic finite automaton Ad such that L(Ad) =

L(A) and LM (Ad) = LM (A).

2.2. Hybrid Automata 13

In other words, for any non-deterministic finite automaton A, we
can always find a deterministic finite automaton Ad that is language
equivalent to A. Such a deterministic finite automaton Ad is not nec-
essarily unique, and can be constructed from A by a so-called sub-
set construction, see e.g., [Hopcroft et al., 2006]. So, there is no loss of
generality for us to focus on deterministic finite automata from the
language sense. Another important fact about finite automata is that
the class of languages accepted by finite automata are called regular
languages. It is usually convenient to represent the language accepted
by a finite automaton by regular expressions. For example, the vend-
ing machine automaton accepts a language that can be expressed as
(coin · (Coke + Pepsi) · taken)∗, where the operator “·” stands for con-
catenation between events (usually ignored), “+” means choice be-
tween events, and “ ∗” indicates any finite number of repeating of an
events or string of events. The above expression characterizes the lan-
guage accepted by the vending machine automaton, which can be pre-
sented as finite number of repeats of the pattern - the event coin fol-
lowed by either the event Coke or the event Pepsi, and then the event
taken. Note that nothing happening, denoted as ε, is also acceptable as
it corresponds to zero repeating of such a pattern. Its generated lan-
guage is the prefix closure of the generated language , i.e., the set of
all prefixes of the strings in (coin · (Coke + Pepsi) · taken)∗, which is
denoted as pr((coin · (Coke + Pepsi) · taken)∗).

On the other hand, given a regular language K, we can build a
finite automaton (not unique, but there is always a deterministic finite
automaton) that accepts K or generates K (if K is also prefix closed,
i.e., K = pr(K)). Hence, regular language is also closed under union,
intersection and complementation [Hopcroft et al., 2006].

2.2 Hybrid Automata

Finite automata have been successfully used in modeling and study-
ing typical discrete event systems, such as communication pro-
tocols and computer programs, where the logic correctness (e.g.,
deadlock free) is the main concern [Ramadge and Wonham, 1989,

14 Modeling of Hybrid Systems

Cassandras and Lafortune, 2008]. However, finite automata cannot
model for example cyber-physical systems, where both discrete event
dynamics and continuous physical dynamics coexist and interact with
each other [Lee, 2008, Baheti and Gill, 2011]. Hybrid automata provide
formal models for cyber-physical systems, and can be seen as an ex-
tension of finite automata by adding continuous dynamics into each
of its discrete states (also called modes). Each mode is associated with
constraints within which the continuous dynamics can evolve. Edges
between modes are annotated with guards that specifies the condi-
tions when the mode transition can be triggered; each edge is also
associated with a reset map indicating how the continuous variables
are being updated after the discrete transition. Following [Alur et al.,
1995, Henzinger, 1995, Lygeros et al., 2003], hybrid automata are de-
fined below (with restrictions for simplicity).

Definition 2.4. A hybrid automaton H is a collection H =

{Q, X, f, Init, Inv, E, G, R}, where

• Q = {q1, q2, · · · } is a finite set of discrete states;

• X ⊆ Rn represents the state space where the continuous state
variables take values;

• f : Q×X → Rn assigns to each discrete state q ∈ Q an analytic
vector field f(q, ·);

• Init ⊆ Q×X is the set of initial states;

• Inv : Q → 2X assigns to each discrete state q ∈ Q a set
Inv(q) ⊆ X called the invariant set;

• E ⊆ Q×Q is the set of discrete transitions;

• G : E → 2X assigns to each discrete transition (q, q′) ∈ E a
guard set G(q, q′) ⊂ X;

• R : E ×X → 2X is a reset map.

We refer to (q, x), where q ∈ Q and x ∈ X, as the state of H . As
illustration, let’s model the temperature control system in the intro-
duction as a hybrid automaton.

2.2. Hybrid Automata 15

Example 2.2. Consider the temperature control system example. The
system contains two discrete modes corresponding to the on-off oper-
ation of the thermostat. The temperature follows different continuous
dynamics depending on whether the furnace is on or off. It is assumed
that the furnace is initially off and the temperature is below 60 degree.
As we start the temperature control process, the furnace is turned on
and remains on heating the room as long as the temperature is below
70 degree. Once the room temperature reaches 70 degree, the furnace
will be commanded to turn off. Due to latency and other practical rea-
sons, the furnace actually turns off just before the temperature hits 71
degree. As the furnace is off, the room temperature starts dropping
due to heat losses. Once the temperature drops below 70 degree, the
furnace will be commanded to turn on; for practical reasons it actually
turns on just before the temperature drops to 69 degree. Formally, the
temperature control system can be modeled as a hybrid automaton
with elements in the model being identified as follows.

• Q = {ON, OFF};

• X = R denotes the range of the room temperature;

• f(ON, x) = −x + 100 and f(OFF, x) = −x;

• Init = {OFF} × {x ≤ 60};

• Inv(ON) = {x ∈ R : x ≤ 71},
and Inv(OFF) = {x ∈ R : x ≥ 69};

• E = {(ON, OFF), (OFF, ON)};

• G(ON, OFF) = {x ∈ R : x ≤ 70},
and G(OFF, ON) = {x ∈ R : x ≥ 70};

• R((ON, OFF), x) = {x}, and R((OFF, ON), x) = {x}.

�

A hybrid automaton can be visualized as a directed graph. To
graphically represent a hybrid automaton, we first draw a directed
graph (V, E) with one to one mapping between the vertices V and the
discrete state Q, while E is the same as in the definition of a hybrid

16 Modeling of Hybrid Systems

Figure 2.2: Graphical representation of the temperature control hybrid automaton
model.

automaton. Secondly, for each vertex of the graph, we specify the dis-
crete mode q ∈ Q, the differential equation implied by the vector field
ẋ = f(q, x), and the invariant condition Inv(q) in each vertex of the
graph. On each edge (q, q′) ∈ E, the guard condition G(q, q′) and the
reset map x′ := R((q, q′), x) are specified. Finally, the initial state may
be marked by an arrow (an edge without a source vertex) pointing at
the vertex q ∈ Q0 with the set Init(q) specified on it.

To illustrate the process, we plot the graphical representation of the
hybrid automaton model for the temperature control example in Fig-
ure 2.2, which illustrates the switching of continuous dynamics due
to discrete transitions. Another important dynamical phenomenon is
that the continuous state may suddenly change its value (state jump)
upon a discrete transition as well. To illustrate such a phenomenon,
consider the following example from [Johansson et al., 1999].

Example 2.3. Consider a bouncing ball as shown in Figure 2.3. The
vertical position of the ball is denoted by x1 and the velocity by x2. As
long as the ball is above the ground (x1 > 0), the continuous dynamics
can be presented as, ẋ1 = x2; ẋ2 = −g, where g is the gravity constant.
When the ball hits the ground (x1 = 0), a discrete jump takes place.
The speed x2 is reset according to x2 := −cx2, where c ∈ (0, 1) is a
coefficient of restitution.

It is straight forward to define a hybrid automaton, to describe this
process, where,

2.2. Hybrid Automata 17

1x1x
mg

Figure 2.3: A bouncing ball example.

Figure 2.4: Hybrid automata model for the bouncing ball example.

• Q = {q};

• X = R2;

• f(q, x) =

[
x2

−g

]
;

• Init = {q} × {x ∈ R2| x1 > 0, x2 = 0};

• Inv(q) = {x ∈ R2| x1 ≥ 0};

• E = {(q, q)};

• G(q, q) = {x ∈ R2|x1 = 0, x2 < 0};

• R((q, q), x) = {x1 = x1, x2 = −cx2}.

Then its graphical representation of the hybrid automaton model

18 Modeling of Hybrid Systems

t

1x

2x

Figure 2.5: Typical trajectories for the position x1 and velocity x2 of the bouncing ball
example.

is plotted in Figure 2.4. It only contains a single discrete mode, while
discrete (self-)transitions occur when the ball hits the ground (x1 = 0

and x2 < 0, i.e., the guard set condition G(q, q) holds). Accompanying
with the transition, the velocity x2 gets reset, namely the velocity x2

changes its direction suddenly after bouncing (x2 := −cx2, with 0 <

c < 1). �

For illustration, a typical trajectory for the position and velocity of
the bouncing ball example is plotted in Figure 2.5. Usually, we also
need to consider the evolution of the discrete states of a hybrid au-
tomaton. In this example, there is only one discrete state, so the time
evolution of discrete state is q for the whole duration.

2.2.1 Hybrid State Trajectories

Given a hybrid automaton, a typical state trajectory can be described
as follows: Starting from a point in an initial region, say (q0, x0) ∈ Init,
first, the q0-th mode dynamics are followed, i.e., ẋ = f(q0, x), with ini-
tial condition x(0) = x0 while x(t) ∈ Inv(q0). Assume that the con-

2.2. Hybrid Automata 19

Figure 2.6: A typical trajectory of a hybrid automaton.

tinuous state x(t) evolves into the guard set G(q0, q1) and a discrete
transition from q0 to q1 occurs at time t1, where x(t1) ∈ G(q0, q1). Ac-
companying the transition, the continuous state x is also being reset
by following the reset map R((q0, q1), x(t1)), which is contained in the
invariant set of mode q1, Inv(q1). Then, the continuous state x evolves
again following the dynamics of mode q1 as illustrated in Figure 2.6.

Next, we formally define the hybrid time trajectory and hybrid ex-
ecutions.

Definition 2.5. [Lygeros et al., 2003] A hybrid time trajectory is a fi-
nite or infinite sequence of intervals T = {Ii}

N
i=1, where

• Ii = [τi, τ ′
i] ⊆ R for all i ≤ N ;

• If N < ∞, then either IN = [τN , τ ′
N] or IN = [τN , τ ′

N);

• τi ≤ τ ′
i = τi+1 for all i.

A hybrid time trajectory is a sequence of intervals of the real line,
the end points of which overlap. The interpretation is that the end
points of the intervals are the times at which discrete transitions take
place. Hybrid time trajectories can be extended to infinity if T is an
infinite sequence or if it is a finite sequence ending with an interval of
the form [τN ,∞). We use t ∈ T as shorthand notation that there exists
i such that t ∈ Ii with Ii ∈ T . Each hybrid time trajectory T is linear
ordered by the relation ≺, which is defined as follows. For t1, t2 ∈ T ,
there exist i and j such that t1 ∈ [τi, τ ′

i] and t2 ∈ [τj , τ ′
j]. We say t1 ≺ t2

if t1 < t2 or i < j.

20 Modeling of Hybrid Systems

The following operations defined in [Lygeros et al., 2003] on the
hybrid time trajectory T are useful for the definition and classification
of executions of a hybrid automaton H .

• Prefix: T = {Ii}
N
i=1 is said to be a prefix of T ′ = {I ′

i}
M
i=1, denoted

as T � T ′ if T = T ′ or T is finite and N ≤ M , Ii = I ′
i for

i = 1, · · · , N .

• Index set: Define the index set of T = {Ii}
N
i=1 as < T >=

{1, 2, · · · , N} if N is finite, or < T >= N if N is infinite.

• Length: Define the length of T = {Ii}
N
i=1 as |T | =

∑
i∈<T >(τ ′

i −

τi).

Next we introduce a concept for hybrid automata similar to a solu-
tion of a continuous dynamical system. We use q and x to also denote
the time evolution of the discrete and continuous state, respectively,
with a slight abuse of notation. An execution of a hybrid automaton H

is a collection X = (T , q, x), where

• T is a hybrid time trajectory;

• q :< T >→ Q is a map; and

• x = {xi, i ∈< T >} is a collection of differentiable maps xi :

Ii → X such that

1. (q(0), x(0)) ∈ Init;

2. for all t ∈ [τi, τ ′
i], ẋi(t) = f(q(i), xi(t)) and xi(t) ∈

Inv(q(i));

3. for all i ∈< T > / N , e = (q(i), q(i + 1)) ∈ E, and xi(τ ′
i) ∈

G(e), xi+1(τi+1) ∈ R(e, xi(τ ′
i)).

In Figure 2.7, a typical execution of a hybrid automaton is illus-
trated, where the horizontal t-axis represents a hybrid time trajectory.
It is noticeable that hybrid executions consist of concatenation of sev-
eral pieces of continuous flow xi. There are discrete transitions and

2.2. Hybrid Automata 21

X

t
1τ

1 2τ τ′ = 2 3τ τ′ = 3 4τ τ′ =

Q

3q

2q

1q

Figure 2.7: A typical trajectories of a hybrid automaton.

possible state jumps between any two successive pieces of continu-
ous flow. Note that multiple discrete transitions may take place at the
same τi. Continuous flows keep the discrete part q of the hybrid state
constant; the continuous part evolves over time according to the dif-
ferential equation ẋ = f(q, x), as long as x ∈ Inv(q). If during the con-
tinuous flow it happens that the continuous part hits a guard set, i.e.,
x ∈ G(e) for some e = (q, q′) ∈ E, then the edge e becomes enabled.
The state may then instantaneously jump from (q, x) to any (q′, x′)

with x′ ∈ R(e, x). Then the process repeats, and the continuous parts
of the state evolve according to the differential equation ẋ = f(q′, x).

Example 2.4. [Johansson et al., 1999] Consider a two tank system as
shown in Figure 2.8. Water is added to these two tanks through a hose
(with constant flow rate w), and the goal is to keep the water levels
of the tanks above certain level, r1 and r2. However, both tanks are
leaking; also the hose is dedicated to only one tank, either Tank 1 or
Tank 2, at any time instant.

It is assumed that the leaking rates for both tanks are constant, and
are v1 and v2 respectively. Let xi denote the level of water in Tank i,
for i = 1, 2. Also assume that the initial water levels are above r1 and

22 Modeling of Hybrid Systems

w

1v 2v

1x

1r

2x

2r

Figure 2.8: A water tank example.

r2 respectively.
To make sure that the water level of Tank i is above ri for i = 1, 2,

we employ the following control law: switching the inflow to Tank
1 whenever x1 ≤ r1 and to Tank 2 whenever x2 ≤ r2. It is straight
forward to define a hybrid automaton, to describe this process:

• Q = {q1, q2};

• X = R2;

• f(q1, x) =

[
w − v1

−v2

]
and f(q2, x) =

[
−v1

w − v2

]
;

• Init = {q1, q2} × {x ∈ R2| x1 ≥ r1, x2 ≥ r2};

• Inv(q1) = {x ∈ R2| x2 ≥ r2}, and Inv(q2) = {x ∈ R2| x1 ≥ r1};

• E = {(q1, q2), (q2, q1)};

• G(q1, q2) = {x ∈ R|x2 ≤ r2}, and G(q2, q1) = {x ∈ R|x1 ≤ r1};

• R((q1, q2), x) = {x}, and R((q2, q1), x) = {x}.

2.2. Hybrid Automata 23

Figure 2.9: The hybrid automata model for the water tank example.

The graphical presentation of the hybrid automaton model is plot-
ted in Figure 2.9. It can be shown that the water tank hybrid automa-
ton accepts a unique infinite execution for each initial state. As an
illustration, a typical state trajectory is plotted in Figure 2.10 for ini-
tial condition x1(0) ≥ r1 and x2(0) ≥ r2, under the assumption that
max{v1, v2} < w < v1 + v2.

It can be seen that the switching between the two tanks becomes
faster and faster, and the state trajectories converge to the point
(r1, r2)T . This phenomenon is independent of the initial conditions
provided that x1(0) ≥ r1 and x2(0) ≥ r2. In other words, the region
Init = {q1, q2}× {x ∈ R2| x1 ≥ r1, x2 ≥ r2} is invariant, which means
that all trajectories start from this region will stay there.

However, the condition, max{v1, v2} < w < v1 + v2, implies that
the rate at which water is added to the system is less than the rate
at which water is removed. Physical intuition suggests that in this
case at least one of the water tanks will have to eventually become
empty. Why does the analysis of the hybrid automaton fail to predict
that? This is because there are infinite number of switches within a fi-
nite time interval, called Zeno phenomenon in the literature, see e.g.,
[Johansson et al., 1999]. However, every switch of the hose between
tanks actually takes some time in reality, so the Zeno phenomenon
predicted by the hybrid automata model in Figure 2.9 will not happen
in the real world. �

24 Modeling of Hybrid Systems

2r

2x

1r 1x
o

Figure 2.10: Illustration of a typical trajectory of the water tank example.

Motivated by the complexity of dynamical behaviors, in the fol-
lowing we classify the executions of hybrid automata. We first intro-
duce the prefix definition.

Definition 2.6. [Lygeros et al., 2003]X = (T , q, x) is said to be a prefix
of X̂ = (T ′, q̂, x̂), denoted as X � X̂ if T � T ′, and for all i ∈< T >,
∀t ∈ Ii, (q(i), xi(i)) = (q̂(i), x̂i(i)).

When X � X̂ and in addition X �= X̂ , then X is called a strict
prefix of X̂ and denoted as X � X̂ .

Then, following [Lygeros et al., 2003], we are ready to introduce
the definitions:

• An execution is maximal, if it is not a strict prefix for any other
execution;

• An execution is finite, if T is finite with a closed finial interval;

• An execution is infinite, if T is either an infinite sequence or τ ′
N =

∞;

2.2. Hybrid Automata 25

• An execution is Zeno, if it is infinite but has finite length |T | < ∞,
or, equivalently, if it takes an infinite number of discrete transi-
tions in a finite amount of time.

It is easy to see that, under our definitions, the transition times τi

of a Zeno execution converge to some finite accumulation point from
the left. In other words, the definition of an execution precludes the
situation where the transition times have a right accumulation point.
Another typical Zeno execution is generated by the previous bouncing
ball example [Lygeros et al., 2001], which is illustrated as follows.

Example 2.5. Following the bouncing ball example, the first bounc-
ing occurs at

τ ′
0 = τ1 = τ0 +

x2(τ0) +
√

x2
2(τ0) + 2gx1(τ0)

g
,

and the second bouncing time is at

τ2 = τ ′
1 = τ0 + τ1 +

2x2(τ1)

g
,

and so on.
More generally, the N -th bouncing time can be calculated as

τN = τ ′
N−1 = τ0 + τ1 +

2x2(τ1)

g

N∑
k=1

ck−1,

where x2(τ1) = −cx2(τ ′
0) = c

√
x2

2(τ0) + 2gx1(τ0). Since for c ∈ (0, 1)

lim
N→∞

N∑
k=1

ck−1 =
1

1− c
,

we have that

|τ | = τ0 +
x2(τ0)

g
+

(1 + c)
√

x2
2(τ0) + 2gx1(τ0)

g(1− c)
.

is finite, so this is a Zeno execution. �

26 Modeling of Hybrid Systems

2.2.2 Determinism and Nonblocking Properties

Before the formal definition of non-blocking and deterministic hybrid
automaton, the following notations from [Lygeros et al., 2003] are in-
troduced.

• Let EH(q0, x0) represent all executions of a hybrid automaton H

with initial condition (q0, x0) ∈ Init;

• Let EM
H (q0, x0) ⊆ EH(q0, x0) denote all maximal executions of H

with initial condition (q0, x0) ∈ Init;

• Let E∗
H(q0, x0) ⊆ EH(q0, x0) denote all finite executions of H with

initial condition (q0, x0) ∈ Init;

• Let E∞
H (q0, x0) ⊆ EH(q0, x0) denote all infinite executions of H

with initial condition (q0, x0) ∈ Init.

Using these notations, we can defined the following properties for
hybrid automata.

Definition 2.7. [Lygeros et al., 2003] A hybrid automaton H is non-
blocking, if E∞

H (q0, x0) �= ∅ for all initial conditions (q0, x0) ∈ Init.
A hybrid automaton H is deterministic, if EM

H (q0, x0) contains at
most one solution for all initial conditions (q0, x0) ∈ Init.

To check the non-blocking and deterministic properties of a hybrid
automaton, we need to define the set of states reachable by a hybrid
automaton H as

ReachH =
{

(q̂, x̂) : ∃X ∈ E∗
H(q0, x0) s.t. (q(N), xN (τN)) = (q̂, x̂)

}
,

and the set of states from which continuous evolution is impossible as

OutH = {(q, x) ∈ Q×X : ∀ε > 0,∃t ∈ [0, ε), Φ(t, q, x) /∈ Inv(q)} ,

where Φ(t, q, x) is a solution trajectory following the dynamics of ẋ =

f(q, x).
In general, the exact computation of ReachH and OutH may be

very complicated, but they may be calculated for some simple hybrid
automata. To illustrate the calculation of ReachH and OutH , let’s re-
visit the bouncing ball example [Lygeros et al., 2001].

2.2. Hybrid Automata 27

Example 2.6. First, let’s calculate ReachH and OutH for the hybrid
automaton model for a bouncing ball. Note that Init ⊆ ReachH , so we
have {q1} × {x ∈ R2 |x1 ≥ 0, x2 = 0} ⊆ ReachH . On the other hand,
we note that the position of ball cannot be negative, so ReachH ⊆

{q1} × {x ∈ R2 |x1 ≥ 0}. By checking the state trajectories, all states
in the set {q1} × {x ∈ R2 |x1 ≥ 0} are actually reachable (with proper
initial conditions). So ReachH = {q1} × {x ∈ R2 |x1 ≥ 0}.

Next, we calculate the set OutH . First note that the continuous
states outside of Inv(q) cannot be reached under mode q, i.e., OutH ⊆⋃

q∈Q({q}×Inv(q)C), so {q1}×{x ∈ R2 |x1 < 0} ⊆ OutH . On the other
hand, OutH ⊆ ReachC

H , so OutH ⊆ {q1} × {x ∈ R2 |x1 > 0}.

Hence, we only need to check whether the states on the boundary,
i.e., {q1} × {x ∈ R2 |x1 = 0}, have continuous extensions under ẋ =

f(q1, x) or not. For such a purpose, we further divide the boundary
into two pieces, i.e., B1 = {q1} × {x ∈ R2 |x1 = 0, x2 ≥ 0} and
B2 = {q1} × {x ∈ R2 |x1 = 0, x2 < 0}. It is easy to see that for
states in B1, there exists a positive ε > 0 such that for all 0 < t < ε,
the continuous state flow Φ(t, q1, x) following the dynamics ẋ1 = x2,
ẋ2 = −g, is contained in Inv(q1) = {x1 ≥ 0}. However, for states in
B2, for all ε > 0, there exists t ∈ [0, ε) such that Φ(t, q, x) /∈ Inv(q1).
Hence, B1 ⊆ OutH by definition.

In conclusion, we have OutH = {q1} × ({x ∈ R2 |x1 < 0} ∪ {x ∈

R2 |x1 = 0, x2 < 0}). �

As another example, let’s calculate the ReachH and OutH for the
temperature control example.

Example 2.7. For ReachH , firstly, all initial states are reachable, so

Init = {OFF} × {x ≤ 60} ⊆ ReachH .

Then from the state trajectory, we get ReachH = ({OFF}×{x ≤ 60})∪

({ON} × {x ≤ 69}) ∪ ({ON, OFF} × {69 ≤ x ≤ 71}).

For OutH , note that
⋃

q∈Q

(q × Invc(q)) ⊆ OutH so ({OFF} × {x <

69})∪ ({ON}×{x > 71}) ⊆ OutH . On the other hand, since {OFF}×

{x > 69} and {ON}×{x < 71} are feasible, so OutH ⊆ ({OFF}×{x ≤

69})∪({ON}×{x ≥ 71}). After checking the boundary {OFF}×{x =

28 Modeling of Hybrid Systems

69} and {ON} × {x = 71}, we get OutH = ({OFF} × {x ≤ 69}) ∪

({ON} × {x ≥ 71}). �

Using the notations of ReachH and OutH for a hybrid automaton
H , we can give a sufficient condition to determine whether the hybrid
automaton H is non-blocking.

Lemma 2.3. [Lygeros et al., 2003] A hybrid automaton H is non-
blocking, if for all states (q, x) ∈ ReachH ∩ OutH , ∃(q, q′) ∈ E such
that x ∈ G(q, q′).

The lemma is very intuitive as it basically requests that if a con-
tinuous evolution is impossible to continue further then a discrete
transition must be available. The conditions of the non-blocking re-
sult are tight, but not necessary unless the automaton is determinis-
tic. If the conditions are violated, then there exists an execution that
blocks. However, unless the automaton is deterministic, starting from
the same initial state a non-blocking execution may also exist.

Example 2.8. Let’s check the conditions in Lemma 2.3 to deter-
mine whether the hybrid automaton model for bouncing ball is non-
blocking. To do that, we first calculate the intersection of ReachH and
OutH , which is

ReachH ∩OutH = {q1} × {x ∈ R2 |x1 = 0, x2 < 0}.

Since ReachH ∩ OutH ⊆ {q1} × G(q1, q1) so the conditions in Lemma
2.3 hold. Hence, the hybrid automaton model for a bouncing ball is
non-blocking. �

Next, we check the hybrid automaton model for the temperature
control example.

Example 2.9. For the hybrid automaton model of the thermostat ex-
ample, the intersection of ReachH and OutH is given as ReachH ∩

OutH = ({OFF} × {x ≤ 60}) ∪ ({OFF} × {x = 69}) ∪ ({ON}× {x =

71}). Note that {OFF} × ({x ≤ 60} ∪ {x = 69}) ⊂ {OFF} ×

G(OFF, ON), where G(OFF, ON) = {x ≤ 70}. Also, {ON} × {x =

71} ⊆ {ON}×G(ON, OFF), where G(ON, OFF) = {x ≥ 70}. Hence,
the conditions in Lemma 2.3 hold, so we conclude that the hybrid au-
tomaton model of the thermostat example H is non-blocking. �

2.2. Hybrid Automata 29

Intuitively, a hybrid automaton may be non-deterministic if either
there is a choice between continuous evolution and a discrete tran-
sition, or if a discrete transition can lead to multiple destinations (un-
der assumption, continuous evolution is unique). The following result
provides a formal statement of this fact.

Lemma 2.4. [Lygeros et al., 2003] A hybrid automaton H is determin-
istic, if and only if for state (q, x) ∈ ReachH ,

1. if x ∈ G(q, q′) for some (q, q′) ∈ E, then (q, x) ∈ OutH ;

2. if (q, q′) ∈ E, (q, q′′) ∈ E and q′ �= q′′, then x /∈ G(q, q′) ∩G(q, q′′);

3. if (q, q′) ∈ E and x ∈ G(q, q′) then R((q, q′), x) contains at most
one element.

To be more specific, the first condition indicates that once a discrete
transition becomes valid then it must be fired; The second condition
excludes non-deterministic choices in discrete transitions, while the
third condition on the reset map requests that the states are uniquely
updated after a discrete transition. The bouncing ball example is used
to illustrate Lemma 2.4.

Example 2.10. To decide whether the hybrid automaton model for
bouncing ball is deterministic, we need to check the conditions in
Lemma 2.4.

The first condition, “if x ∈ G(q, q′) for some (q, q′) ∈ E, then
(q, x) ∈ OutH”, holds true since there is only one transition (q1, q1),
and ({q1} ×G(q1, q1)) ⊆ OutH as G(q1, q1) = {x ∈ R2 |x1 = 0, x2 < 0}

while OutH = {q1} × ({x ∈ R2 |x1 < 0} ∪ {x ∈ R2 |x1 = 0, x2 < 0}).

The second condition trivially holds since there is only one transi-
tion (q1, q1) in H .

The third condition also holds true since the possible state set un-

der the reset map R((q1, q1), x) =

[
x1

−cx2

]
is a singleton.

In view of these, we can verify that the hybrid automaton model
for bouncing ball is deterministic. �

It will be show that the hybrid automaton for the temperature con-
trol example is non-deterministic.

30 Modeling of Hybrid Systems

Example 2.11. Consider the state {OFF} × {x = 69.5} ∈ ReachH ,
we can verify that the first condition is not satisfied. So the hybrid au-
tomaton model in the thermostat example H is non-deterministic. The
basic reason for nondeterminacy comes from the fact that the furnace
can be turned off at any point if the temperature is above 70 but below
71. In other words, any transition that occurs in such a range generates
a valid hybrid trajectory. So, there are infinitely many trajectories from
any initial state. So, the hybrid automaton H is not deterministic. �

Combine the above two lemmas, a hybrid automaton H is well-
posed (its solution exists and is unique for a given initial condition),
if and only if the conditions in Lemma 2.3 and Lemma 2.4 hold. In-
terested readers may refer to [Lygeros et al., 2003] for proofs. Put to-
gether, we can conclude that the hybrid automaton model for bounc-
ing ball is well-posed.

Hybrid automata are rich in expressiveness and are therefore
quite suitable for modeling and simulating hybrid dynamical systems.
However, due to heterogeneous discrete and continuous parts, they
are not directly suitable for solving analysis and synthesis problems.
In the following sections, we will introduce different kinds of hybrid
models from the literatures that are more suitable for computations.

2.3 Switched Systems

A switched system is a dynamical system that consists of a finite
number of continuous-variable subsystems and a logical rule that or-
chestrates switching between these subsystems. Mathematically, these
subsystems are usually described by a collection of indexed differen-
tial or difference equations.

ẋ(t) = f(x(t), q(t)),

q(t+) = δ(x(t), q(t))

with initial condition {q(t0), x(t0)} ∈ Init, where x(t) ∈ Rn is the
continuous state vector, and q(t) ∈ Q = {q1, q2, · · · , qN} stands for the
collection of discrete modes.

The logical rule that orchestrates switching between these sub-
systems generates switching signals, which are usually described as

2.3. Switched Systems 31

Figure 2.11: Hysteresis function.

classes of piecewise constant maps, σ : R→ Q. By piecewise constant,
we mean that the switching signal σ(t) has finite number of disconti-
nuities on any finite interval of R.

Example 2.12. A dynamical system with hysteresis exhibits lag ef-
fects as its parameters and evolution depend not only on its current
environment but also on its past history. Hysteresis occurs in many
industrial, economic and bio-molecular systems. A simple dynamical
systems with hysteresis can be represented by a differential equation,
ẋ = H(x), with a discontinuous H(x) as shown in Figure 2.11.

Dynamical systems with hysteresis can be modeled by switched
systems with two discrete modes Q = {q1, q2}, and

f(x, q1) = 1, f(x, q2) = −1,

δ(x, q1) =

{
q1 x ≤ Δ

q2 x ≥ Δ

δ(x, q2) =

{
q1 x ≤ −Δ

q2 x ≥ −Δ

with the initial condition Init = {q1, q2} × R. �

32 Modeling of Hybrid Systems

Properties of switched systems have been studied for the past
sixty years to consider engineering systems that contain relays and/or
hysteresis. Recently, there has been increasing interest in the sta-
bility analysis and switching control design of switched systems,
see e.g., [Liberzon, 2003]. The primary motivation for studying such
switched systems comes partly from the fact that switched systems
and switched multi-controller systems have numerous applications in
the control of mechanical systems, process control, automotive indus-
try, power systems, aircraft and traffic control, and many other fields.
In addition, there exists a class of nonlinear systems which can be sta-
bilized by switching control schemes, but cannot be stabilized by any
continuous static state feedback control law [Brockett, 1983].

Next, we explore the relationship between the hybrid automaton
and switched system modeling. A switched system can be modeled as
a hybrid automaton (See Section 2). Specifically,

• Q = {q1, q2, · · · , qN} is the same;

• X = Rn;

• f is the same;

• Init ⊆ Q×X is the same;

• Inv : for all q ∈ Q, Inv(q) = {X ∈ Rn| q = δ(x, q)}, i.e., all modes
of dynamics are feasible on the whole state space;

• E : (q, q′) ∈ E when q �= q′ and there exists x ∈ X such that
q′ = δ(x, q);

• G : for (q, q′) ∈ E, G(q, q′) = {x ∈ Rn| q′ = δ(x, q)};

• R is the identity map, i.e., no state jumps.

For illustration, let’s revisit the hysteresis example.

Example 2.13. A system with hysteresis can be modeled as a hybrid
automaton. In particular, we plot its graphical representation of the
hybrid automata model in Figure 2.12. �

2.4. Piecewise Affine Systems 33

Figure 2.12: A hybrid automata model for a dynamical system with hysteresis.

As shown above, any switched system can be modeled as a hybrid
automaton. On the other hand, any hybrid automaton without state
jumps (i.e., the reset mapping R is identity for any discrete transitions)
can be written as a switched system with the same Q, X, f , Init and

δ(x, q) =

{
q x ∈ Inv(q)

q′ x ∈ G(q, q′)

as illustrated in the following example.

Example 2.14. The temperature control example can be written as a
switched system with

f(x, OFF) = −x, f(x, ON) = −x + 100

δ(x, OFF) =

{
OFF x ≥ 69

ON x ≤ 70

δ(x, ON) =

{
OFF x ≥ 70

ON x ≤ 71

�

2.4 Piecewise Affine Systems

Piecewise affine systems represent switching dynamics among a col-
lection of linear differential or difference equations with state space
being partitioned by a finite number of linear hyperplanes, see e.g.,

34 Modeling of Hybrid Systems

[Sontag, 1981, Johansson, 2003b]. Mathematically, a piecewise affine
system can be represented by

ẋ(t) = Aqx(t) + bq, for x ∈ Ωq, (2.1)

where x(t) ∈ Rn is the continuous-time state, q ∈ Q is a finite index
and Ωq ⊆ Rn. The sets Ωq are assumed to provide a subdivision of the
state space Rn, that is

⋃
q∈Q Ωq = Rn and Ωq for q ∈ Q are polyhedral

and disjoint sets (only share common boundaries). Piecewise affine
systems arise very often as mathematical models in practical appli-
cations. For example, piecewise affine systems can be used to model
systems with discontinuous dynamics that arise because of saturation
constraints, friction in mechanical systems and so on.

Example 2.15. [Rantzer and Johansson, 2000] Consider a saturated
linear system:

ẋ = Ax + b · sat(v), v = kT x,

where the saturation function sat(·) is defined as

sat(v) =

⎧⎪⎨
⎪⎩
−1, v ≤ −1

v, −1 < v ≤ 1

1, v > 1

,

Graphically, the system can be represented by the block diagram
in Figure 2.13.

To depict the system as a piecewise affine system, we first divide
the state space into three disjoint regions:

• negative saturation, Ω1 = {x ∈ Rn|kT x ≤ −1};

• linear operation, Ω2 = {x ∈ Rn| − 1 ≤ kT x ≤ 1}; and

• positive saturation Ω3 = {x ∈ Rn|kT x ≥ 1}.

It is clear that the three regions Ωi are all polyhedral (i.e., can be
described by a set of linear inequalities), for i = 1, 2, 3. Then, the satu-
rated system can be modeled as the following piecewise affine system

ẋ =

⎧⎪⎨
⎪⎩

Ax− b, x ∈ Ω1

(A + bkT)x, x ∈ Ω2

Ax + b, x ∈ Ω3

�

2.4. Piecewise Affine Systems 35

x Ax bu= +

u Tv k x=

u

vo

Figure 2.13: A feedback control system with saturation.

Ω̄q stands for the closure of the set Ωq

Piecewise affine systems can be seen as a special class of hybrid
automata, as any piecewise affine system can be written as a hybrid
automaton where

• Q is the finite index set;

• X = Rn;

• f : for all q ∈ Q, f(q, x) = Aqx(t) + bq;

• Inv(q) : ∀q ∈ Q, Inv(q) = Ωq;

• Init =
⋃

q∈Q({q} × Inv(q));

• E : (q, q′) ∈ E when q �= q′ if two partitions Ωq and Ωq′ are
adjacent, i.e., Ω̄q ∩ Ω̄q′ �= ∅, where Ω̄q stands for the closure of the
set Ωq;

• G : for any pair (q, q′) ∈ E, G(q, q′) = Ω̄q′ ;

• R : for any pair (q, q′) ∈ E, its reset map is the identity map, i.e.,
R(·, x) = {x}.

36 Modeling of Hybrid Systems

Figure 2.14: A hybrid automaton model for the feedback control system with satura-
tion.

For illustration, let’s revisit the saturated control system example.

Example 2.16. The saturated system example can be written in the
form of hybrid automata as shown in Figure 2.14. �

Furthermore, a piecewise affine system can be written as a
switched system with

ẋ(t) = f(x, q) = Aqx(t) + bq

δ(x, q) =

{
q x ∈ Ωq

q′ x ∈ Ωq′

As an example, we revisit the saturated control system example.

Example 2.17. To write the saturated system example as a switched
system, δ(x, q2) is given by

δ(x, q2) =

⎧⎪⎨
⎪⎩

q1 x ∈ Ω1

q2 x ∈ Ω2

q3 x ∈ Ω3

δ(x, q1) and δ(x, q3) can be obtained in the same way. �

A typical trajectory of a piecewise affine systems is illustrated in
Figure 2.15. We can observe that the trajectory consists of patched
pieces concatenated together. A concatenating point stands for the oc-
currence of a switching, which is caused by the evolution of the con-
tinuous state x(t) intersecting with the boundary of Ωq, e.g., the tem-
perature being above some value.

2.4. Piecewise Affine Systems 37

1Ω

2Ω

3Ω

4Ω

5Ω

Figure 2.15: A typical trajectory of piecewise affine systems.

We are interested in the “well-posedness” of a piecewise affine sys-
tem. In particular, a piecewise affine system is said to be well-posed
if for any initial state x(t0) = x0, there exists an ε > 0 such that there
is a unique solution x(t) satisfying ẋ(t) = Aqx(t) + bq with x(t0) = x0

and x(t) ∈ Ωq for all t ∈ [t0, t0 + ε). In other words, well-posedness
refers to local existence and uniqueness of solutions for the piecewise
affine system starting from a given initial condition. If local unique-
ness holds for all initial conditions and existence holds globally, then
uniqueness must also hold globally since there is no point at which
solutions can split.

The following example from [Imura and van der Schaft, 2000]
shows that well-posedness is nontrivial for a piecewise affine system.
Consider a planar piecewise affine system

ẋ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
0 1

−1 0

]
x +

[
0

−1

]
, if y =

[
0 1

]
x ≤ 0[

0 1

−1 0

]
x +

[
0

1

]
, if y =

[
0 1

]
x ≥ 0

where x ∈ R2 is the state.
Note that from any initial state x(0) = (c, 0)T with |c| ≤ 1, there

are two possible solutions. First, let’s check{
x1(t) = −1 + (c + 1) cos t

x2(t) = −(c + 1) sin t

which satisfies the equation ẋ1 = x2, ẋ2 = −x1 − 1, and ∃ε > 0 such

38 Modeling of Hybrid Systems

that x2(t) ≤ 0 for 0 ≤ t < ε. So it is a solution of the above piecewise
affine system.

On the other hand, starting from the same initial condition, the
following function

{
x1(t) = 1 + (c− 1) cos t

x2(t) = −(c− 1) sin t

satisfies the equation ẋ1 = x2, ẋ2 = 1 − x1, and ∃ε > 0 such that
x2(t) ≥ 0 for 0 ≤ t < ε. So it is also a solution of the above piecewise
affine system.

In summary, the above piecewise affine system is not well-posed
as a dynamical system. Also, there are examples showing that the so-
lutions of piecewise affine systems are not continuous with respect to
the initial conditions [Imura and van der Schaft, 2000]. Namely, two
trajectories starting from two arbitrarily close points could evolve
far away from each other. Since piecewise affine systems are a spe-
cial case of switched systems and hybrid automata, so the well-
posedness problem for general hybrid systems is really non-trivial
and remains open. To gain more insights, researchers have focused
on some special classes of piecewise affine system, such as bimodal
systems and conic systems, and obtained some interesting results, see
e.g., [Imura and van der Schaft, 2000] and the references therein.

2.5 Notes and Further Reading

The results presented on finite automata and the formal language
theory mainly follow [Hopcroft et al., 2006], where interested readers
may find the proofs of all claims and more examples. Readers may re-
fer to the book [Cassandras and Lafortune, 2008] for a comprehensive
discussion on discrete event systems.

Hybrid automata models were first proposed for verification in
the 1990s, see e.g., [Alur et al., 1993, 1995]; interested readers may re-
fer to the survey [Henzinger, 2000] and its references therein. Our
discussions on hybrid automata modeling and its determinism and
non-blocking properties are based on [Lygeros et al., 2003]. There

2.5. Notes and Further Reading 39

are excellent lecture notes available on hybrid automata, see e.g.,
[Lygeros et al., 2001].

It is possible to further generalize the hybrid automata model
by introducing inputs and outputs, see e.g., hybrid I/O automata
[Lynch et al., 2003]. In particular, continuous control inputs U can be
introduced in the continuous dynamics for each mode q and discrete
events Σ can be added to trigger discrete transitions (qi, qj) ∈ E. It is
also possible to include inputs to control the reset value of the reset
map and consider set valued mappings and differential or difference
inclusions, see e.g., [Aubin et al., 2002, Goebel et al., 2012]. The exten-
sion of hybrid automata to handle probabilistic uncertainties gives the
stochastic hybrid automata model [Hu et al., 2000, Pola et al., 2003,
Cassandras and Lygeros, 2010], where the continuous variable dy-
namics inside each invariant set of the discrete modes are described as
stochastic differential equations and the discrete transitions also occur
randomly.

A complicated hybrid automaton model can be constructed by the
composition of several hybrid modules. Interested readers may refer
to [Alur and Henzinger, 1997, Lynch et al., 2003] for modularity and
composition of hybrid automata. There exist a number of software
packages in support of hybrid automata modeling and simulation,
such as SHIFT [Deshpande et al., 1997], PTOLEMY [Liu et al., 1999],
CHARON [Alur et al., 2000b]. There also exist commercial modeling
tools such as STATEFLOW (see www.mathworks.com) and MODEL-
ICA (see www.modelica.org) that have been successfully used in
industry.

Switched systems and piecewise linear systems are widely used
to model dynamical systems that exhibit mode switching due to
either external inputs or environmental change, e.g., the slippage
of a legged robot, the gear switch of a car. Piecewise affine sys-
tems are also called piecewise linear systems, and have been widely
used in the study of circuits, see e.g., [Leenaerts and Van Bokhoven,
1998], since they can approximate nonlinear dynamics with arbi-
trary accuracy [Lin and Unbehauen, 1992]. There also exist efficient
computational techniques for the identification of piecewise affine

40 Modeling of Hybrid Systems

models from input-output data, such as clustering based methods
[Ferrari-Trecate et al., 2003], mixed-integer programming [Roll et al.,
2004], and Bayesian methods [Juloski et al., 2005].

Besides switched systems and piecewise affine systems, there are
other modeling frameworks arising from the control and mathemat-
ics literature attempting to capture the hybrid nature of a dynamical
system, such as autonomous or controlled switching and state jumps.
Early efforts include impulsive differential inclusions [Aubin et al.,
2002], complementarity systems [Schaft and Schumacher, 2000],
mixed logic dynamical systems [Bemporad and Morari, 1999]. For
the discrete time case, it is shown that piecewise affine systems,
mixed logic dynamical systems, linear complementarity systems, and
min-max-plus-scaling systems are actually equivalent [Heemels et al.,
2001], in the sense that one can be converted to another. A
software toolbox HYSDEL has been developed to automate the
translation process between these modeling frameworks, see e.g.,
[Torrisi and Bemporad, 2004].

3
Stability, Stabilization and Optimal Control

This chapter reviews the basic results for stability, stabilization and
optimal control of hybrid systems. Most of the results in the literature
were developed for either switched systems, piecewise affine systems
or their special cases. An attempt is made here to state the main re-
sults in the language of hybrid automata so to be consistent with other
sections. On the other hand, since we do not explicitly consider state
jumps in this chapter, we use the term switched systems and hybrid
systems interchangeably here, and use switching signals to denote the
sequence of discrete mode transitions.

The rest of this chapter is organized as follows. First, we focus on
the stability analysis of hybrid systems under given discrete switching
logics in Section 3.1. In particular, some results on the stability analy-
sis for hybrid systems under arbitrary switching are introduced first,
then the stability under slow switching (like dwell time and average
dwell time) is studied. The general case of hybrid system stability un-
der restricted switching is investigated through multiple Lyapunov
functions. Then, we turn to the synthesis of stabilizing switching logic
for a given collection of continuous variable dynamical systems in
Section 3.2, where several stabilization conditions and design meth-

41

42 Stability, Stabilization and Optimal Control

ods are described. A closely related problem to switching stabilization
is the optimal control problem for hybrid systems. Optimal control
for hybrid systems has a rich literature. Early efforts may be found
in studies of control systems involving relays or dynamical systems
with hysteresis [Witsenhausen, 1966]. Significant efforts have been
devoted to the extensions of the maximum principle and dynamical
programming techniques to hybrid systems, see e.g., [Branicky et al.,
1998, Sussmann, 1999, Hedlund and Rantzer, 2002]. Here we choose
to focus on some recent developments in computational approaches
to the optimal control synthesis for switched systems, in particular,
the embedding optimization and two-stage optimization approaches
which are reviewed in Section 3.3. Optimal control in piecewise affine
system models is also discussed in Section 3.3, where the piecewise
affine system model is transformed into a mixed logic dynamic system
and the optimal controller synthesis can be solved as a mixed integer
optimization problem.

3.1 Stability of Hybrid Systems

Stability is a basic requirement in control practice. Generally speaking,
a dynamical system is stable when there exists at least one operating
point (typically an equilibrium where the state stays if there is no ex-
ternal stimulus) such that all the state trajectories starting from some-
where near it will stay close to the operating point all the time, and
may eventually converge to that point. This is known as Lyapunov
stability, and some control problems, like trajectory tracking, can be
transformed into stability problems, see e.g., [Khalil and Grizzle, 2002,
Sontag, 1998].

3.1.1 Motivating Examples

Interestingly, the stability issues of hybrid systems include several re-
markable phenomena. Consider the following motivating examples,
which are adopted from [Branicky, 1998, DeCarlo et al., 2000].

Example 3.1. Consider a hybrid system described by a hybrid au-
tomaton (see Section 2.2)

3.1. Stability of Hybrid Systems 43

• Q = {q1, q2};

• X = R2;

• f(q1, x) = A1x and f(q2, x) = A2x, where

A1 =

[
−1 −100

10 −1

]
, A2 =

[
−1 10

−100 −1

]
; (3.1)

• Init = Q×X;

• Inv(q1) = X, and Inv(q2) = X;

• E = {(q1, q2), (q2, q1)};

• G(q1, q2) = {x ∈ R2 : x2 = −0.2x1},
and G(q2, q1) = {x ∈ R2 : x2 = 5x1};

• R((q1, q2), x) = {x}, and R((q2, q1), x) = {x}.

Here the hybrid system is switching between the two linear time
invariant (LTI) subsystems

ẋ = A1x, ẋ = A2x.

Notice that both A1 and A2 are exponentially stable since all eigen-
values of A1 and A2 have negative real parts. In addition, they have a
common equilibrium point, which is the origin. However, this simple
hybrid system is unstable, since a divergent trajectory can be gener-
ated for an initial state even very close to the equilibrium point. See

Figure 3.1 for illustrations (with initial condition x0 =

[
−0.01

0.02

]
). �

This motivating example shows that even when all the subsys-
tems are exponentially stable, the hybrid systems may be unstable. On
the other hand, switching between unstable subsystems may generate
convergent trajectories as the following example shows.

Example 3.2. Consider again a hybrid system switching between two
LTI subsystems that can be described by a hybrid automaton as below

• Q = {q1, q2};

• X = R2;

44 Stability, Stabilization and Optimal Control

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

x1

x 2

Figure 3.1: Divergent trajectories can be generated by switching between two stable
subsystems. The guard sets (also known as switching surfaces) are plotted for illus-
tration.

• f(q1, x) = A1x and f(q2, x) = A2x, where

A1 =

[
1 −100

10 1

]
, A2 =

[
1 10

−100 1

]
; (3.2)

• Init = Q×X;

• Inv(q1) = X, and Inv(q2) = X;

• E = {(q1, q2), (q2, q1)};

• G(q1, q2) = {x ∈ R2 : x2 = −x1},
and G(q2, q1) = {x ∈ R2 : x2 = 0};

• R((q1, q2), x) = {x}, and R((q2, q1), x) = {x}.

Notice that both A1 and A2 are unstable since both have positive
real part eigenvalues. However, the overall hybrid system is asymp-
totically stable. This is illustrated in Figure 3.2 as the state trajectory

(with initial condition x0 =

[
0.4

−0.2

]
) approaches the origin as time

goes to infinity. �

As these examples suggest, the stability of hybrid systems depends
not only on the dynamics of each subsystem but also the properties of

3.1. Stability of Hybrid Systems 45

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x1

x 2

Figure 3.2: Switching between unstable subsystems may generate stable (convergent)
closed-loop behaviors.

the logic part, here the switching signals. Therefore, the stability study
of hybrid systems can be roughly divided into two kinds of problems.
One is the stability analysis of hybrid systems under given switching
signals (maybe arbitrary, slow switching etc.); the other is the synthe-
sis of stabilizing switching signals for a given collection of dynami-
cal systems. This section focuses on the stability analysis for switched
(hybrid) systems under given switching signals; while the switching
stabilization problem will be studied in the next section.

3.1.2 Arbitrary Switching

First, we consider stability analysis problems when there is no restric-
tions on the discrete event dynamics in the hybrid systems. This may
be due to no available a prior knowledge about the discrete event logic,
partitions of the state space, constraints etc. Under this circumstance,
one usually tends to be conservative and assume that all discrete tran-
sitions are possible; this is usually called arbitrary switching in the
literature. As it is shown in the first motivating example, a hybrid sys-
tem may become unstable even when all subsystems are exponentially
stable. Therefore, to identify conditions for which hybrid systems are

46 Stability, Stabilization and Optimal Control

stable under arbitrary switching signals is nontrivial and interesting.
For this problem, it is necessary to require that all the subsystems

are asymptotically stable, since one may always stay at a certain un-
stable subsystem all the time, which is a valid ‘switching signal’. How-
ever, in general, the above subsystems’ stability assumption is not
sufficient to assure stability for the hybrid systems under arbitrary
switching signals. On the other hand, if there exists a common Lya-
punov function for all the subsystems, i.e., a continuously differen-
tiable, radially unbounded, positive definite function V : Rn×R→ R,
for which the derivative V̇ (x, t) is negative definite along all subsys-
tems’ trajectories, then the stability of the hybrid system is guaranteed
under arbitrary switchings. This provides us with a possible way to
solve this problem, and many efforts have been focused on common
quadratic Lyapunov functions.

First, we consider a collection of continuous-time LTI systems

ẋ(t) = Aix(t), t ∈ R+, i ∈ I (3.3)

where I stands for a finite index set. For all i ∈ I , the state matrices
Ai ∈ Rn×n. Note that the origin xe = 0 is a common equilibrium for
the systems described in (3.3). The hybrid system of interest is built
by allowing arbitrary switching among these LTI systems (3.3). Since
no restrictions are imposed on the switching signals, we will not con-
sider particular discrete-event dynamics in the hybrid system. Under
this situation, we call (3.3) an arbitrary switching (linear) system or a
switched linear system under arbitrary switching.

A Common Quadratic Lyapunov Function (CQLF) for (3.3) has the
form

V (x) = xT Px

where P = P T (symmetric) and P > 0 (positive definite). In addition,
its time derivative along any trajectory of systems (3.3) is negative def-
inite, or alternatively

AT
i P + PAi = −Qi, i ∈ I

where, Qi are symmetric and positive definite for all i ∈ I . The exis-
tence of a CQLF for all its subsystems assures the quadratic stability of

3.1. Stability of Hybrid Systems 47

the hybrid system. Quadratic stability is a special class of exponential
stability, which implies asymptotic stability, and has attracted a lot of
research efforts due to its importance in practice.

Actually, the determination of a CQLF for (3.3) can be obtained
by solving the following linear matrix inequalities (LMIs) [Boyd et al.,
1994]. Namely, there exists a positive definite symmetric matrix P , P ∈

Rn×n, such that
PAi + AT

i P < 0, ∀i ∈ I, (3.4)

hold simultaneously. However, the standard interior point methods
for LMIs may become ineffective as the number of modes increases.
This motivates us to identify easily verifiable conditions that guaran-
tee the existence of a CQLF for (3.3).

Let us first look at a special case, where the subsystems’ state ma-
trices are pairwise commutative, i.e., AiAj = AjAi for all i, j ∈ I .
Because of the commutativity, it is easy to derive that

Ak1

i Ak2

j = Ak2

j Ak1

i ,

for any nonnegative integer k1 and k2, and

eAit1eAjt2 = eAjt2eAit1 ,

for any nonnegative real number t1 and t2. By direct computa-
tion, it is straightforward to verify that in this case the switched
systems is stable if and only if all its subsystems are stable
[Narendra and Balakrishnan, 1994].

Theorem 3.1. For an arbitrary switching system (3.3), if all subsys-
tem matrices are Hurwitz stable (i.e., all eigenvalues of the state ma-
trix Ai have negative real parts) and pairwise commutative (AiAj =

AjAi,∀i, j ∈ I), then the arbitrary switching system is stable.

Actually, a CQLF exists for this case, which can be deter-
mined by solving a collection of chained Lyapunov equations
[Narendra and Balakrishnan, 1994].

Theorem 3.2. Assume that the index set I = {1, · · · , N}. Let
P1, · · · , PN be the unique symmetric positive definite matrices that

48 Stability, Stabilization and Optimal Control

satisfy the Lyapunov equations

AT
1 P1 + P1A1 = −I, (3.5)

AT
i Pi + PiAi = −Pi−1, i = 2, · · · , N (3.6)

then the function V (x) = xT PN x is a CQLF for systems ẋ(t) = Aix(t),
i = 1, · · · , N .

In addition, the matrix PN is given by

PN =

∫ ∞

0
eAT

N
tN · · · (

∫ ∞

0
eAT

1
t1eA1t1dt1) · · · eAN tN dtN

Since the matrices Ai commute, for each i ∈ {1, · · · , N} we can
rewrite this in the form

PN =

∫ ∞

0
eAT

i
tiQie

Aitidti

with Qi > 0. This result was extended to the discrete-time case in
[Zhai et al., 2002], namely:

Theorem 3.3. Let P1, · · · , PN be the unique symmetric positive defi-
nite matrices that satisfy the Lyapunov equations

AT
1 P1A1 + P1 = −I, (3.7)

AT
i PiAi + Pi = −Pi−1, i = 2, · · · , N (3.8)

then the function V (x) = xT PN x is a CQLF for the systems x[k + 1] =

Aix[k], i = 1, · · · , N .

Besides the case of commutative state matrices, it has been shown
that CQLF exists for arbitrary switching systems with either all up-
per or lower triangular state matrices. A more general condition on
the existence of CQLF for (3.3) can be characterized through the Lie
algebra generated by the subsystems’ state matrices [Liberzon et al.,
1999]. The matrix Lie algebra generated by the matrices Ai, i ∈ I

(with respect to standard Lie bracket [Ai, Aj] = AiAj − AjAi), de-
noted as g = {Ai : i ∈ I}LA, is the linear space (over R) spanned by
the iterated Lie brackets of these matrices. For example, consider a Lie
algebra generated by two matrices A1 and A2, then

g = {A1, A2}LA = span{A1, A2, [A1, A2], [A1, [A1, A2]], · · · }.

3.1. Stability of Hybrid Systems 49

Given a Lie algebra g, the sequence g
(k) is defined inductively as:

g
(1) = g; g

(k+1) = [g, g(k)]

where [g, g(k)] is a linear space spanned by all the products [a, b] with
a ∈ g and b ∈ g

(k). It is easy to show that g(k+1) ⊂ g
(k). A Lie algebra g

is called solvable if g(k) = 0 for a finite k.

Theorem 3.4. [Liberzon et al., 1999] If all the matrices Ai, i ∈ I are
Hurwitz (all eigenvalues of Ai have negative real parts) and the Lie
algebra {Ai : i ∈ I}LA is solvable then there exists a CQLF.

This is because that the matrices Ai, i ∈ I in a solvable Lie al-
gebra can be simultaneously put in the upper-triangular form, and
that a family of linear systems with stable upper-triangular matrices
possess a CQLF. Interested readers may refer to [Liberzon et al., 1999,
Liberzon, 2003] for more detailed and formal discussions on the Lie al-
gebraic conditions and extensions to nonlinear switched systems can
be found in [Margaliot and Liberzon, 2006]. The solvability condition
for the Lie algebra implies the existence of a CQLF. There are also some
interesting necessary and sufficient algebraic conditions in the litera-
ture for the existence of a CQLF, see e.g., [King and Shorten, 2004].

It is worth pointing out that the existence of a CQLF is only
sufficient for the stability of arbitrary switching systems. There are
switched systems that do not have a CQLF, but they are exponen-
tially stable under arbitrary switching [Liberzon, 2003]. Therefore, in
general, the existence of a CQLF is only sufficient for the asymptotic
or exponential stability of hybrid systems under arbitrary switching
signals. Hence a less conservative class of Lyapunov functions, called
switched quadratic Lyapunov functions, was proposed in the litera-
ture, see e.g., [Daafouz et al., 2002].

Here, we investigate the stability of the following discrete-time ar-
bitrary switching LTI systems

x[k + 1] = Aix[k], k ∈ Z+, (3.9)

where x ∈ Rn, and i ∈ I . Basically, since every subsystem is asymptot-
ically stable (with the origin as the common equilibrium point), there

50 Stability, Stabilization and Optimal Control

exists a positive definite symmetric matrix Pi that solves the Lyapunov
equation for each i-th subsystem

AT
i PiAi − Pi < 0,

for all i ∈ I . Next, these matrices Pi are patched together based on the
switching signals σ(k) to construct a global Lyapunov function as

V (k, x[k]) = xT [k]Pσ(k)x[k], (3.10)

where σ(k) : k → I stands for the switching signal at step k. Since
all Pi are positive definite, it is clear that the function V (k, x[k]) =

xT [k]Pσ(k)x[k] is positive definite. If it further holds that ΔV (k, x[k]) =

V (k + 1, x[k + 1]) − V (k, x[k]) is negative definite along the solution
of (3.9), then the origin of the system (3.9) is globally asymptotically
stable as stated in the following theorem.

Theorem 3.5. [Daafouz et al., 2002] If there exist positive definite
symmetric matrices Pi ∈ Rn×n (Pi = P T

i) for i ∈ I , satisfying[
Pi AT

i Pj

PjAi Pj

]
> 0 (3.11)

for all i, j ∈ I , then the discrete-time arbitrary switching system (3.9)
is asymptotically stable.

Then, stability checking for the arbitrary switching linear systems
can be performed by solving certain LMIs. It is clear that when Pi = Pj

for all i, j ∈ I , the switched quadratic Lyapunov function becomes the
CQLF. Therefore, the stability criteria based on the switched quadratic
Lyapunov function generalizes the CQLF approach and usually gives
us less conservative results. However, it is worth pointing out that the
switched quadratic Lyapunov function method is still a sufficient only
condition.

In the sequel, we will provide some necessary and sufficient con-
ditions for the asymptotic stability of arbitrary switching linear sys-
tems. It is shown that the asymptotic stability problem for switched
linear systems with arbitrary switching is equivalent to the robust
asymptotic stability problem for polytopic uncertain linear time-
variant systems, for which several strong stability conditions exist
[Molchanov and Pyatnitskiy, 1989, Molchanov and Liu, 2002].

3.1. Stability of Hybrid Systems 51

Theorem 3.6. The following statements are equivalent:

1. The switched linear system

ẋ(t) = Aσ(t)x(t),

where Aσ(t) ∈ {A1, A2, · · · , AN}, is asymptotically stable under
arbitrary switching;

2. the linear time-variant system ẋ(t) = A(t)x(t), where A(t) ∈ A

= {A | A =
∑N

i=1 αiAi for some αi ≥ 0,
∑N

i=1 αi = 1}, is
asymptotically stable;

3. there exist a full column rank matrix L ∈ Rm×n, m ≥ n, and a
family of matrices {Āi ∈ Rm×n : i ∈ I}with strictly negative
row dominating diagonal, i.e., for each Āi, i ∈ I its elements
satisfying

âkk +
∑
k �=l

|âkl| < 0, k = 1, · · · , m,

such that the matrix relations LAi = ĀiL are satisfied.

It is interesting to notice that the nice property of Āi (i ∈ I) implies
the existence of a CQLF for the higher dimensional switched system.
Unfortunately, applying the above theorem is still difficult because, in
general, the numerical search for the matrix L is not simple. However,
this equivalence bridges together two research fields. Existing results
in the robust stability area, which has been extensively studied for
over three decades, can be directly introduced to study the arbitrarily
switching systems and vice versa. For example, it is known in the ro-
bust stability literature that the global attractiveness, (global) asymp-
totic stability, and (global) exponential stability are all equivalent for
the polytopic uncertain linear time-variant systems. Hence, these sta-
bility concepts are also equivalent for switched linear systems under
arbitrary switching.

Similar results can be developed for the discrete-time case
based on results on the robust stability of discrete-time systems
[Molchanov and Pyatnitskiy, 1989, Bhaya and Mota, 1994], namely:

Theorem 3.7. The arbitrarily switching linear system x[k + 1] =

Aσ(k)x[k] where Aσ(t) ∈ {A1, A2, · · · , AN}, is asymptotically stable

52 Stability, Stabilization and Optimal Control

under arbitrary switching if and only if there exists an integer m ≥ n

and L ∈ Rn×m, rank(L) = n such that for all Ai, i ∈ I , there exists
Āi ∈ Rm×m with the following properties:

1. AT
i L = LĀT

i ,

2. each column of Āi has no more than n nonzero elements and

‖Āi‖∞ = max
1≤k≤m

m∑
l=1

|âkl| < 1.

Interested readers may also refer to [Liberzon and Morse,
1999, DeCarlo et al., 2000, Liberzon, 2003, Lin and Antsaklis, 2009,
Goebel et al., 2009] for further discussions and references on stability
conditions under arbitrary switching.

3.1.3 Slow Switching

Hybrid systems may fail to preserve stability under arbitrary switch-
ings. On the other hand, one may have some knowledge about pos-
sible discrete event dynamics in the hybrid systems, which may be
deduced from partitions of the state space, such as invariant sets,
guard sets etc. This knowledge may be transferred to restrictions on
possible discrete transitions. For example, there must exist certain
lower bounds on the time interval between two successive switchings,
which may be due to the fact that the state trajectories have to spend
some positive period of time in traveling from the initial set to cer-
tain guard sets, if these two sets are separated. With such kind of prior
knowledge about the switching signals, we may derive less conserva-
tive stability results for a given hybrid system instead of just using the
worst case arguments.

By studying the first motivating example where divergent trajecto-
ries are generated through switching between two stable systems, one
notices that the unboundedness is caused by the failure to absorb the
energy increase caused by the switching. In addition, when there is
an unstable subsystem (e.g., controller failure or sensor fault), it may
cost stability if one either stays too long at or switches too frequently
to the unstable subsystem. Therefore, a natural question is what if we

3.1. Stability of Hybrid Systems 53

restrict the switching signal to some constrained subclass of switch-
ings. Intuitively, if one stays at stable subsystems long enough and
switches less frequently, i.e., slow switching, one may dissipate the en-
ergy caused by switching or unstable modes, and maybe possible to
attain stability. These ideas are proved to be reasonable and are cap-
tured by concepts like dwell time [Morse, 1996] and average dwell
time [Hespanha and Morse, 1999] switching.

The most direct way to characterize the concept of slow switch-
ing is perhaps to request a lower bound on two consecutive switching
times, which is known as dwell time [Morse, 1996]. Under the assump-
tion that all subsystems in the hybrid system are exponentially stable
with zero as the common equilibrium point, it can be shown that there
exists a scalar τd > 0 such that the hybrid system remains exponen-
tially stable if the dwell time is larger than τd [Morse, 1996].

It fact, it really does not matter if one occasionally have a smaller
dwell time between switching, provided this does not occur too fre-
quently. This concept is captured by the concept of “average dwell-
time” [Hespanha and Morse, 1999].

Definition 3.1. A positive constant τa is called the average dwell time
if Nσ(t) ≤ N0 + t

τa
holds for all t > 0 and some scalar N0 ≥ 0, where

Nσ(t) denotes the number of discontinuities of a given switching sig-
nal σ over [0, t).

Here the constant τa is called the average dwell time and N0 the chat-
ter bound. The reason to call a class of switching signal satisfy

Nσ(t) ≤ N0 +
t

τa

have an average dwell no less than τa is because that

Nσ(t) ≤ N0 +
t

τa
⇔

t

Nσ(t)−N0
≥ τa,

which means that on average the ‘dwell time’ between any two con-
secutive switchings is no smaller than τa. The idea is that there may
exist consecutive switching separated by less than τa, but the average
time interval between consecutive switchings is not less than τa.

54 Stability, Stabilization and Optimal Control

Theorem 3.8. [Hespanha and Morse, 1999] Assume that all subsys-
tems, ẋ = Aix for i ∈ I , in the hybrid systems are exponentially sta-
ble. Then, there exists a scalar τa > 0 such that the hybrid system is
exponentially stable if the average dwell time is larger than τa.

Moreover, we can also obtain a bound on the decay rate
[Hespanha and Morse, 1999].

Theorem 3.9. Given a positive scalar λ0 such that Ai + λ0I is stable
for all i ∈ I . Then, for any given λ ∈ (0, λ0), there is a finite constant
τa such that the hybrid system is exponentially stable with decay rate
λ provided that the average dwell time is no less than τa.

However, not all restrictions on switching signals can be easily
captured by slow switching discussed above. For example, it is not
straightforward to transform the invariant set constraints, guard set
constraints and so on into dwell-time or average dwell time restric-
tions as these constraints are state dependent in the form of partitions
of the state space. Hence, more general tools to study hybrid system
stability are needed. Here, we introduce multiple Lyapunov functions
to study hybrid system stability.

3.1.4 Multiple Lyapunov Functions

The stability analysis under constrained switching has been usually
pursued in the framework of multiple Lyapunov functions (MLF). The
basic idea is using multiple Lyapunov or Lyapunov-like functions,
which may correspond to each single subsystem or certain region in
the state space, concatenated together to produce a non-traditional
Lyapunov function. The non-traditionality is in the sense that the MLF
may not be monotonically decreasing along the state trajectories, may
have discontinuities and be only piecewise differentiable. The reason
for considering non-traditional Lyapunov functions is that traditional
Lyapunov function may not exist for hybrid systems with restricted
switching signals. For such cases, one still may construct a collec-
tion of Lyapunov-like functions, which only requires non-positive Lie-
derivatives for certain subsystems in a particular region of the state
space instead of being negative globally.

3.1. Stability of Hybrid Systems 55

Lyapunov-like functions are defined as a family of real-valued
functions {Vi, i = 1, · · · , N}, each associated with the vector field
ẋ = fi(x).

Definition 3.2. By saying that a subsystem has an associated
Lyapunov-like function Vi in region Ωi, we mean that

1. There exist constant scalars βi ≥ αi > 0 such that

αi‖x‖
2 ≤ Vi(x) ≤ βi‖x‖

2

hold for any x ∈ Ωi;

2. For all x ∈ Ωi and x �= 0, V̇i(x) < 0.

Here V̇i(x) = ∂Vi(x)
∂x

fi(x). The first condition implies positiveness
and radius unboundedness for Vi(x) when x ∈ Ωi, while the second
condition guarantees the decreasing of the abstracted energy, value of
function Vi(x), along trajectories of subsystem i inside Ωi. Suppose
that all these regions Ωi cover the whole state space, then a clus-
ter of Lyapunov-like functions is obtained. Via concatenating these
Lyapunov-like functions together, we obtain a non-traditional Lya-
punov function, called multiple Lyapunov function (MLF), which can
be used to study the global stability of the switched and hybrid sys-
tems. MLF is proved to be a powerful tool for studying the stability of
switched and hybrid systems.

Theorem 3.10. Consider a hybrid automaton H with x = 0 as its
equilibrium point (i.e., f(q, 0) = 0 for all q ∈ Q) and R((qi, qj), x) = x

for any qi, qj ∈ Q. Assume that there exist an open set D ⊆ X and
a family of continuously differentiable functions Vq : D → R, q ∈ Q

such that for all q ∈ Q

• Vq(0) = 0,

• Vq(x) > 0 for all x ∈ D \ {0},

•
∂Vq

∂x
(x)f(q, x) ≤ 0 for all x ∈ D.

If for all (τ, q, x) ∈ EH(q0, x0) with (q0, x0) ∈ Init and for all q̂ ∈ Q, the
sequence {Vq(τi)(x(τi)) : q(τi) = q̂} is non-increasing (or empty), then
x = 0 is a stable equilibrium of H .

56 Stability, Stabilization and Optimal Control

t1τ
1 2τ τ′ =

2 3τ τ′ = 3 4τ τ′ =

Q

2q

1q

()
iq

V x

1
()qV x

1
()qV x

2
()qV x

2
()qV x

Figure 3.3: Illustration of Theorem 3.10. For every subsystem, its Lyapunov function’s
value Vi at the start point of each interval exceeds the value at the start point of the
next interval on which the i-th subsystem is activated, then the switched or hybrid
system is stable.

The above MLF theorem is adopted from the [Branicky, 1998] and
written in the language of hybrid automata. Some comments are in
order. Note that if the value of the Lyapunov like function Vq for ev-
ery q at the entering point of each activating interval is always less
than the value at the entering point of the previous activating inter-
val, then the hybrid system is stable. This is illustrated in Figure 3.3.
However, checking this condition could be difficult, since it may re-
quire the calculation of all possible trajectories and keeping track of
all the time instants when each mode is being activated. Hence, it is
difficult to construct the sequence {Vq(τi)(x(τi)) : q(τi) = q̂}. A simpler
but more conservative condition is to request that {Vq(τi)(x(τi))} forms
a non-increasing sequence, as it implies {Vq(τi)(x(τi)) : q(τi) = q̂} is
non-increasing. Therefore, a direct corollary of above theorem can be
presented as follows.

Corollary 3.1. Consider a hybrid automaton H with x = 0 as its equi-
librium point, and R((qi, qj), x) = x (or non-expansive) for any qi,

3.1. Stability of Hybrid Systems 57

qj ∈ Q. Assume that there exists an open set D ⊆ X, and a family
of continuously differentiable functions Vq : D → R, q ∈ Q such that
for all q ∈ Q

• Vq(0) = 0,

• Vq(x) > 0 for all x ∈ D \ {0},

•
∂Vq

∂x
(x)f(q, x) ≤ 0 for all x ∈ D.

If for all (τ, q, x) ∈ EH(q0, x0) with (q0, x0) ∈ Init, the sequence
{Vq(τi)(x(τi))} is non-increasing, then x = 0 is a stable equilibrium
of H .

For convenience, we also state the MLF theorem for the case when
the model is given by switched systems.

Theorem 3.11. [DeCarlo et al., 2000] Consider a switched system
consisting of a collection of subsystems ẋ = fi(x) with 0 as the com-
mon equilibrium point. Suppose that each subsystem has an associ-
ated Lyapunov-like function Vi in its active region Ωi, each with equi-
librium point x = 0. Also, suppose that

⋃
i Ωi = Rn. Let s(t) be a

class of piecewise-constant switching sequences such that s(t) can take
value i only if x(t) ∈ Ωi, and in addition

Vj(x(ti,j)) ≤ Vi(x(ti,j))

where ti,j denotes the time that the subsystems j is switched in from
subsystem i, i.e., x(t−

i,j) ∈ Ωi while x(ti,j) ∈ Ωj . Then, the switched
system is stable under the switching signals s(t).

The above MLF theorem requires that the Lyapunov-like functions
do not increase their values at each switching instant, which is more
conservative compared with Theorem 3.10. However, the conditions
in Theorem 3.11 is easier to check as one do not have to memorize
the previous activating history and store the values of Lyaounov-like
functions at the entering or exiting point for each mode, which is
needed to check for the conditions in Theorem 3.10. Due to its sim-
plicity, in the next sections on the numerical analysis and synthesis
using Multiple quadratic Lyapunov functions, we will adopt the form
of Theorem 3.11.

58 Stability, Stabilization and Optimal Control

3.1.5 Piecewise Quadratic Lyapunov Functions

The critical challenge of applying the MLF theorems to practical hy-
brid systems is how to construct a proper family of Lyapunov-like
functions that satisfy

1. positive definiteness: Vi(xe) = 0 and Vi(x) > 0 for x ∈ Ωi and
x �= xe;

2. have negative definite derivative: for x ∈ Ωi, V̇i(x) =
∂Vi(x)

∂x
fi(x) ≤ 0.

Usually it is very hard to find such Vi(x). In the linear subsys-
tem special case, piecewise quadratic Lyapunov-like functions could
be good candidates. The most important advantage of piecewise
quadratic Lyapunov-like functions might be that the problem can be
formulated into LMIs where efficient software packages are available.

Therefore, in this subsection, we return to switched LTI system as

ẋ(t) = Aix(t) (3.12)

Notice that the origin (x = 0) is the common equilibrium. Since we do
not assume that the subsystems, ẋ(t) = Aix(t), are stable, there may
not exist a quadratic Lyapunov functions in a classical sense for each
subsystem. However, it is still possible to restrict the subsystem in a
certain region of the state space, say Ωi ⊂ Rn, where the abstracted
energy of the i-th subsystem could be decreasing along the trajecto-
ries inside this region (there is no requirement outside the region Ωi).
When all these regions Ωi taken together cover the whole state space,
then we obtain a cluster of Lyapunov-like functions. Broadly speak-
ing, the problem entails searching for Lyapunov-like functions whose
associated Ω-region cover the state space.

Assume that the state space Rn has a partition given by
{Ω1, · · · , ΩN}. Here, we aim to find conditions expressed in LMIs
for the existence of quadratic Lyapunov-like function of the form
Vi(x) = xT Pix assigned to each region Ωi. Dy definition, a Lyapunov-
like function Vi(x) = xT Pix needs to satisfy the following two condi-
tions:

3.1. Stability of Hybrid Systems 59

Condition 1: There exist constant scalars βi ≥ αi > 0 such that

αi‖x‖
2 ≤ Vi(x) ≤ βi‖x‖

2

holds for any x ∈ Ωi.
Consider the quadratic Lyapunov-like function candidate, Vi(x) =

xT Pix, and require that

αix
T Ix ≤ xT Pix ≤ βix

T Ix,

holds for any x ∈ Ωi. That is{
xT (αiI − Pi)x ≤ 0

xT (Pi − βiI)x ≤ 0

holds for any x ∈ Ωi. Here I is the identity matrix of proper dimen-
sions.

Condition 2: For all x ∈ Ωi and x �= 0, V̇i(x) < 0.
This negativeness of the Lyapunov-like function’s derivative along

the trajectories of subsystem can be represented as: ∃Pi, (Pi = P T
i)

such that
xT [AT

i Pi + PiAi]x < 0 (3.13)

for x ∈ Ωi.
Note that the above positive definiteness and energy decreasing

conditions both need to be satisfied in a local region, here Ωi. In order
to constrain the above two conditions to local regions, two steps are
needed. First, the region must be expressed or constrained in regions
that can be characterized by quadratic forms, xT Qx ≥ 0. Examples of
such quadratic forms are cones and ellipsoids. If a region is described
by half-planes

cT
a x ≥ 0 and cT

b x ≥ 0

and
cT

a x ≤ 0 and cT
b x ≤ 0

then the quadratic form characterizing the region is obtained by mul-
tiplying the two half-planes together.

xT Qx ≥ 0

60 Stability, Stabilization and Optimal Control

where Q = cacT
b + cbc

T
a . Refer to [Boyd et al., 1994] where more gen-

eral quadratic forms are used to express hyperplanes and polyhedra.
Therefore, we assume that each region Ωi has a quadratic representa-
tion or approximation

Ωi = {x| xT Qix ≥ 0}.

Second, a technique called S-procedure [Boyd et al., 1994] is ap-
plied to replace a constrained stability conditions to conditions with-
out constraints. To illustrate, let us consider the condition 2 above, that
is ∃Pi, (Pi = P T

i) such that

xT [AT
i Pi + PiAi]x < 0 (3.14)

for x ∈ Ωi, i.e., xT Qix ≥ 0. By introducing a new unknown variable
ϑi ≥ 0, there is potentially more freedom in finding a Pi > 0 and
ϑi ≥ 0 satisfying the unconstrained relaxed condition

AT
i Pi + PiAi + ϑiQi < 0 (3.15)

A solution to this relaxed problem is also a solution to the con-
strained problem, and the two problems are actually equivalent in
certain cases, say ∃x such that xT Qix > 0.

Also applying S-procedure to Condition 1, the above constrained
inequalities are implied by the following LMIs{

αiI − Pi + μiQi ≤ 0

Pi − βiI + νiQi ≤ 0

where μi ≥ 0 and νi ≥ 0 are unknown scalars. Define two scalars,
α = mini{αi} and β = maxi{βi}. Notice that 0 < α ≤ β.

Combining the above two conditions, we introduce methods to
find quadratic Lyapunov-like functions within each partition, which
guarantee that the abstract energy of the subsystem is decreasing for
certain regions in the state space.

The condition that requires the decreasing of the Lyapunov-like
functions’ value at switching instant can be expressed as

xT Pjx ≤ xT Pix

3.1. Stability of Hybrid Systems 61

for state x where the trajectory passes from region Ωito Ωj . The states
where this condition is satisfied also have to be expressed or contained
in regions characterized by quadratic forms. Assume this region, de-
noted as Ωi,j , can be expressed or approximated by a region,

Ωi,j = {x| xT Qi,jx ≥ 0}.

Then the above inequality can be transformed into an LMI based
also on S-procedure as

Pj + ηi,jQi,j ≤ Pi

In summary, the above discussion can be presented as the follow-
ing form of sufficient conditions for the continuous-time linear hybrid
system to be exponentially stable.

Theorem 3.12. [Pettersson and Lennartson, 2002] If there exist matri-
ces Pi (Pi = P T

i) and scalars α > 0, β > 0, μi ≥ 0, νi ≥ 0, θi ≥ 0, ϑi ≥ 0

and ηi,j , solving the optimization problem:

min β

s.t.

⎧⎪⎨
⎪⎩

αI + μiQi ≤ Pi ≤ βI − νiQi

AT
i Pi + PiAi + ϑiQi ≤ −I

Pj + ηi,jQi,j ≤ Pi

then the switched system (3.12) is exponentially stable.

The left-hand side of the first condition requires positive definite-
ness of the quadratic Lyapunov-like functions. The right-hand side is
introduced to find an upper bound of the Lyapunov-like functions to
determine an upper bound of the convergence rate. If only stability is
of interest, this right-hand side of the inequality can be neglected. The
second condition is the requirement that the energy is decreasing in
every region Ωi. The energy decrease has to be less than the negative
identity matrix to conclude exponential stability. Stability is guaran-
teed if the right-hand side instead is zero. Finally, the third condition
is the requirement that the energy is non-increasing at switching in-
stants, where (i, j) is the set of tuples characterizing neighboring re-
gions for which x(t) can possibly travel from Ωi to Ωj .

62 Stability, Stabilization and Optimal Control

Exponential stability is verified if there is a solution to the above
LMI problem. In addition, a bound on the convergence rate can be
estimated [Pettersson and Lennartson, 2002] as

‖x(t)‖ ≤

√
β

α
e− 1

2β
t‖x0‖

where x(t) is the continuous trajectory with initial state x0.

3.2 Switching Stabilization

The above MLF results also provide methodologies to design switch-
ing logics between vector fields so as to achieve a stable trajectory
since MLF results characterize the conditions on switching signals,
under which the hybrid/switched system is stable. In this subsection,
we will explicitly consider the design of stable switching signals for
hybrid/switched systems. In particular, we consider the stabilizing
switching signal design among a collection of LTI systems ẋ = Aix.
Interestingly, even when all subsystems are unstable, there still may
exist stabilizing switching signals as illustrate in our second motivat-
ing example, i.e., Example 3.2.

3.2.1 Quadratic Switching Stabilization

In the switching stabilization literature, earlier efforts focused on
quadratic stabilization for certain classes of systems. It can be shown
that the existence of a stable convex combination of a pair of two sta-
ble LTI subsystem matrices implies the existence of a state-dependent
switching rule that stabilizes the switched system along with a
quadratic Lyapunov function [Wicks et al., 1998]. Formally, this result
can stated as follows.

Theorem 3.13. If the matrix pencil γα(A1, A2) contains a stable ma-
trix then there exists a piecewise constant switching signal that makes
the switched system quadratically stable.

Here, the matrix pencil γα(A1, A2) is defined as a collection of ma-
trices Aα that can be written as a convex combination of A1 and A2,

3.2. Switching Stabilization 63

i.e., Aα = αA1 + (1 − α)A2 for some α ∈ [0, 1]. Furthermore, it can be
shown that the stable convex combination condition is also necessary
for the quadratic stabilizability of two-mode switched LTI system.

Theorem 3.14. [Feron, 1996] If there exists a quadratically stabiliz-
ing switching signal in the state feedback form, then the matrix pencil
γα(A1, A2) contains a stable matrix.

Therefore, the existence of a stable convex combination state ma-
trix is necessary and sufficient for the quadratic stabilizability of two
mode switched LTI system.

Theorem 3.15. There exists a quadratically stabilizing switching sig-
nal in the state feedback form, if and only if the matrix pencil
γα(A1, A2) contains a stable matrix.

A generalization to more than two LTI subsystems can be achieved
by using a “min-projection strategy”, i.e., i = arg mini∈I xT PAix.

Theorem 3.16. [Pettersson and Lennartson, 2001] If there exist con-
stants αi ∈ [0, 1], and

∑
i∈I αi = 1 such that Aα =

∑
i∈I αiAi, is stable

then the min-projection strategy quadratically stabilizes the switched
system.

However, the existence of a stable convex combination matrix Aα

is only sufficient for switched LTI systems with more than two modes.
There are example systems for which no stable convex combination
state matrix exists, yet the system is quadratically stabilizable using
certain switching signals [Liberzon et al., 1999]. A necessary and suf-
ficient condition for the quadratic stabilizability of switched controller
systems was derived in [Skafidas et al., 1999].

Theorem 3.17. [Skafidas et al., 1999] The switched system is quadrat-
ically stabilizable if and only if there exists a positive definite real sym-
metric matrix P = P T > 0 such that the set of matrices {AiP + PAT

i }

is strictly complete, i.e., for any x ∈ Rn/{0}, there exists i ∈ I such
that xT (AiP + PAT

i)x < 0. In addition, a stabilizing switching signal
can be selected as σ(t) = mini{x

T (t)(AiP + PAT
i)x(t)}. �

64 Stability, Stabilization and Optimal Control

Analogously, for the discrete-time case, it is necessary and suffi-
cient for quadratic stabilizability to check whether there exists a pos-
itive symmetric matrix P such that the set of matrices {AT

i PAi − P}

is strictly complete [Skafidas et al., 1999]. Obviously, the existence of
a convex combination of state matrices Aα automatically satisfies the
above strict completeness conditions due to convexity, while the in-
verse statement is not true in general. Unfortunately, checking the
strict completeness of a set of matrices is NP hard [Skafidas et al.,
1999].

Other approaches include [Wicks et al., 1998] and extensions of
[Wicks et al., 1998] to the output-dependent switching and discrete-
time cases [Liberzon and Morse, 1999, Zhai et al., 2003]. For ro-
bust stabilization of polytopic uncertain switched linear systems, a
quadratic stabilizing switching law was designed based on LMI tech-
niques in [Zhai et al., 2003].

Quadratic stability means that there exists a positive constant ε

such that V̇ (x) ≤ −εxT x. All of these methods guarantee stability by
using a common quadratic Lyapunov function, which is conservative
in the sense that there are switched systems that can be asymptotically
or even exponentially stabilized without using a common quadratic
Lyapunov function [Hespanha et al., 2005]. There have been some re-
sults in the literature that propose constructive synthesis methods in
switched systems using multiple Lyapunov functions [DeCarlo et al.,
2000]. A stabilizing switching law design based on multiple Lyapunov
functions was proposed in [Wicks and DeCarlo, 1997], where piece-
wise quadratic Lyapunov functions were employed for two mode
switched LTI systems. Exponential stabilization for switched LTI sys-
tems was considered in [Pettersson, 2003], also based on piecewise
quadratic Lyapunov functions, and the synthesis problem was for-
mulated as a bilinear matrix inequality (BMI) problem. In the next
subsection, we will briefly describe the BMI conditions derived in
[Pettersson, 2003].

3.2. Switching Stabilization 65

3.2.2 Piecewise Quadratic Switching Stabilization

Recall the sufficient conditions stated in Theorem 3.12 for the
continuous-time linear system (3.12) to be exponentially stable: If
there exist matrices Pi (Pi = P T

i) and scalars α > 0, β > 0, μi ≥ 0,
νi ≥ 0, θi ≥ 0, ϑi ≥ 0 and ηi,j , that satisfy⎧⎪⎨

⎪⎩
αI + μiQi ≤ Pi ≤ βI − νiQi

AT Pi + PiA + ϑiQi ≤ −I

Pj + ηi,jQi,j ≤ Pi

then the switched linear system (3.12) is exponentially stable. There
are two more problems needed to be solved for switching controller
synthesis: the partition of the state space and the identification of the
set that switching occurs, i.e., Ωi,j .

The purpose of dividing the whole state space Rn into partitions,
denoted by Ωi, is to facilitate the identification of a Lyapunov-like
function for each one of these subsystems. After successfully obtain-
ing these Lyapunov-like functions associated with each region Ωi,
one may patch them together using the following conditions in Theo-
rem 3.12 so as to guarantee the global stability.

For this, it is necessary to require that all these regions Ωi cover the
whole state space, i.e.,

• Covering Property: Ω1 ∪ · · · ∪ ΩN = Rn.

This condition merely says that there are no regions in the state space
where none of the subsystems is activated.

Since we will restrict our attention to quadratic Lyapunov-like
functions for reason of computational efficiency, we will consider re-
gions given (or approximated) by quadratic forms

Ωi = {x ∈ Rn| xT Qix ≥ 0},

where Qi ∈ Rn×n are symmetric matrices, and i ∈ I = {1, · · · , N}.
The following lemma gives a sufficient condition for the covering

property.

Lemma 3.1. [Pettersson, 2003] If for every x ∈ Rn

N∑
i=1

θix
T Qix ≥ 0 (3.16)

66 Stability, Stabilization and Optimal Control

where θi ≥ 0, i ∈ I , then
⋃N

i=1 Ωi = Rn.

Consider the largest region function strategy, i.e.,

i(x) = arg

(
max
i∈I

xT Qix

)
(3.17)

That is the selection of subsystems (at state x) corresponds to the
largest value of the region function xT Qix. This switching strategy
was previously introduced in [Pettersson, 2003] for continuous-time
switched linear systems.

In order to guarantee exponential stability we also need to make
sure that

1. Subsystem i is active only when x(t) ∈ Ωi,

2. When switching occurs, it is required to guarantee that Lya-
punov function value is not increasing.

To verify 1) for the largest region function strategy (3.17), suppose
that the covering condition (3.16) holds, i.e.,

N∑
i=1

θix
T Qix ≥ 0

for some θi ≥ 0, i ∈ I . Then, based on the largest region function
strategy, i(x) = arg

(
maxi∈I xT Qix

)
, the state x with current active

mode i satisfies xT Qix ≥ 0. This implies x ∈ Ωi. So the first condition
holds for the largest region function strategy.

The second energy decreasing condition when switching is not
easy to handle. It is because we lack the information about the direc-
tion of the vector fields on the switching hyperplane. In other words,
when x ∈ Ωi ∩ Ωj , i.e, on the switching plane, it is difficult to deter-
mine which is the direction of the trajectory where the switching is
occurring.

Then, we make a compromise to require that

xT Pix = xT Pjx

for states at the switching plane, i.e., x ∈ Ωi ∩ Ωj .

3.2. Switching Stabilization 67

The set Ωi ∩Ωj can be represented as the following quadratic form

Ωi ∩ Ωj = {x|xT (Qi −Qj)x = 0}.

Again, applying S-procedure, we obtain

Pi − Pj + ηi,j(Qi −Qj) = 0

for an unknown scalar ηi,j .
In summary, the above discussions can be presented as the follow-

ing sufficient conditions for the continuous-time linear system (3.12)
to be exponentially stabilized.

Theorem 3.18. [Pettersson, 2003] If there exist matrices Pi (Pi = P T
i)

and scalars α > 0, β > 0, μi ≥ 0, νi ≥ 0, θi ≥ 0, ϑi ≥ 0 and ηi,j , solving
the optimization problem:

min β

s.t.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αI + μiQi ≤ Pi ≤ βI − νiQi

AT Pi + PiA + ϑiQi ≤ −I

Pj = Pi + ηi,j(Qi −Qj)

θ1Q1 + · · ·+ θN QN ≥ 0

for all i, j ∈ I = {1, · · · , N}, then the linear system (3.12) can be expo-
nentially stabilized by the largest region function strategy defined by
Equation (3.17).

Some remarks are in order. First, the optimization problem above
is a Bilinear Matrix Inequality (BMI) problem, due to the product of
unknown scalars and matrices. BMI problems are NP-hard, and not
computationally efficient. However, practical algorithms for optimiza-
tion problems over BMIs exist and typically involve approximations,
heuristics, branch-and-bound, or local search. One possible way to
compute the BMI problem is to grid up the unknown scalars, and then
solve a set of LMIs for fixed values of these parameters. It is argued
that the gridding of the unknown scalars can be made quite sparsely
[Pettersson, 2003]. The design procedure has been extended to the dis-
crete time case in [Lin and Antsaklis, 2008].

For further information on the stability and stabilization of
switched and hybrid systems, interested readers may refer to survey

68 Stability, Stabilization and Optimal Control

papers [Liberzon and Morse, 1999, Michel, 1999, DeCarlo et al., 2000,
Hespanha, 2004a, Lin and Antsaklis, 2009, Goebel et al., 2009], the
monographs [Liberzon, 2003, Johansson, 2003a, Goebel et al., 2012]
and the references cited therein.

3.3 Optimal Control

Optimal control has been an active research area in the control
community for decades since the illustrious seminal contributions
in the 50s by Pontryagin and Bellman. The optimal control prob-
lems for hybrid systems have attracted a lot of attention since
the mid nineties, and many results may be found in the control
and computer science literature. Early efforts have been devoted to
the extensions of the maximum principle and dynamic program-
ming techniques to hybrid systems, see e.g., [Branicky et al., 1998,
Sussmann, 1999, Hedlund and Rantzer, 2002, Cassandras et al., 2001,
Shaikh and Caines, 2007] and the references therein. Here we choose
to focus on some recent developments on the computational ap-
proaches to the optimal control synthesis for switched systems and
piecewise affine systems.

3.3.1 Optimal Control for Switched Systems

To illustrate the idea of hybrid optimal control design, we focus on
switched systems (with continuous controls) and consider designing
switching signals and continuous control signals for a collection of
dynamical systems

ẋ(t) = fσ(t)(x(t), u(t)) (3.18)

where x(t) ∈ X ⊆ Rn is the state vector and u(t) ∈ U is the con-
tinuous control input. The current mode is assumed to be assigned
by a discrete input σ(t), which selects the active mode: σ(t) ∈ Q =

{1, 2, · · · , N}. Therefore, all switchings are controlled, and there is no
autonomous switching by assumption.

Suppose that the switching signal is an independent design pa-
rameter. The optimal control problem is to find both the optimal con-

3.3. Optimal Control 69

trol input u(t) and optimal switching signal σ(t) to optimize the cost
functional

J(σ, u) =
M−1∑
k=0

∫ tk+1

tk

Lσ(t)(x, u)dt (3.19)

subject to (3.18) while driving the system from an initial state (x0, q0)

at time t0 to a final state (xf , qf) at time tf , where the end time tf is
free (not fixed). Here, M is a design variable representing the number
of switchings occurring during the time period [t0, tf]. M is finite; the
switching instants in the time period [t0, tf] are

t0 < t1 < t2 < · · · < tM < tf .

For the switched control system, the aim of optimal control is to
seek appropriate switching and control strategies to optimize a certain
performance index.

Embedding Optimization

The basic idea of the embedding optimization method is to “smooth”
the switching signal by a continuous-valued signal through a convex
combination, see e.g., [Bengea and DeCarlo, 2005]. Hence the optimal
control problem can be solved using traditional approaches as all sig-
nals are now continuous. Hopefully, a bang-bang type optimal control
policy is derived that can be used to recover the switching signal. To
illustrate the main idea, we consider a two-mode switched system as

ẋ(t) = fσ(t)(x(t), u(t)), σ(t) ∈ Q = {1, 2} (3.20)

where x(t) ∈ X ⊆ Rn is the state vector, continuous input u(t) ∈

U . The current mode is assumed to be assigned by a discrete input
σ(t). Therefore, all switching is controlled, and there is no autonomous
switching by assumption.

Suppose that the switching signal is an independent design pa-
rameter. The optimal control problem is to find both the optimal con-
trol input and optimal switching signal to optimize the cost function
(3.19) subject to (3.20) while driving the system from an initial state x0

at time t0 to a final state xf at time tf , where the end time tf is free.

70 Stability, Stabilization and Optimal Control

Here, M is an design variable representing the number of switching
occurring during the time period [t0, tf], therefore, M is always finite.
Denote the switching instants in the time period [t0, tf] as

t0 < t1 < t2 < · · · < tM < tf .

First, we re-write the switched system as a convex combination

ẋE(t) = [1− σE(t)]f1(xE(t), u0(t)) + σE(t)f2(xE(t), u1(t)), (3.21)

where σE(t) is a time-varying function that takes value in the closed
set [0, 1]. It is clear that the equation (3.21) will reduce to switched sys-
tem (3.20) if σE(t) only take values at the boundary, i.e., only takes
discrete values 0 or 1. It is not surprising that, given the same ini-
tial condition x0, Equation (3.21) should be able to generate more
trajectories than the switched system (3.20) due to the enlarged do-
main of “switching control” signals σE(t) ∈ [0, 1] and independent
continuous-time controls u0(t), u1(t) ∈ U . However, it can be shown
that any trajectory generated by the embedded system (3.21) can be
approximated by a solution of the switched system (3.20).

Theorem 3.19. [Bengea and DeCarlo, 2005] For the embedded sys-
tem (3.21) with a given initial condition x0 and control triple σE(t) ∈

[0, 1], and u0(t), u1(t) ∈ U during the period [t0, tf], assume that a so-
lution exists and is unique. Let’s denote the solution as xE(t) with
xE(t0) = x0. Then, for any desired trajectory-approximation error
ε > 0, there are switching signals σε(t) ∈ {0, 1}, and control inputs
uε(t) ∈ U defined on [t0, tf] such that the generating switching tra-
jectory from the same initial condition x(t0) = x0 has the property
‖x(t)− xE(t)‖ < ε for all t ∈ [t0, tf].

Theorem 3.19 implies that the set of state trajectories of switched
system (3.20) is dense in the set of state trajectories of the embedded
system (3.21). Therefore, we can approximate the solutions of the em-
bedded system (3.21) by forcing the signal σE(t) take values only at
the boundary, i.e., bang-bang type implementation. The basic idea is
to transform the optimal control for the switched system (3.20) into its
embedded form (3.21), and then solve the optimal control problem for

3.3. Optimal Control 71

the embedded system (3.21) with respect to the following embedded
cost function

JE(σE , u0, u1)

=

∫ tf

t0

{[1 − σE(t)]L0(xE(t), u0(t)) + σE(t)L1(xE(t), u1(t))} dt

This becomes a classical optimal control problem, and many
methods exist to solve it. The solution is denoted as (σ∗

E , u∗
0, u∗

1) =

arg minσE∈[0,1],u0,u1∈U JE(σE , u0, u1)

If the optimal control σ∗
E(t) is of "bang-bang" type, i.e., σ∗

E(t) ∈

{0, 1}, then we already solved the optimal control problem for the
original switched system (3.20). If σ∗

E(t) ∈ (0, 1) for almost all time
instants t ∈ [t0, tf], then based on the above theorem we can ob-
tain a sub-optimal solution with arbitrary small degradation of per-
formance.

Consider a simplified car mode with two gears from the literature

ẋ1 = x2

ẋ2 = gσ(t)(x2)u(t),

where x1 is the position, x2 is the velocity of the car respectively. The
inputs u(t) ∈ U = [−1, 1] represent control of the break or throttle. The
switching signal σ(t) ∈ {0, 1}, which captures the speed-dependent
efficiencies g0(x2) and g1(x2).

The embedded system can be represented as follows

[
ẋ1

ẋ2

]
= (1− v(t))

[
x2

g0(x2)u0(t)

]
+ v(t)

[
x2

g1(x2)u1(t)

]

We consider time optimal control with L0 = L1 = 1. So, the cost
function

JE(x, v, u0, u1)

=

∫ tf

0
{[1− v(t)]L0(x(t), u0(t)) + v(t)L1(x(t), u1(t))}dt

=

∫ tf

0
dt = tf

72 Stability, Stabilization and Optimal Control

It is assumed that t0 = 0, x(0) = [−5, 0]T and x(tf) = [0, 0]T with
further constraints σ(0) = 0 and σ(tf) = 0. The optimal control sig-
nals for the embedded optimal control problem can be solved, and we
obtain the following conclusion.

The Hamiltonian associated with the embedded system is with
λ = [λ1, λ2]T

HE(t, x, u0, u1, v, λ0, λ)

= λ0[(1 − v)L0 + vL1] + λT

[
(1− v)

[
x2

g0(x2)u0

]
+ v

[
x2

g1(x2)u1

]]

= v · λ2[g1(x2)u1 − g0(x2)u0] + [λ0 + λ1x2 + λ2g0(x2)u0]

Based on the Maximal Principle, the following costate equations
can be obtained[

λ̇1

λ̇2

]
=

[
0

−λ1 − λ2(1− v∗)u∗
0

g0

dx2
|x∗

2
− λ2v∗u∗

1
g1

dx2
|x∗

2

]
(3.22)

There exists 0 < t1 < tf such that

1. If t < t1 and x∗
2 < 0.5, then v∗(t) = 0 and u∗

0(t) = 1;

2. If t < t1 and x∗
2 > 0.5, then v∗(t) = 1 and u∗

1(t) = 1;

3. If t > t1 and x∗
2 < 0.5, then v∗(t) = 0 and u∗

0(t) = −1;

4. If t > t1 and x∗
2 > 0.5, then v∗(t) = 1 and u∗

1(t) = −1.

Here, the t1 can be obtained by solving λ2(t) = 0.
It can be observed that the optimal control is of bang-bang type,

while the optimal throttle/break control is either +1 or −1.

Two-stage Optimization

The embedding optimization method is effective if the optimal signal
σE(t) takes value on the boundary. However, it is difficult to guaran-
tee this situation and not straightforward to recover if this does not
happen. Hence, it may be unavoidable to deal with switching sig-
nals as discrete values directly. As the switching signal is a discon-
tinuous function of time and maybe highly nonlinear, the optimiza-
tion is usually difficult and non-convex in nature. To deal with such

3.3. Optimal Control 73

a difficulty, one popular approach is two-stage optimization, see e.g.,
[Xu and Antsaklis, 2004].

To illustrate the main idea of two-stage optimization, we consider
a continuous-time switched control system

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t), x(0) = x0 (3.23)

and a fixed end-time tf . The optimal control problem is to find a piece-
wise continuous input u(t), and a switching signal σ(t), such that the
quadratic cost functional

J(σ, u) =
1

2
x(tf)T Qf x(tf) +

∫ tf

t0

(
1

2
xT Qx +

1

2
uT Ru

)
dt (3.24)

is minimized, where Qf ≥ 0, Q > 0, and R > 0.
In the problem, we need to find an optimal control solution (σ∗, u∗)

such that
J(σ∗, u∗) = min

σ,u
J(σ, u).

Note that if we fix the switching signal, then the problem reduces
to a conventional optimal control problem for linear time-varying sys-
tems. This idea leads to the two-stage strategy for solving the problem.

Stage 1: Fixing a switching signal, solve the optimal control prob-
lem for the corresponding time-varying system.

Stage 2: Regarding the optimal control for each switching signal as
a function

J1(σ) = min
u

J(σ, u),

minimize J1 with respect to the switching signal σ.
The following lemma from [Xu and Antsaklis, 2004] provides sup-

port to this two-stage decomposition.

Lemma 3.2. Consider the optimal control problem (3.23)-(3.24). For
a given x0 ∈ Rn, suppose that

1. an optimal solution (σ∗, u∗) exists; and

2. for any fixed switching index i0, · · · , ik , there exist a time
sequence t1, · · · , tk and a control input u, such that the cost
function J(x0, t1, · · · , tk, i0, · · · , ik, u) is minimized.

74 Stability, Stabilization and Optimal Control

Then, we have

J(x0, σ∗, u∗) = min
{i0,··· ,ik}

min
{t1,··· ,tk}

J(x0, t1, · · · , tk, i0, · · · , ik, u). (3.25)

The two-stage optimization method actually provides a basic
framework for approaching the optimization problems of switched
and hybrid systems. To better illustrate the two-stage strategy, con-
sider the following simple example from the literature with two sub-
systems and only one switching with fixed index sequence.

For a switched system

ẋ(t) = A1x(t) + B1u(t), t0 < t < t1

ẋ(t) = A2x(t) + B2u(t), t1 ≤ t ≤ tf

where t0 and tf are given, we are to find an optimal switching time t1

and an optimal input u to minimize the quadratic cost function

J = x(tf)T Qf x(tf) +

∫ tf

t0

[
x(t)

u(t)

]T

Q

[
x(t)

u(t)

]
dt.

By introducing a state variable xn+1 corresponding to the switching
instant t1, and a new scaled time variable τ with

t = t0 + (xn+1 − t0)τ, 0 ≤ τ ≤ 1

t = xn+1 + (tf − xn+1)(τ − 1), 1 ≤ τ ≤ 2

the problem is converted into finding optimal xn+1 and optimal con-
trol u for system

dx(τ)
dτ

= (xn+1 − t0)(A1x + B1u)
dxn+1

dτ
= 0

0 ≤ τ ≤ 1

dx(τ)
dτ

= (tf − xn+1)(A2x + B2u)
dxn+1

dτ
= 0

1 ≤ τ ≤ 2

with the quadratic cost function

J = x(2)T Qf x(2) +

∫ 1

0
(xn+1 − t0)

[
x(t)

u(t)

]T

Q

[
x(t)

u(t)

]
dt

+

∫ 2

1
(tf − xn+1)

[
x(t)

u(t)

]T

Q

[
x(t)

u(t)

]
dt.

3.3. Optimal Control 75

The latter can be addressed by solving parameterized general Ric-
cati equations which can be derived using dynamic programming. To
determine the optimal switching time, we need to know ∂J/∂xn+1,
that is, the derivative of J with respect to the switching instant. This
derivative can be obtained based on the solution of the ordinary dif-
ferential equations obtained by differentiating the Riccati equations
with respect to the switching instants. Together with the correspond-
ing Hamilton-Jacobi-Bellman (HJB) equations, the optimal solution
can be obtained by solving a set of differential-algebraic equations.

The optimal control problem of switched systems is in general dif-
ficult to solve due to the involvement of the switching signal. For
piecewise affine systems with state/input constraints, some efficient
computational schemes have been established, which will be devel-
oped in the next subsection.

3.3.2 Optimal Control of Piecewise Affine Systems

Contrary to switched systems, all switchings in piecewise affine
(PWA) systems are autonomous, induced by the partition of the state
space.

Continuous-time Piecewise Affine Systems

Consider the class of continuous-time PWA systems with state+input
constraints

ẋ = Aix + Biu

Gix + Hiu ≥ 0
if x ∈ Ωi (3.26)

where {Ωi}i∈I is a partition of the state space into a number of closed
polyhedral regions, each of which contains the origin.

For the polyhedrons Ωi’s, we can construct matrices Ei and Fi such
that

Eix ≥ 0, x ∈ Ωi,

and

Fix = Fjx, x ∈ Ωi ∩ Ωj.

76 Stability, Stabilization and Optimal Control

The optimal control problem is to bring the system to x(∞) = 0 from
an arbitrary initial state x(0), while limiting the piecewise quadratic
cost

J(x0, u) =

∫ ∞

0
(xT Qix + uT Riu)dt,

where Qi ≥ 0, Ri ≥ 0 and i(t) is defined so that x(t) ∈ Ωi(t).

Theorem 3.20. [Rantzer and Johansson, 2000, Johansson, 2003a] As-
sume the existence of symmetric matrices T and Ui, such that Ui has
nonnegative entries and satisfy[

AT
i Pi + PiAi + Qi PiBi

BT
i Pi Ri

]
−

[
Ei 0

Gi Hi

]T

Ui

[
Ei 0

Gi Hi

]
> 0, i ∈ I

where Pi = F T
i T Fi, i ∈ I . Then, every continuous and piecewise

continuously differentiable trajectory x(t) ∈ ∪Ωi of PWA system with
x(∞) = 0, x(0) = x0 ∈ Ω0 satisfies

J(x0, u) ≥ sup
T,Ui

xT
0 Pi0

x0.

The theorem gives a lower bound on the optimal cost. The com-
putation of an upper bound can be obtained by studying specific
control laws. To illustrate, let’s consider the following example from
[Johansson, 2003a].

Example 3.3. Consider the system

ẋ(t) =

{
A1x(t) + B1u(t) x1 < 0

A2x(t) + B2u(t) x1 ≥ 0

where A1 =

[
−5 4

−1 −2

]
, A2 =

[
−2 −4

10 −2

]
, B1 = B2 =

[
0

1

]
, and

the associated cost function

J =

∫ +∞

0

(
xT (t)Qi(t)x(t) + riu

2(t)
)

dt,

where

Q1 =

[
1 0

0 4

]
Q2 =

[
1 0

0 10

]

r1 = 2 r2 = 4

3.3. Optimal Control 77

with initial condition x =
[
−1 1

]T
.

Solving the matrix inequalities in Theorem 3.20 gives the lower
bound

J(x0, u) ≥ 1.9171,

where the bound can be attained with the control law

u(t) =

{
−r−1

1 B1P1x(t) x1 < 0

−r−1
2 B2P2x(t) x1 ≥ 0

with

P1 =

[
0.1457 −0.2444

−0.2444 1.2826

]
, P2 =

[
2.6076 0.5199

0.5199 1.2826

]

�

Discrete-time Piecewise Affine Systems

For discrete-time piecewise affine (PWA) systems, the optimal con-
trol problems have been extensively investigated in the literature.
Discrete-time PWA systems are defined by partitioning the state and
input space into polyhedral regions, and associating with each region
an affine control system, namely

xk+1 = Aixk + Biuk + fi, for

[
xk

uk

]
∈ Ωi (3.27)

Here the state x ∈ Rn, the input u ∈ Rm, and Ωi ⊆ Rn+m are partitions
of the state and input space into a number of compact polyhedral re-
gions with no common interiors where each polyhedron contains the
origin, matrices Ai, Bi and vector fi of compatible dimensions.

Define the following quadratic cost function with a given finite
time horizon N :

J(UN , x(0)) = xT
N PxN +

N−1∑
k=0

(xT
k Qxk + uT

k Ruk),

where UT = {u0, · · · , uN−1} is the control sequence, matrices P =

P T , Q = QT ≥ 0 and R = RT > 0.

78 Stability, Stabilization and Optimal Control

The problem of optimal control for the PWA system is to seek a
control sequence u0, · · · , uN−1 to minimize the cost function:

J∗(x0) = min
UN)

J(UN , x0)

s.t.

⎧⎪⎨
⎪⎩

xk+1 = Aixk + Biuk + fi, if

[
xk

uk

]
∈ Ωi

xN ∈ χf

where χf is the terminal region.
Any optimal control sequence

U∗
N = {u∗

0(x0), · · · , u∗
N−1(x0)},

is said to be a minimizer of the cost function.
We will also denote χk ∈ Rn the set of initial states xk at time

k (0 ≤ k ≤ N), for which the optimal control problem is feasible.
Mathematically, χk is recursively defined as

χk =

{
x ∈ Rn|∃u, i, Aix + Biu + fi ∈ χk+1, and

[
x

u

]
∈ Ωi

}

χN = χf

We will assume that the optimal control problem admits at least
one minimizer for each feasible x(0). The following result character-
izes the structural properties of the optimal control law.

Theorem 3.21. [Borrelli et al., 2005] The solution of the above opti-
mal control problem is a feedback control law of the form

u∗
k(xk) = F i

kxk + Gi
k, if xk ∈ χi

k.

where {χi
k}

Nk

i=1 is a partition of the set χk of feasible states xk and the
closure χ̄i

k of χi
k is in the form

χ̄i
k = {x : xT Li

k(j)x + M i
K(j) ≤ Ki

k(j), j = 1, · · · , nI
K}, i = 1, · · · , Nk

In addition, if the minimizer U∗
N (x0) is unique for all x0, then, {χi

k}
Nk

i=1

is a polyhedral partition of the set χk of feasible state xk.

3.3. Optimal Control 79

The theorem illustrates that the optimal control law possesses a
PWA form and the partition is defined by quadratic surfaces. In the
case that the minimizer is unique, each region of the partition turns
out to be a polyhedron, which in general is much simpler than a region
defined by quadratic surfaces.

Computation of Optimal Control Inputs

The computation of optimal controls so far is based on the enumer-
ation of all possible switching sequences of the hybrid systems, the
number of which grows exponentially with the time horizon. Here, we
will transform a PWA system into its equivalent mixed logic dynam-
ical system (MLDS) framework [Bemporad and Morari, 1999], within
which mixed-integer programming is employed. In particular, when
the model of the system is an MLDS model and the performance is
quadratic, the optimization problem can be casted as a mixed-integer
quadratic programming [Bemporad and Morari, 1999, Borrelli et al.,
2005, Borrelli, 2003].

Mixed logical dynamical systems are computationally motivated
representations of hybrid systems that consist of a collection of lin-
ear difference equations involving both real and {0, 1} variables, sub-
ject to a set of linear inequalities. The key idea of the approach is to
embed the logic part in the state equations by transforming propo-
sitional logic into mixed-integer inequalities, i.e. linear inequalities in-
volving both continuous variable x ∈ Rn and binary/ logical variables
δ ∈ {0, 1}.

As an illustrative example, we convert a piecewise affine sys-
tem into its mixed logic dynamical system representation from
[Bemporad and Morari, 1999].

Example 3.4. Consider the following discrete-time piecewise affine
system

x(t + 1) =

{
0.8x(t) + u(t) if x(t) ≥ 0

−0.8x(t) + u(t) if x(t) < 0

where x(t) ∈ [−10, 10], and u(t) ∈ [−1, 1]. The condition x(t) ≥ 0 can

80 Stability, Stabilization and Optimal Control

be associated to a binary variable δ(t) such that

[δ(t) = 1] ↔ [x(t) ≥ 0].

This equivalence can be expressed by the inequalities

−mδ(t) ≤ x(t)−m,

−(M + ε)δ(t) ≤ −x(t)− ε

where M = maxx∈[−10,10](x) = 10, m = minx∈[−10,10](x) = −10, and ε

is a small positive scalar. Then the state equation can be written as

x(t + 1) = 1.6δ(t)x(t) − 0.8x(t) + u(t),

By defining a new variable z(t) = δ(t)x(t), the above equation can be
expressed as ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x(t + 1) = 1.6z(t) − 0.8x(t) + u(t)

z(t) ≤ Mδ(t)

z(t) ≥ mδ(t)

z(t) ≤ x(t)−m(1− δ(t))

z(t) ≥ x(t)−M(1− δ(t))

�

In general, mixed logical dynamical systems are described through
the following linear relations,⎧⎪⎨

⎪⎩
x(t + 1) = Ax(t) + B1u(t) + B2δ(t) + B3z(t)

y(t) = Cx(t) + D1u(t) + D2δ(t) + D3z(t)

E2δ(t) + E3z(t) ≤ E1u(t) + E4x(t) + E5

(3.28)

where

x =

[
xc

xl

]
, xc ∈ Rnc, xl ∈ {0, 1}nc , n = nc + nl

is the state of the system, with the xc components being continuous
and the xl components being 0 or 1. The input u space is partitioned
similarly. The auxiliary logical and continuous variables are repre-
sented by δ ∈ {0, 1}rl and z ∈ Rrc , respectively. Furthermore, the

3.3. Optimal Control 81

optimal control problem for PWA system can be rewritten as an op-
timal control problem for MLDS:

J(UN , x0)

= min
UN

‖PxN‖2 +
N−1∑
k=0

{‖Q1uk‖2 + ‖Q2δk‖2 + ‖Q3zk‖2 + ‖Q4xk‖2}

s.t.

⎧⎪⎨
⎪⎩

xk+1 = Axk + B1uk + B2δk + B3zk

E2δk + E3zk ≤ E1uk + E4xk + E5

xN ∈ χf

Next we show how to transform the optimal control problem for
MLDS into a mixed-integer programming problem. In fact, the trans-
lation for a quadratic performance index is simply obtained by substi-
tuting the state update equation, namely

xk = Akx0 +
k−1∑
j=0

Aj(B1uk−1−j + B2δk−1−j + B3zk−1−j)

and the optimization vector

ζ = {u0, · · · , uN−1, δ0, · · · , δN−1, z0, · · · , zN−1}

Then, the above optimal control problem can be formulated as a
mixed-integer quadratic programming problem (MIQP)

min
ζ

ζT H1ζ + ζT H2x0 + xT
0 H3x0 + cT

1 ζ + cT
2 x0 + c

s.t. Gζ ≤ W + Sx0

where H1, H2, H3, c1, c2, G, W , S are matrices of suitable dimensions.
Similarly, if the cost function is measured by 1-norm or ∞-norm

performance indices, it is also passible to transform the finite hori-
zon optimal control problem into a mixed-integer linear programming
(MILP) [Borrelli et al., 2005, Borrelli, 2003].

Given a value of the initial state x(0), the MILP or MIQP can be
solved to obtain the optimizer ζ∗(x(0)) and therefore the optimal in-
put U∗

N (x(0)). There exists a method called multi-parametric program-
ming [Borrelli et al., 2005, Borrelli, 2003] that can be used to efficiently
compute optimal control law, which is in the form of a piecewise affine
state feedback.

82 Stability, Stabilization and Optimal Control

3.4 Notes and Further Reading

Due to space limit, we only give a very brief introduction of the re-
sults in the stability, stabilization and optimal control for switched sys-
tems and piecewise affine systems with emphasis on the computation
methods. In addition, the reachability, controllability and observabil-
ity for switched and piecewise affine systems have been extensively
studied in the literature, see e.g., [Sun et al., 2002, Xie and Wang, 2003,
Bemporad et al., 2000] and the references therein.

The MLF Theorem 3.10 is based on the results in [Branicky, 1998],
where a proof for the theorem can be found. It is worth pointing
out that there exist different versions of the MLF theorem, which
could be less conservative than the version we presented above. For
example, the Lyapunov-like function for the q-th subsystem may
be not monotonically decreasing when the q-th subsystem is acti-
vated. The value may actually increase, but the hybrid system re-
mains stable provided that the increase of the Lyapunov-like func-
tion is bounded by a continuous function, see e.g., [Ye et al., 1998].
Surveys on the switched systems stability and stabilization can be
found in [Liberzon and Morse, 1999, DeCarlo et al., 2000, Liberzon,
2003, Shorten et al., 2007, Lin and Antsaklis, 2009, Goebel et al., 2009].

The descriptions of switched quadratic Lyapunov function and
LMI conditions are based on [Daafouz et al., 2002], and the synthesis
approach based on piecewise quadratic Lyapunov function is based
on the work [Pettersson, 2003]. Notice that the stability analysis based
on piecewise quadratic Lyapunov functions is sufficient only and
could be conservative. To reduce the possible conservativeness, a new
kind of polynomial Lyapunov functions was introduced and inves-
tigated for the stability analysis of hybrid systems. The computation
of such polynomial Lyapunov functions can be efficiently performed
using convex optimization, based on the sum of squares (SOS) decom-
position of multivariate polynomials [Prajna and Papachristodoulou,
2003]. It is also possible to use SOS techniques together with the
S-procedure to construct piecewise polynomial Lyapunov functions
[Papchristodoulou and Prajna, 2009], with each polynomial as an SOS
while incorporating the state constraints, so to generalize piecewise

3.4. Notes and Further Reading 83

quadratic Lyapunov functions.
We only reviewed sufficient conditions for the existence of stabiliz-

ing switching signals for a given collection of linear systems. A more
elusive problem has been the necessity part of the switching stabiliz-
ability problem, and a particularly challenging part has been the prob-
lem of necessary and sufficient conditions for switching stabilizabil-
ity. In [Lin and Antsaklis, 2007], a necessary and sufficient condition
was proposed for the existence of a switching control law (in static
state feedback form) for asymptotic stabilization of continuous-time
switched linear systems.

The literature on the optimal control of hybrid systems is very
rich, and our treatment is very biased and superficial. Most ef-
forts have been devoted to the extensions of the maximum princi-
ple and dynamical programming techniques to hybrid systems, see
e.g., [Branicky et al., 1998, Sussmann, 1999, Cassandras et al., 2001,
Shaikh and Caines, 2007]. The embedding optimization approaches
were proposed in [Bengea and DeCarlo, 2005], where readers may
find proofs and more examples. The idea of embedding or convert-
ing the switched system into a large family of system that is more
suitable for traditional numerical or theoretical methods has been
pursued by other researchers as well, see e.g., [Das and Mukherjee,
2008, Mojica-Nava et al., 2013]. Two-stage optimization mainly fol-
lows [Xu and Antsaklis, 2004]. Two stage optimization approach has
also been adopted in [Egerstedt et al., 2006, Gonzalez et al., 2010,
Wardi and Egerstedt, 2012]. Interested readers may refer to these work
and the references therein for recent developments along this line.

The discussion on optimal control of piecewise affine systems fol-
lows the results in [Rantzer and Johansson, 2000, Johansson, 2003a],
while the mixed logic dynamical systems and parametric optimization
results are based on [Bemporad and Morari, 1999, Bemporad et al.,
2002, Borrelli, 2003]. It is also worthy pointing out that there are free
software tool boxes available to support the computation of the op-
timal control solutions of switched and hybrid systems. For exam-
ple, Multi-Parametric Toolbox (MPT) [Borrelli, 2003] is a free MAT-
LAB toolbox for design, analysis and deployment of optimal con-

84 Stability, Stabilization and Optimal Control

trollers for constrained linear, nonlinear and hybrid systems, and
Convex Dynamic Programming (CDP) Tool [Hedlund and Rantzer,
1999] is another MATLAB toolbox developed to solve hybrid opti-
mal control problems. Interested readers may refer to the survey pa-
pers [Xu and Antsaklis, 2003, Zhu and Antsaklis, 2011] and their ref-
erences.

4
Verification of Hybrid Systems

The verification of real-time code implemented in embedded systems
is a very important problem, as many of these systems, such as autopi-
lot systems and medical devices, are safety critical and need guaran-
tees of their proper operations [Edwards et al., 2001]. These embed-
ded systems are interacting with the physical world, and continu-
ous variables, such as time clocks, have to be taken into considera-
tion. Hence, modeling the system as a hybrid system becomes a nat-
ural choice. A typical question is whether certain properties, such as
safety (e.g., bad things wont happen), liveness (e.g., good things even-
tually happen) and other properties, hold true or not for the given
hybrid system model. These are verification problems. However, it is
not straightforward to apply traditional formal methods for verifica-
tion, such as model checking [Clarke et al., 1999] and deductive ver-
ification [Kaufmann et al., 2000], to hybrid systems since these meth-
ods were originally developed for circuits and communication proto-
cols and usually require extensive search of all reachable states. How-
ever, this is not possible as the states in hybrid systems are uncount-
able. Motivated by this challenge, significant research activities have
been devoted to the verification problems for hybrid systems. In this

85

86 Verification of Hybrid Systems

chapter, we focus on formal methods for verification based on model
checking. In particular, we mainly emphasize the abstraction based
approaches, where the basic idea is to obtain an equivalent abstracted
model (with finite states) so to perform the verification using tradi-
tional approaches. Hence, we start this chapter with a brief overview
of traditional model checking for finite state systems. Other verifica-
tion methods and software tools will be briefly reviewed at the end of
this chapter.

The rest of this chapter is organized as follows. Section 4.1 gives
a brief introduction of temporal logic that is interpreted over labeled
transition systems. Both finite automata and hybrid automata can be
seen as labeled transition systems. Model checking approaches are
briefly reviewed in Section 4.1 for finite state transition systems with
respect to temporal logic, and then are extended to the case of in-
finite state transition systems. The main idea behind the extension
is to obtain an equivalent finite transition system, called an abstrac-
tion, for an infinite transition system under consideration. The equiv-
alence is in the sense of bisimulation, which is formally defined in
Section 4.2. Then, we consider the verification problem for hybrid sys-
tems. In particular, timed automata (Section 4.3), multirate automata
and rectangular automata (Section 4.4) are introduced and their finite
quotient transition systems are obtained. Unfortunately, it is known
that even a slight generalization of the multirate automata or rect-
angular automata could make the reachability problem undecidable
[Henzinger et al., 1995, 1998], i.e., it becomes equivalent to the halt-
ing problem. Hence many efforts have been devoted to developing
sophisticated techniques drawn from optimal control, game theory,
and computational geometry to calculate or approximate the reach-
able sets for various classes of hybrid systems. We will briefly review
these efforts and available software tools at the end of this chapter.

4.1 Model Checking

Model checking is a method to verify algorithmically whether a
model, which is usually derived from a hardware or software de-

4.1. Model Checking 87

sign, satisfies certain properties. The properties we are interested in
are more in the dynamical than in static sense. For example, whether
the statement “the machine is busy” is true or not will vary in time
and depends on the current state of the dynamical system. Sometimes
the statement is true, and sometimes the statement is false, but the
statement is never true and false simultaneously. Also, one may be
interested in checking whether a statement eventually becomes true
or not, e.g., “proposal gets approved.” Formally, these properties can
be formulated in temporal logic, and the model is expressed as a
transition system. In this section, we will give a brief tutorial on the
model checking for finite transition systems. Our treatment mainly
follows [Baier and Katoen, 2008]. Interested readers may also refer to
[Clarke et al., 1999, Baier and Katoen, 2008] for a comprehensive and
detailed discussion on model checking.

4.1.1 Transition Systems

Transition systems are graph models that describe the evolution of the
states under the action of transitions.

Definition 4.1. A transition system T is a four tuple T = (S, S0, U,→)

defined by

• A set of states S;

• A set of initial states S0 ⊆ S;

• A set of actions U ;

• A transition relation→⊆ S × U × S.

A transition system is called finite when the state set S and the
action set U contain only a finite number of elements. Clearly, a fi-
nite automaton can be cast as a transition system with finite states. A
transition system may have infinite number of states, and can be used
to represent a large class of dynamical systems. For example, hybrid
automata can be rewritten in the form of transition systems.

Example 4.1. A hybrid automaton H = {Q, X, f, Init, Inv, E, G, R} ,

can be represented as a transition system TH = (S, S0, U,−→), where

88 Verification of Hybrid Systems

• S = Q×X;

• S0 = Init;

• U = E ∪ R>0;

• (q, x) −→u (q′, x′) if one of the following condition holds

1. Discrete transition: when u = (q, q′), x ∈ G(q, q′) and
x′ ∈ R(q, q′, x);

2. Continuous transition: when u ∈ R>0, q = q′ and there
exists a solution (q, x(t)) ∈ Inv for 0 ≤ t ≤ u such that
ẋ(t) = f(q, x(t)) for 0 ≤ t ≤ u, and x(0) = x, x(u) = x′.

Hence, transition systems provide us with a very general frame-
work for dynamical systems. The dynamical behavior of a transition
system is conveniently described by the strings of its state evolution.
Formally, we have the following definitions and notations.

Definition 4.2. A string α ∈ S∗ (α ∈ Sω) is a run of transition system
T = (S, S0, U,→) if

1. α(1) ∈ S0;

2. there exists a string β ∈ U∗ (β ∈ Uω) such that
(α(i), β(i), α(i + 1)) ∈→, for i = 1, · · · , |α| − 1 (i ≥ 1 for β ∈ Uω).

Note that |α| stands for the length of the run α, which potentially
contains infinite number of transitions, i.e., |α| ∈ N ∪ {ω}. Here N

denotes the set of natural numbers and ω stands for infinity. For i <

|α|, the i-th state of α, written as α(i), is the state si reached after i

transitions. A complete execution is a run which is maximal, that is,
which cannot be extended. It is either infinite, or it ends in a state sn

out of which no transition is defined. If the second case happens, we
call it a deadlock.

Consider a transition system T = (S, S0, U,→). For a particular
state s ∈ S and action a ∈ U , the set of successor states of s by action
a are given by posta(s) = {s′ ∈ S|(s, a, s′) ∈→}. The successor states of
s in T for all possible actions is post(s) =

⋃
a∈U

posta(s). Accordingly,

4.1. Model Checking 89

the set of successor states for a set P ⊆ S can be defined by post(P) =⋃
s∈P

post(s). Similarly, we can define prea(s) = {s′ ∈ S|s ∈ posta(s′)},

pre(s) =
⋃

a∈U

prea(s), and pre(P) =
⋃

s∈P

pre(s).

Intuitively, pre(P) describes the set of states that can be transited
to a state in P within one step transition, while post(P) contains the
states that can be reached by a state in P within one step transition.
The set of states that are accessible from P in two transition steps can
be characterized by post(post(P)), and denoted as post2(P). Induc-
tively, one can denote the states that are accessible from P in n ∈ N,
n ≥ 0 transition steps as postn(P) that can be calculated recursively
by post0(P) = P , postn(P) = post(postn−1(P)). Then, the states that
can be accessible from P are the union of all posti(P) for i ≥ 0, that
is post∗(P) =

⋃
i∈N, i≥0 posti(P). In particular, post∗(Q0) is the set of

reachable states for the transition system T and is denoted as Reach(T).
Similar definitions can be provided for pren(P) and pre∗(P).

Actions can be seen as inputs, and we can also introduce outputs
for transition systems. Instead, we call them labels, which associate
the states of a transition system with properties that hold true for the
corresponding states. The properties of interest are denoted as sym-
bols pi, say p1 =“the machine is busy,” p2 =“the machine is broken”
and so on. The collection of such symbols (assumed to be finite) forms
a set, denoted as P = {p1, p2, · · · } and called an atomic proposition
set. A labeled transition system is a transition system with all its states
being labeled with true or false for atomic propositions in P.

Definition 4.3. A labeled transition system is a tuple (T, l), where T =

(S, S0, U,→) is a transition system and l : S → 2P is a label function
that assigns each state s in T a subset of predicates l(s) ⊆ P satisfied
by the state s.

Given a finite run α of the transition system T , we can define a trace
generated from the labeled transition system (T, l) corresponding to
the run α as a string γ ∈

(
2P

)∗
, where γ(i) = l(α(i)). The collection of

all finite traces that can be generated by the labeled transition system
(T, l) is called the trace generated by (T, l), denoted as T (T, l). Note
that the above definitions can be extended to the case where α is of

90 Verification of Hybrid Systems

infinite length. Then, γ is an infinite trace as defined above, i.e., γ ∈(
2P

)ω
, and the collection of all such infinite length traces is called the

ω-trace generated by (T, l), denoted as Tω(T, l).

4.1.2 Linear Temporal Logic

Next, we need to introduce a formal way to construct more complex
expressions describing properties of states in a labeled transition sys-
tem (T, l), whose truth value can vary with resect to time. For such a
purpose, temporal logic was proposed [Pnueli, 1977]. Temporal logic
is a formalism for describing properties of sequences of states as well
as tree structures of states. There are many variations of temporal
logic, and interested readers may refer to the survey paper [Emerson,
1990] and books [Clarke et al., 1999, Baier and Katoen, 2008]. We will
first introduce linear temporal logic and then computation tree logic.
Their relationship will be demonstrated using examples.

Linear Temporal Logic (LTL) is an extension of propositional logic
geared to reasoning about infinite sequences of states. Formulas of
LTL are built from a set of atomic propositions, like “the machine is
busy,” and are closed under the application of Boolean connectives,
such as conjunction, disjunction and negation, and temporal opera-
tors. In particular, the following temporal operators are used for describ-
ing the properties along a specific path:

• ◦ (“next state”): requires that a property hold in the next state of
the path. Let’s use ϕ to denote the property of interest, then ◦ϕ
can be illustrated as
• �� •ϕ �� • �� • �� • .

• ♦ (“eventually”): used to assert that a property will hold at some
future state on the path. For example, the expression ♦ϕ can be
illustrated as
• �� • �� • �� •ϕ �� • .

• � (“always”): specifies that a property holds at every
state on the path. For example, �ϕ can be illustrated as
•ϕ �� •ϕ �� •ϕ �� •ϕ �� •ϕ .

4.1. Model Checking 91

• � (“until”): used to combine two properties. The combined prop-
erty holds if there is a state on the path where the second prop-
erty holds, and at every preceding state on the path, the first
property holds. For example, the expression ϕ1�ϕ2 can be illus-
trated as •ϕ1 �� •ϕ1 �� •ϕ2 �� • �� • .

We have the following relations among the above operators, where
ϕ denotes a temporal logic specification: ♦ϕ = true � ϕ and �ϕ =

¬♦¬ϕ. Therefore, one can just use ◦ and � to express the rest of tem-
poral operators. These temporal operators can be nested with Boolean
connectives to generate more complex temporal logic specifications.

Example 4.2. The LTL formula �♦ϕ is true for traces (generated
from a labeled transition system) that satisfy ϕ infinitely often, e.g.,
�♦hungry. The formula ♦�ϕ means that ϕ will become true eventu-
ally and holds for ever, e.g., ♦�battery dies. �

Let’s see a more complicated example.

Example 4.3. To specify the traffic light behavior, we define a set of
atomic propositions P = {red, green, yellow}. The specification

ϕ = �(red → ◦(red � (yellow ∧ ◦(yellow � green))))

describes the traffic light behavior. It basically requests that if the traf-
fic light is red, it cannot immediately become green and has to be in
yellow for a while. �

Now, let’s formally define the syntax of LTL formulas.

Definition 4.4. Linear Temporal Logic (LTL) formulas are recursively
defined from predicates in P according to the following rules.

1. true, false, and pi are LTL formulas for all pi ∈ P;

2. if ϕ1 and ϕ2 are LTL formulas,
then ϕ1 ∧ ϕ2 and ¬ϕ1 are LTL formulas;

3. if ϕ1 and ϕ2 are LTL formulas,
then ◦ϕ1 and ϕ1 � ϕ2 are LTL formulas

92 Verification of Hybrid Systems

An LTL formula ϕ is interpreted over infinite sequences of sets of
propositions, called a word s = P1P2P3 · · · ∈

(
2P

)ω
, where each Pi is

a subset of P. The satisfaction of a formula ϕ at position t ∈ N can be
defined as follows.

Definition 4.5. A word s ∈
(
2P

)ω
satisfies an LTL formula ϕ at t

denoted by s(t) |= ϕ if the following hold:

1. if ϕ = p, then s(t) |= ϕ iff p ∈ s(t) and s(t) |= ¬ϕ iff p /∈ s(t);

2. if ϕ = ϕ1 ∧ ϕ2 then s(t) |= ϕ iff s(t) |= ϕ1 and s(t) |= ϕ2;

3. if ϕ = ◦ϕ1 then s(t) |= ϕ iff s(t + 1) |= ϕ1;

4. if ϕ = ϕ1 � ϕ2 then s(t) |= ϕ iff ∃t′ ≥ t such that for all k ∈ [t, t′),
s(k) |= ϕ1 and s(t′) |= ϕ2.

A word s ∈
(
2P

)ω
satisfies ϕ if and only if s(1) |= ϕ. LTL formu-

las can be evaluated over traces generated from a labeled transition
system. A labeled transition system (T, l) satisfies an LTL formula ϕ,
denoted as (T, l) |= ϕ, if all ω-traces generated by (T, l) satisfy ϕ. If we
denote all words satisfying the LTL formula ϕ asW(ϕ), then (T, l) |= ϕ

if and only if all ω-traces generated from (T, l) are contained inW(ϕ),
i.e., Tω(T, l) ⊆ W(ϕ).

4.1.3 LTL model checking

The LTL model checking problem is to determine whether a given la-
beled transition system (T, l) satisfies an LTL formula ϕ. There exist
automated approaches to LTL model checking, and its basic idea is to
reduce the model checking problem to an inclusion problem between
automata [Vardi, 1996]. In particular, Büchi automata are employed. A
Büchi automaton is an extension of a finite automaton to accept an in-
finite input sequence. Büchi automata have the same structure as finite
automata and is defined as a tuple (Q, Q0, Σ, δ, F), but the accepting
conditions for a run is different. In Büchi automata, a run is accepting
if it visits the marked states infinitely often. The words correspond-
ing to all accepting runs of are called languages accepted by the Büchi
automaton.

4.1. Model Checking 93

To do LTL model checking based on automata theory, we first con-
vert the labeled transition system (T, l) to a Büchi automaton BT , such
that the languages accepted by the Büchi automaton BT , denoted as
Lω(BT), coincide with the set of ω-traces generated from (T, l), i.e.,
Lω(BT) = Tω(T, l).

Next, we take a negation of the specification, i.e., ¬ϕ, and translate
¬ϕ into an equivalent Büchi automaton, denoted as B¬ϕ. The equiva-
lence is in the sense that Lω(B¬ϕ) is exactly the set of paths satisfying
the formula ¬ϕ, that is α |= ¬ϕ if and only if α ∈ Lω(B¬ϕ). The basic
idea of the translation is to use the collections of all sub-formulas as
the state of the Büchi automaton, and the state should contain exactly
those sub-formulas that hold true for all runs starting from this state.
The obtained Büchi automaton could be very large in the sense that
the size of its states could be of an exponential growth compared with
the length of the formula, see e.g., [Baier and Katoen, 2008].

After obtaining BT and B¬ϕ, the next step is to build a Büchi au-
tomaton B such that Lω(B) = Lω(B¬ϕ) ∩ Lω(BT), and then check the
emptiness ofLω(B). The rationale behind this procedure is the follow-
ing simple argument. Since Lω(B) = Lω(B¬ϕ) ∩ Lω(BT), represents
all the runs in BT starting from q0 that satisfy ¬ϕ, i.e., do not satisfy
ϕ. Therefore, Lω(B) = ∅ implies that there is no execution generated
from T that violates the property ϕ. In other words, ϕ holds true for
all executions generated from the plant.

We use the following simple example from [Baier and Katoen,
2008] to illustrate the basic idea of LTL model checking.

Example 4.4. Consider P = {a,¬a} and the following labeled transi-
tion system (T, l):

{a}
�� �������	s0

��

{¬a}
�� �������	s1

{a}
���������	s2

��

Our task is to check whether (T, l) satisfies the LTL ϕ = ♦�a, i.e., any
trace generated from (T, l) eventually holds a forever.

First, (T, l) is converted to the following Büchi automaton, BT :

�� �������	
������t
a �� �������	
������s0

a

��
¬a ���������	
������s1

a ���������	
������s2

a��

94 Verification of Hybrid Systems

Next, we take negation of the formula ¬ϕ = ¬♦�a and construct
B¬ϕ, which is generated using LTL2BA software [Gastin and Oddoux,
2001].

B : ���������	q0

a,¬a

�� ¬a ���������	
������q1

¬a

��

a,¬a
		

Then we compute the intersection of BT and B¬ϕ as follows

�� �������	tq0
a �� ��������s0q0

a

��
¬a ��

¬a

�
��

��
��

��
�

��������s1q0
a �� ��������s2q0

a

��

���������������	s1q1

a

������������

It is clear that the intersection automaton accepts empty infinite
runs, i.e., Lω(B) = Lω(B¬ϕ) ∩ Lω(BT) = ∅. Hence, we can conclude
that (T, l) |= ϕ. �

4.1.4 Computation Tree Logic

Linear temporal logic is used to describe properties of sequences
of states, and a transition system satisfies an LTL formula if all its
paths satisfy the specification. However, in some applications we may
be interested in the existence of at least one successful/false path
[Clarke et al., 1986]. To describe the branching time structure starting
at a particular state, two path quantifiers are used:

• ∀: for all paths and

• ∃: for some paths.

These two quantifiers are used in a particular state to specify that
all the paths or some of the paths starting from that state satisfy
certain property. Based on these quantifiers and temporal operators,
we can define computation tree logic formulas [Clarke et al., 1999,
Baier and Katoen, 2008].

4.1. Model Checking 95

Definition 4.6. Let P be a finite set of atomic propositions. Computa-
tion Tree Logic (CTL) formulas are state formulas recursively defined
from predicates in P according to the following rules.

1. true, false, and pi are state formulas for all pi ∈ P;

2. if φ1 and φ2 are state formulas,
then φ1 ∧ φ2 and ¬φ1 are state formulas;

3. if φ1 and φ2 are state formulas,
then ◦φ1 and φ1 � φ2 are path formulas;

4. if ϕ is a path formula,
then ∃ϕ and ∀ϕ are state formulas;

CTL uses atomic propositions as its building blocks to make state-
ments about the states of a system. CTL then combines these propo-
sitions into formulas using logical operators and temporal operators.
Next, we are going to show that using only three operators ∃◦, ∃�, and
∃� is sufficient.

• ∀ ◦ φ = ¬∃ ◦ (¬φ)

• ∃♦φ = ∃[true � φ]

• ∀�φ = ¬∃♦(¬φ)

• ∀♦φ = ¬∃�(¬φ)

• ∀[φ1 � φ2] = ¬∃[¬φ2 � (¬φ1 ∧ ¬φ2)] ∧ ¬∃�(¬φ2)

Let’s see some examples of CTL formulas [Clarke et al., 1999,
Baier and Katoen, 2008]:

• ∃♦(start ∧ ¬ready) means that it is possible to get to a state
where start holds but not ready;

• ∀�(request → ∀♦ack) stands for the property that once a re-
quest is made it should be acknowledged eventually;

• ∀�(∀♦blink) means that everyone blinks infinitely often;

96 Verification of Hybrid Systems

• ∀�(∃♦recover) means that it is always possible to recover from
an error.

CTL formulas are all state formulas, and are interpreted over states
in a labeled transition system. They ask whether there exists a path (or
for all paths) from the state satisfying a certain property. Formally, we
define satisfaction of CTL formulas as follows.

Definition 4.7. A state s ∈ S in a labeled transition system (T, l) sat-
isfies a CTL formula φ, denoted by s |= φ if the following hold:

1. if φ = p, then s |= φ iff p ∈ l(s) and s |= ¬φ iff p /∈ l(s);

2. if φ = φ1 ∧ φ2 then s |= φ iff s |= φ1 and s |= φ2;

3. if φ = ∃ ◦ φ1 then s |= φ iff there exists s′ ∈ post(s) and s′ |= φ1;

4. if φ = ∀ ◦ φ1 then s |= φ iff for all s′ ∈ post(s), it holds that s′ |= φ1;

5. if φ = ∃φ1 � φ2 then s |= φ iff there exists a string α ∈ Sω such
that α(1) = s, α(i) → α(i + 1) for i ∈ N, α(j) |= φ2 for some j ≥ 1

and α(i) |= φ1 for all 1 ≤ i < j;

6. if φ = ∀φ1 � φ2 then s |= φ iff for all strings α ∈ Sω such that
α(1) = s, α(i) → α(i + 1) for i ∈ N, α(j) |= φ2 for some j ≥ 1

and α(i) |= φ1 for all 1 ≤ i < j.

For a CTL formula φ, we say that a labeled transition system (T, l)

satisfies φ, denoted as (T, l) |= φ, if and only if for all s0 ∈ S0, we have
s0 |= φ.

4.1.5 CTL Model Checking

Once such a temporal logic formula has been specified, the next step
is to make sure that the (designed) dynamical system, which can be
modeled as a labeled transition system, satisfies the specification. For-
mally, the CTL model checking problem can be formulated as: Given
a labeled transition system (T, l) and a CTL formula φ, determine if
(T, l) satisfies φ.

The basic idea of CTL model checking is to mark each state of T

with the set Sat(s) of sub-formulas of φ which are true in the state s

4.1. Model Checking 97

[Clarke et al., 1999, Baier and Katoen, 2008]. Initially, Sat(s) is just l(s).
The marking process then goes through series of stages. During the
ith stage, sub-formulas with i−1 nested CTL operators are processed.
When a sub-formula is processed, it is added to the labeling of each
state in which it is true. Once the algorithm terminates, we will have
(T, l) |= φ if and only if φ ∈ Sat(s0) for all s0 ∈ S0.

Note that any CTL formula can be expressed in terms of ¬, ∨, ∃◦,
∃�, and ∃�, which is called Existential Normal Form (ENF) of CTL.
Thus, for the intermediate stages of the algorithm it is sufficient to
be able to handle the following cases: φ is atomic or φ has forms ¬φ1,
φ1 ∨ φ2, ∃ ◦ φ1, ∃[φ1 � φ2], and ∃�φ1.

Then, we need to label the states based on the following rules:

• For the case when φ is atomic, it has been handled by the labeling
function l(s).

• For formulas of the form ¬φ1, we label those states that are not
labeled by φ1.

• For φ1 ∨ φ2, we label any state that is labeled either by φ1 or by
φ2.

• For ∃ ◦ φ1, we label every state that has some successor labeled
by φ1.

• For a formula φ of the form ∃[φ1 �φ2], we first find all states that
are labeled by φ2, and then search backwards along a path till an
initial state with all the states along the path are labeled with φ1.
All such states should be labeled with φ.

• The case that φ is of the form ∃�φ1 can be handled by decom-
position of the graph into nontrivial strongly connected com-
ponents. A strongly connected components (SCC) C is a maxi-
mal subgraph such that every node in C is reachable from every
other node in C along a directed path entirely contained within
C . C is nontrivial if either it has more than one node or it con-
tains one node with a self-loop. The following steps are taken:

98 Verification of Hybrid Systems

1. First, we obtain a sub-transition system T ′ with states in
S′, which are labeled with φ1, by deleting the states where
φ1 is not labeled and all links to or from these states.

2. Then, we partition T ′ into strongly connected components.

3. Next, we find those states that belong to nontrivial com-
ponents, and then work backwards to find all those states
that can be reached by a path in which each state is labeled
by φ1. All such states should be labeled with φ.

In summary, in order to handle an arbitrary CTL formula φ, we
successively apply the state labeling algorithm to the sub-formulas of
φ, starting from the shortest, most deeply nested sub-formulas, and
work onwards to include all of φ. By proceeding in this manner we
guarantee that whenever we process a sub-formula of φ, all of its sub-
formulas have already been processed. It is known that the computa-
tion of CTL model checking is of polynomial complexity [Clarke et al.,
1999, Baier and Katoen, 2008].

Example 4.5. Let’s revisit the labeled transition system (T, l)

a�� �������	s0

��
∅�� �������	s1

a�� �������	s2

��
.

We know that the labeled transition system satisfies the LTL for-
mula ϕ = ♦�a from Example 4.4. Now, we will check whether it sat-
isfies the CTL formula Φ = ∀♦∀�a.

First, we rewrite Φ in ENF as Φ = ¬(∃�(∃♦(¬a))). From sub-
formula inside to the more complicated formula

• Sat(a) = {s0, s2}

• Sat(¬a) = {s1}

• Sat(∃♦¬a) = {s0, s1}

• Sat(∃�(∃♦¬a)) = {s0}

• Sat(¬(∃�(∃♦¬a))) = {s1, s2}.

Hence, s0 /∈ Sat(Φ), so that the CTL formula Φ = ∀♦∀�a is not
satisfied. �

4.2. Bisimulation 99

The difference between the semantics of LTL and CTL is that LTL
formulas are interpreted over words, whereas CTL formulas are inter-
preted over the tree of trajectories generated from a given state of a
transition system. CTL and LTL have different expressive power. For
example, the CTL formula φ = ∀�∃♦p cannot be expressed by any
LTL formula. Also, it can be shown that the LTL formula ϕ = ♦�a

cannot be expressed by any CTL formula. So, LTL and CTL are incom-
parable, but LTL and CTL do overlap, as it can be seen from the fact
that the CTL formula ∀�p is equivalent to the LTL formula �p. Both
LTL and CTL are subsets of CTL*, which is a generalization of CTL by
allowing Boolean combinations and nestings of temporal operators.
CTL* is also called full branching time logic because of its branching
time structure, i.e., at each moment, there may exist alternate courses
representing different possible futures. It was proposed as a unifying
framework which subsumes both CTL and LTL, as well as a num-
ber of other logic systems. Due to space limitation, we will not give
details for CTL*, interested readers may refer to [Clarke et al., 1999,
Baier and Katoen, 2008] and references therein for further details.

4.2 Bisimulation

Model checking tools face a combinatorial increase of the size of the
state-space, commonly known as the state explosion problem. Re-
searchers have developed symbolic algorithms, partial order reduc-
tion methods, abstractions and on the fly model checking in order to
cope with this problem, see e.g., [Clarke et al., 1999, Baier and Katoen,
2008]. These tools were initially developed to reason about the logical
correctness of discrete state systems, but have since been extended to
deal with real-time and some other special cases of hybrid systems,
see e.g., [Alur et al., 1995, Henzinger et al., 1997].

4.2.1 Simulation Relation

In particular, we focus on abstraction based approaches by obtaining
equivalent quotient transition systems that satisfy the same temporal
logics. Here the quotient is taken with respect to simulation or bisim-

100 Verification of Hybrid Systems

ulation equivalences [Milner, 1989] as defined for labeled transition
systems as below. Here, we follow the notations in [Baier and Katoen,
2008].

Definition 4.8. Let Ti = (Si, S0
i ,→) with i = 1, 2 be two transition

systems1, and li : Si → 2P label their states respectively. A relation
R ⊆ S1×S2 is said to be a simulation relationship from labeled transition
system (T1, l1) to (T2, l2) if the following hold:

1. For any (s1, s2) ∈ R, their labels are the same, i.e., l1(s1) = l2(s2);

2. For any initial state s1 ∈ S0
1 , there exists s2 ∈ S0

2

such that (s1, s2) ∈ R;

3. For any pair (s1, s2) ∈ R, if s′
1 ∈ post(s1) in T1 then there exists

s′
2 ∈ S2 such that s′

2 ∈ post(s2) in T2 and (s′
1, s′

2) ∈ R.

Intuitively, a labeled transition system simulates another system
if, for every computation in the simulated system, there is a match-
ing (w.r.t. labels) computation in the simulating system. If there ex-
ists a simulation relationship R from labeled transition system (T1, l1)

to (T2, l2), we also say that (T1, l1) is simulated by (T2, l2), or (T2, l2)

simulates (T1, l1), denoted as (T1, l1) ≺R (T2, l2), since for any trace
in (T1, l1) one can find a corresponding equivalent trace in (T2, l2).
Hence, if (T1, l1) ≺R (T2, l2), which also results T (T1, l1) ⊆ T (T2, l2)

and Tω(T1, l1) ⊆ Tω(T2, l2).
Relation R is said to be bi-simulation relation between (T1, l1) and

(T2, l2) if R is a simulation relation from (T1, l1) to (T2, l2) and R−1 is
a simulation relation from (T2, l2) to (T1, l1), i.e., (T2, l2) ≺R−1 (T1, l1).
Here R−1 ⊆ S2 × S1 is a binary relation (between S2 and S1) such
that (s2, s1) ∈ R−1 if and only if (s1, s2) ∈ R. If such a bi-simulation
relation R exists between (T1, l1) and (T2, l2), then we say that (T1, l1)

is bisimilar to (T2, l2), denoted as (T1, l1) ∼=R∪R−1 (T2, l2). Usually, we
only care about the existence of such an R, so we usually omit R and
simply write (T1, l1) ≺ (T2, l2) or (T1, l1) ∼= (T2, l2). Since (T1, l1) ∼=

1Since we adopt the label based simulation relation and only concern the existence
of actions, it is possible to omit the definition of action sets Ui and treat all actions
equally.

4.2. Bisimulation 101

(T2, l2) implies both (T1, l1) ≺ (T2, l2) and (T2, l2) ≺ (T1, l1), so two
bisimilar labeled transition systems are trace equivalent, i.e., (T1, l1) ∼=
(T2, l2) implies T (T1, l1) = T (T2, l2) and Tω(T1, l1) = Tω(T2, l2).

Since two bisimilar labeled transition systems generate exactly the
same traces, they will satisfy the same collection of LTL formulas.
Namely, they cannot be distinguished by LTL formulas, i.e., they are
LTL equivalent, denoted as (T1, l1) ≡LT L (T1, l1). However, two trace
equivalent labeled transition systems may not be bisimilar. The fol-
lowing example illustrates this fact.

Example 4.6. Consider the labeled transition systems T1 and T2 over
atomic proposition P = {ready, paid, Coke, Pepsi} as follows

T1 :

���������	
������q0

��

{ready}

�������	q1

����
��

��
��

�

���
��

��
��

��

{paid}�������	q2

��

{Coke}

�������	q3

{P epsi}

T2 :

���������	
������s0

����
��

��
��

�

���
��

��
��

��

{ready}

�������	s1

��

{paid}
�������	s2

��

{paid}

�������	s3

��

{Coke}

�������	s4

��

{P epsi}

For these labeled transition systems,

Tω(T1, l1) = (ready · paid · (Coke + Pepsi))ω = Tω(T2, l2).

Hence, they are trace equivalent that implies (T1, l1) ≡LT L (T1, l1).
However, they are not bisimilar, as we are going to show in Exam-
ple 4.8 later. Actually, these two labeled transition systems really be-
have differently. T1 allows customers to choose either Pepsi or Coke
after payment, while T2 refuses to provide any options to customers
and picks the next state nondeterministically by itself. To see the dif-
ference, we can check a CTL formula Φ = ∃ ◦ (∃ ◦ Coke ∧ ∃ ◦ Pepsi),
which basically asks whether it is possible to choose after payment.
For this particular example we have (T1, l1) |= Φ but (T2, l2) �|= Φ. �

102 Verification of Hybrid Systems

From this example, we can see that it is possible to distinguish
two trace equivalent but not bisimilar labeled transition systems using
CTL formulas. Actually, the reverse is also true. If two labeled transi-
tion systems cannot be distinguished by CTL formulas, then they are
bisimilar. Namely, two labeled transition systems are CTL equivalent
if and only if they are bisimilar.

Therefore, a CTL model checking problem on a labeled transi-
tion system (T1, l1) can be conducted on a bisimilar labeled transition
system (T2, l2). We hope that the bisimilar system (T2, l2) has much
smaller state space compared to (T1, l1), and the computational com-
plexity can be reduced. Furthermore, bisimulation preserves not only
CTL properties but also all CTL* properties [Baier and Katoen, 2008,
Clarke et al., 1999].

4.2.2 Bisimulation Quotient

To reduce the computational complexity of model checking, we try to
reduce the size of the state space of a transition system by clustering
all bisimilar (equivalent) states. For such a purpose, we introduce self-
bisimulation relation for a labeled transition system first.

Definition 4.9. Consider a labeled transition system (T, l) and a bi-
nary relation R ⊆ S × S. The relation R is called a self-bisimulation
relation for (T, l) if the following hold:

• ∀(s1, s2) ∈ R : l(s1) = l(s2).

• ∀s
′

1 ∈ post(s1),∃s
′

2 ∈ post(s2) with (s
′

1, s
′

2) ∈ R.

• ∀s
′

2 ∈ post(s2),∃s
′

1 ∈ post(s1) with (s
′

1, s
′

2) ∈ R.

States s1 and s2 are bisimilar denoted as s1 ∼ s2 if there exists
such a binary relation R, defined in the above definition, in (T, l). The
bisimulation relation defined above forms an equivalence relation as
it is reflexive, symmetric and transitive. Since R is an equivalence rela-
tion on S, it therefore induces a partition of the state set into a number
of equivalent classes S =

⋃
s∈S[s]R, where [s]R is a collection if all

bisimilar states to s, namely [s]R = {s
′
∈ S|(s, s

′
) ∈ R}.

It can be easily shown that for any s, s′ ∈ S

4.2. Bisimulation 103

• s ∈ [s]R;

• if s′ ∈ [s]R, then [s]R = [s′]R;

• if s′ /∈ [s]R, then [s]R ∩ [s′]R = ∅;

• S =
⋃

s∈S[s]R.

Hence, the bisimulation relation R does induce a partition of the state
set S. For simplicity, we denote such a partition as S/R, which stands
for the quotient space, i.e., the set consisting of all equivalent classes.
Based on the quotient space, we can define a quotient transition sys-
tem as below.

Definition 4.10. Given a labeled transition system (T, l) and a bisim-
ulation relation R ⊆ S×S, the quotient transition system can be defined
as T/R = (S/R, S0/R,→R) where S/R = {[s]R}s∈S , the initial states

S0/R = {[s]R ∈ S/R : S0 ∩ [s]R �= ∅},

and for [s1]R, [s2]R ∈ S/R, ([s1]R, [s2]R) ∈→R if and only if there exist
s1 ∈ [s1]R and s2 ∈ [s2]R such that (s1, s2) ∈→. The new label map
lR : Q/R → 2P is defined as lR([s]R) = l(s).

Note that since if s′ ∈ [s]R then l(s′) = l(s) by definition, the new
label map lR is well-defined. Also, it can be checked that there exists a
relation on S × S/R that satisfies the bisimulation relation definition.
Particularly, we can choose R ⊆ S × S/R with (s′, [s]R) ∈ R if and
only if s′ ∈ [s]R. Then, we can conclude that (T, l) ∼=R∪R−1 (T/R, lR),
see e.g., [Baier and Katoen, 2008, Clarke et al., 1999] for more detailed
discussions. Hence, (T, l) ∼= (T/R, lR). The hope is that the quotient
transition systems T/R has much fewer number of states compared to
the original transition system T , so the model checking problem can
be significantly simplified. This idea is used for timed automata model
checking in the next section.

4.2.3 Computing Bisimulations

In the previous subsection, we obtain a quotient transition system
T/R, which is bisimilar to the original transition system and is called

104 Verification of Hybrid Systems

a bisimulation quotient of T . The crucial property of bisimulation is that
for every equivalence class P ∈ S/R, the predecessor region pre(P)

is a union of equivalence classes. Therefore, if P1, P2 ∈ S/R, then
pre(P1) ∩ P2 is either the empty set or all of P2.

Finding an equivalent relation is equivalent to finding the equiv-
alent classes in S/R. Along this line the following algorithm from
[Baier and Katoen, 2008] tries to determine a partition of S so that the
corresponding equivalent relation is a bisimulation.

Algorithm 4.1 (Bisimulation Algorithm).
Initialization: {(s1, s2)|l(s1) = l(s2)} = S/R

Refine:
while ∃P, P ′ ∈ S/R such that P ∩ pre(P ′) �= P and P ∩ pre(P ′) �= ∅ do

P1 = P ∩ pre(P ′),
P2 = P \ pre(P ′)

S/R = (S/R \ {P}) ∪ {P1, P2};
end while
return S/R

If the algorithm terminates within a finite number of iterations of
the loop, then there is a finite bisimulation quotient, and the algorithm
returns a finite partition of the state space which is the coarsest bisim-
ulation (i.e., the bisimulation with the fewest equivalence classes).

This is a pseudo algorithm. Implementation and termination for
general transition systems are not obvious. For finite state systems,
one can implement the algorithm and guarantee that it terminates be-
cause we can enumerate the states for the finite state system.

Example 4.7. Consider the labeled transition system (T1, l1) in Ex-
ample 4.6. For this example, the state is S = {s0, s1, s2, s3, s4}. As
the initial partition, we obtain S/R = {{s0}, {s1, s2}, {s3}, {s4}} that
is consistent with the labels. Then, apply the bisimulation algorithm
and consider P = {s3} and P

′
= {s3} from S/R. Calculation shows

that pre(P ′) = {s1}. So P1 = P ∩ Pre(P ′) = {s1} and P2 =

P \ Pre(P ′) = {s2}. Then, we update the partition of S as S/R =

{{s0}, {s1}, , {s2}, {s3}, {s4}}, which is trivial as it contains all the in-
dividual states. The algorithm stops and derives a quotient transition

4.2. Bisimulation 105

system of T1 as T1 itself. �

The bisimulation algorithm can also be used to check the bisimilar-
ity of two transition systems (T1, l1), (T2, l2) with mutually exclusive
states, i.e., S1 ∩ S2 = ∅. For such a purpose, the following method can
be used.

• Compose (T1, l1) and (T2, l2) as T1 ⊕ T2 = (S1 ∪ S2,→1 ∪ →2

, S0
1 ∪ S0

2 , l), where l(s) = l1(s) for s ∈ S1 and l(s) = l2(s) for
s ∈ S2.

• Use bisimulation algorithm to calculate the quotient of (T1 ⊕

T2, l), and check whether ∀s0
1 ∈ S0

1 ,∃s0
2 ∈ S0

2 , such that s0
1 ∼ s0

2,
and whether ∀s0

2 ∈ S0
2 ,∃s0

1 ∈ S0
1 , such that s0

2 ∼ s0
1. If yes, then

(T1, l1) ∼= (T2, l2). Otherwise, (T1, l1) � (T2, l2)

We illustrate the idea using the vending machine example.

Example 4.8. Consider the labeled transition systems (T1, l1) and
(T2, l2) in Example 4.6. To check whether (T1, l1) ∼= (T2, l2), we first
compose these two labeled transition systems together as (T1 ⊕ T2, l):

���������	
������q0

��

{ready}

�������	q1

����
��

��
��

�

���
��

��
��

��

{paid}�������	q2

��

{coke}

�������	q3

{pepsi}

���������	
������s0

����
��

��
��

�

���
��

��
��

��

{ready}

�������	s1

��

{paid}
�������	s2

��

{paid}

�������	s3

��

{coke}

�������	s4

��

{pepsi}

Then, we run the bisimulation algorithm on the com-
posed system with the initial partition as S/R = {{q0, s0},

{q1, s1, s2}, {q2, s3}, {q3, s4}}

Consider P = {q1, s1, s2} and P ′ = {q2, s3}. We have Pre(P ′) =

{q1, s1}, so P ∩ Pre(P ′) = {q1, s1} �= P and P ∩ Pre(P ′) �= ∅, so we
refine the partition as S/R = {{q0, s0}, {q1, s1}, {s2}, {q2, s3}, {q3, s4}}.

106 Verification of Hybrid Systems

Next, consider P = {q1, s1} and P ′ = {q3, s4}. We have Pre(P ′) =

{q1, s2}, so P ∩Pre(P ′) = {q1} �= P and P ∩Pre(P ′) �= ∅, so we refine
the partition as S/R = {{q0, s0}, {q1}, {s1}, {s2}, {q2, s3}, {q3, s4}}.

Next, consider P = {q0, s0} and P ′ = {q1}. We have Pre(P ′) =

{q0}, so P ∩ Pre(P ′) = {q0} �= P and P ∩ Pre(P ′) �= ∅, so we refine
the partition as
S/R = {{q0}, {s0}, {q1}, {s1}, {s2}, {q2, s3}, {q3, s4}}.

The problem now is that there does not exist an initial state in T2

which is in the same equivalent class of q0, so we terminate the algo-
rithm and conclude that (T1, l1) and (T2, l2) are not bisimilar. �

In the next sections, we will use the idea of bisimulation quotient
transition system and model checking techniques to investigate the
verification problems for timed and hybrid automata.

4.3 Timed Automata

Timed automata were introduced in [Alur and Dill, 1994] as formal
models for real time programs. Timed automata have been suc-
cessfully used in modeling, analysis and design of manufacturing
systems [Asarin and Maler, 1999], scheduling and robotic systems
[Quottrup et al., 2004]. In this subsection, we first formally define
timed automata and show them to be a special case of hybrid au-
tomata. Then, the model checking of real-time properties for timed
automata is discussed by obtaining a finite bisimulation quotient tran-
sition system of timed automata. The development mainly follows
[Baier and Katoen, 2008].

4.3.1 Timed Automata

Let C = {x1, · · · , xn} be a finite collection of clock variables, each of
which takes values in R. Let x = (x1, · · · , xn) ∈ Rn denote a valuation
for all xi ∈ C.

Definition 4.11. The set, Φ(C), of clock constraints of C, is a set of finite
logical expressions defined inductively by δ ∈ Φ(C) if:

δ := (xi ≤ c)|(xi < c)|(xi ≥ c)|(xi > c)|δ1 ∧ δ2,

4.3. Timed Automata 107

where δ1, δ2 ∈ Φ(C), xi ∈ C and c ≥ 0 is a rational number.

For example, let C = {x1, x2}, then the clock constraints Φ(C) may
consist of the following logical expressions:

• (x1 ≤ 3), (x2 ≥ 1), (x1 > 3), (x2 > 1) ∈ Φ(C); also

• (x2 = 1) ∈ Φ(C), since (x2 = 1) ⇔ (x2 ≤ 1) ∧ (x2 ≥ 1);

• (1 ≤ x2 ≤ 3) ∈ Φ(C), since (1 ≤ x2 ≤ 3) ⇔ (x2 ≥ 1) ∧ (x2 ≤ 3);

But, the expression (x1 ≤ x2) /∈ Φ(C). The atomic clock constraints,
denoted as ACC(C), over a set of clock variables C are those clock
constraints in the form of xi ≥ c, xi > c, xi ≤ c or xi < c, where xi ∈ C

and c ≥ 0 is a rational number. In addition, |C| denotes the number of
clocks. Then, the clock values can be seen as vectors in R|C| or in R

|C|
≥0

as clocks cannot be negative.

Definition 4.12. [Alur and Dill, 1994] A timed automaton A is a tuple
(Q, Q0, E ,C, I,→), where

• Q: finite set of states,

• Q0: finite set of initial states,

• E : finite set of events,

• C: finite set of clocks,

• I : Q → Φ(C) labels each q ∈ Q with a clock constraint,

• →⊆ Q× E × Φ(C)× 2C ×Q is a transition relation. An
element (q, e, ϕ, λ, q′) represents a transition from q to q′

on event e such that the clock constraint ϕ ∈ Φ(C) and
resetting the clocks λ ⊆ C to zero .

Let’s consider a timed automaton example to illustrate the defini-
tion.

Example 4.9. Consider a timed automaton A = (Q, Q0, E ,C, I,→),
where Q = {q1, q2}, Q0 = {q1}, E = {a, b}, C = {x1, x2}, I(q1) =

I(q2) = R2, and the transition relation→ is defined as

→= {(q1, a, (x1 ≤ 3) ∧ (x2 ≤ 2), {x1}, q2), (q2, b, (x1 ≤ 1), {x2}, q1)}.

108 Verification of Hybrid Systems

Graphically, the timed automaton A can be represented as

�� ������ !q1

a, (x1≤3)∧(x2≤2)

x1:=0
��

������ !q2

b, (x1≤1)

x2:=0��

�

A timed automaton A = (Q, Q0, E ,C, I,→) can be viewed as a
special case of a hybrid automaton HA = (Q, X, f, init, Inv, E, G, R)

where

• Q is the same;

• X = R
|C|
≥0 defines the domain of clocks;

• f(q, x) = 1 for all q ∈ Q, where 1 stands for the vector with all
elements equal one;

• init = Q0 × {0}, where 0 stands for the null vector;

• Inv(q) = {x ∈ X | x satisfies the clock constraints in I(q)};

• (q, q′) ∈ E when there exist e ∈ E , clock constraint ϕ ∈ Φ(C)

and clocks λ ⊆ C such that (q, e, ϕ, λ, q′) ∈→; and for this case,
G(q, q′) = {x ∈ X | x satisfies the clock constraints in ϕ} and
R(q, q′, xi) = 0 if xi ∈ λ while xi remains unchanged otherwise.

Example 4.10. Consider the timed automaton A = (Q, Q0, E ,C, I,→)

in the previous example. It can be represented as a hybrid automaton
HA = (Q, X, f, init, Inv, E, G, R) with

• Q = {q1, q2};

• x = {x1, x2}, and X = R2
≥0;

• Init = {(q1,

[
0

0

]
)};

• f(q, x) =

[
1

1

]
for all (q, x);

4.3. Timed Automata 109

• Inv(q) = R2 for all q ∈ Q;

• E = {(q1, q2), (q2, q1)};

• G(q1, q2) = {x ∈ R2 : (x1 ≤ 3) ∧ (x2 ≤ 2)},
and G(q2, q1) = {x ∈ R2 : (x1 ≤ 1)};

• R(q1, q2, x) = {0, x2}, R(q2, q1, x) = {x1, 0},

Graphically,

HA :
x1:=0

x2:=0
�� "#$%&'()q1

ẋ1 = 1

ẋ2 = 1

(x1≤3)∧(x2≤2)

x1:=0 ��

"#$%&'()q2

ẋ1 = 1

ẋ2 = 1

(x1≤1)

x2:=0��

So, a timed automaton can be seen as a special case of hybrid au-
tomata with constant one continuous flow rates, zero initial condition,
rational constant bounds, and elements always being reset to zero. �

4.3.2 Timed Computation Tree Logic

In temporal logic, we can specify some properties that eventually hold
true. However, we cannot explicitly specify when the property will
be satisfied. Timed automata, on the other hand, provide us with the
modeling power to explicitly record the time when certain states are
visited and how long the system stays in that state. Hence, the tempo-
ral logic needs to be extended so to include time variables. In partic-
ular, we briefly take a look at timed computation tree logic (TCTL),
which is a real-time variant of computation tree logic [Alur et al.,
1990].

Definition 4.13. Let P be a finite set of atomic propositions, and C be
a finite set of clock variables. Timed Computation Tree Logic (TCTL)
formulas are state formulas recursively defined from predicates in P
and atomic clock constraints of C according to the following rules.

1. true, false, p and g are state formulas for all predicates p ∈ P

and atomic clock constraints g ∈ ACC(C);

110 Verification of Hybrid Systems

2. if Φ1 and Φ2 are state formulas, then Φ1 ∧ Φ2 and ¬Φ1 are state
formulas;

3. if Φ1 and Φ2 are state formulas, then Φ1 �
J Φ2 is a path formula,

where J ⊆ R≥0 is an interval whose bounds are rational numbers;

4. if ϕ is a path formula, then ∃ϕ and ∀ϕ are state formulas;

Compared with the definition of CTL, there is no “next” operator
in TCTL. This is due to the fact that we are arguing timed properties
over the dense real time, so there is no meaningful next step from the
current time instant. But, similar to CTL, we can use the “until” oper-
ator to define “eventually” and “always” as

• ∃♦JΦ = ∃true �J Φ,

• ∀♦JΦ = ∀true �J Φ,

• ∃�JΦ = ¬∀♦J¬Φ,

• ∀�JΦ = ¬∃♦J¬Φ.

In TCTL, one can explicitly specify properties hold within a time
interval J . The interval J is usually written in an inequality form,
e.g., �≥2 denotes �[2,∞) and �<8 denotes �[0,8). Note that the special
case J = [0,∞) can be reduced to a traditional CTL operator as the
timing constraints t ≥ 0 will trivially hold. That is ♦[0,∞)Φ = ♦Φ,
�[0,∞)Φ = �Φ and Φ1 �

[0,∞) Φ2 = Φ1 � Φ2.
As an example, ∀�(on → ∀♦>2¬on) is a valid TCTL that requests

the switch be always turned off within an interval of length 2, imme-
diately after it is turned on.

The semantics of TCTL are interpreted over a timed automaton
as a labeled transition system. First, some notation is helpful before
translating a timed automaton into a transition system between its
states. The state of a timed automaton A = (Q, Q0, E ,C, I,→) is a tu-
ple (q, η), where q ∈ Q stands for the discrete location of the state and
η ∈ R|C| stands for the clock value. Since time values cannot be nega-
tive, we restrict η ∈ R

|C|
≥0. Here, |C| stands for the number of the clock

variables, and the value of a particular clock variable is represented

4.3. Timed Automata 111

as η(x) ∈ R≥0 for some x ∈ C. The time elapse is captured by the
notation of η + d for nonnegative real d ≥ 0, and η + d is defined as
new clock values with (η + d)(x) = η(x) + d for all x ∈ C. We can also
define the reset option of a clock variable due to discrete transitions. A
subset of clock variable X ⊆ C being reset is denoted as RX · η, where

RX · η(x) =

{
η(x) x /∈ X,

0 x ∈ X.

The label of a timed automaton is a map from the discrete location
Q to a subset of atomic propositionsP, i.e., l : Q → P. A labeled timed
automaton is then denoted as (A, l). A labeled timed automaton (A, l)

with A = (Q, Q0, E ,C, I,→) can be seen as a labeled transition system
(T t

A, L), where the transition system T t
A = (QA, Q0

A, E ∪ R≥0,→A) is
defined by

• QA = {(q, η) ∈ Q× R|C| | η(x) satisfies I(q)},

• Q0
A = {(q, η) ∈ Q0 × R|C| | η(x) = 0, ∀x ∈ C},

• (q, η)
δ

A
�� (q, η + δ) for δ ∈ R>0 if for all 0 < δ′ ≤ δ, (η + δ′)(x)

satisfies I(q),

• (q, η)
e

A
�� (q′,Rλ · η) if (q, e, ϕ, λ, q′) ∈→ and η(x) satisfies ϕ.

Note that the transition system T t
A has infinite number of states,

and two kinds of transitions, time driven transitions and discrete-
event transitions. The label L for T t

A is a map from QA to the subset of
atomic propositions P or subsets of atomic clock constraints ACC(C),
i.e., L(q, η) ⊆ P ∪ACC(C). More precisely,

L((q, η)) = l(q) ∪ {g ∈ ACC(C) | η |= g},

which basically labels the atomic propositions that hold for the loca-
tion q and the atomic clock constraints satisfied by the clock value
of the state (q, η). Here, by saying that the clock value η satisfies an
atomic clock constraint g ∈ ACC(C), denoted as η |= g, for atomic
clock constraint, we mean

112 Verification of Hybrid Systems

• η |= true;

• η |= x < c iff η(x) < c for x ∈ C;

• η |= x ≤ c iff η(x) ≤ c for x ∈ C;

• η |= x > c iff η(x) > c for x ∈ C;

• η |= x ≥ c iff η(x) ≥ c for x ∈ C;

where η(x) : C→ R≥0 is a clock valuation.
Then, we are ready to interpret a TCTL formula over a labeled

timed automaton (A, l). TCTL formulas are state formulas arguing
about a state (q, η) of (A, l), and the satisfaction of the state (q, η) for a
TCTL formula Φ, denoted as (q, η) |= Φ, is defined recursively as:

• (q, η) |= true

• (q, η) |= p iff p ∈ L(q, η) for p ∈ P

• (q, η) |= g iff η |= g for g ∈ ACC(C)

• (q, η) |= ¬Φ iff not (q, η) |= Φ

• (q, η) |= Φ1 ∧ Φ2 iff (q, η) |= Φ1 and (q, η) |= Φ2

• (q, η) |= ∃ϕ iff there exists a path from (q, η) satisfies ϕ

• (q, η) |= ∀ϕ iff all the paths from (q, η) satisfy ϕ

A path formula ϕ is interpreted over a path π,

(q0, η0)
δ0

A
�� (q0, η0 + δ0)

e0

A
�� (q1, η1)

δ1

A
�� (q1, η1 + δ1)

e1

A
�� · · · .

• The path π satisfies the path formula ϕ = Φ �J Ψ, denoted as
π |= Φ�JΨ iff there exists i s.t. (qi, ηi+d) |= Ψ for some 0 ≤ d ≤ δi

with
∑i−1

k=0 δk + d ∈ J , and ∀j ≤ i, (qj, ηj + d′) |= Φ ∨ Ψ, for any
d′ ∈ [0, δj], with

∑j−1
k=0 δk + d′ ≤

∑i−1
k=0 δk + d.

• The path π satisfies the path formula ϕ = ♦JΨ, denoted as π |=

♦JΨ iff there exists i ≥ 0 s.t. (qi, ηi + d) |= Ψ for some 0 ≤ d ≤ δi

with
∑i−1

k=0 δk + d ∈ J .

4.3. Timed Automata 113

• The path π satisfies the path formula ϕ = �JΨ, denoted as π |=

�JΨ iff for all i ≥ 0 s.t. (qi, ηi + d) |= Ψ for any 0 ≤ d ≤ δi with∑i−1
k=0 δk + d ∈ J .

Given a TCTL state formula Φ, we denote all states in (A, l) satis-
fying Φ as Sat(Φ) with

Sat(Φ) = {(q, η) | (q, η) |= Φ}.

A labeled timed automaton (A, l) satisfies a TCTL formula Φ, denoted
as (A, l) |= Φ, if and only all its initial states satisfy Φ, i.e., (q0, 0) ∈

Sat(Φ) for all q0 ∈ Q0. From the definition, it is clear that (A, l) |= Φ if
and only if (T t

A, L) |= Φ.
Note that CTL can be considered as a subclass of TCTL with all

intervals J being [0,∞), for which t ∈ J trivially holds. On the other
hand, it can be shown that any TCTL Φ can be converted to an equiv-
alent TCTL with all intervals being [0,∞), denoted as Φ̄, see e.g.,
[Baier and Katoen, 2008]. The basic idea for such a conversion is to
introduce additional clock variables z in the timed automaton to track
how long a certain sub-formula of Φ remains true. More precisely,
given a labeled timed automaton (A, l), with A = (Q, Q0, E ,C, I,→)

and l : Q → 2P and a TCTL formula over C andP. We introduce a new
clock variable z into C, and re-define A⊕ z = (Q, Q0, E ,C∪{z}, I,→).
The state in A⊕ z will be (q, η ⊕ z), and it holds that

• (q, η) |= ∃(Φ �J Ψ) iff (q, η ⊕ z) |= ∃((Φ ∨Ψ) � ((z ∈ J) ∧Ψ)).

• (q, η) |= ∀(Φ �J Ψ) iff (q, η ⊕ z) |= ∀((Φ ∨Ψ) � ((z ∈ J) ∧Ψ)).

For example, the TCTL formula ∃♦≤2Φ can be converted to a CTL
formula ∃♦((z ≤ 2) ∧ Φ). They are equivalent in the sense that a la-
beled timed automaton (A, l) |= ∃♦≤2Φ if and only if (A ⊕ z, l) |=

∃♦((z ≤ 2)∧Φ). Note that the TCTL model checking problem has been
converted to a CTL model checking problem. Hence, without loss of
generality, we will focus on CTL model checking for timed automata.

4.3.3 Timed Automata Model checking

The CTL model checking problem for a labeled timed automata is
still difficult since there are infinite number of states and transitions

114 Verification of Hybrid Systems

in timed automata. To overcome this difficulty, we first abstract all
transitions due to time elapse into one transition, which is called the
time-abstract transition system of the timed automaton, and then derive
a finite quotient transition system, called a region transition system of
the timed automaton, which is bisimilar to the time-abstract transition
system.

First, we introduce the time-abstract transition system of the corre-
sponding timed automata. Given a labeled timed automaton (A, l),
with A = (Q, Q0, E ,C, I,→) and l : Q → 2P , its corresponding labeled
time-abstract transition system is (TA, L) with TA = (QA, Q0

A, E ∪

{τ}, ⇀) and L : QA → 2P ∪ ACC(C). The state sets QA, Q0
A are the

same as defined in T t
A, i.e., QA = {(q, η) ∈ Q×R|C| | η(x) satisfies I(q)}

and Q0
A = {(q, η) ∈ Q0 × R|C| | η(x) = 0, ∀x ∈ C}. The transition

relation ⇀⊆ QA × (E ∪ {τ}) ×QA is defined as:

• For q ∈ Q, ((q, η), τ, (q, η′)) ∈⇀ if there exists d ≥ 0 such that
η′ = η + d and for all 0 < δ ≤ d, (η + δ)(x) satisfies I(q);

• For an e ∈ E , ((q, η), e, (q′ , η′)) ∈⇀ if (q, e, ϕ, λ, q′) ∈→ and η(x)

satisfies ϕ and η′ = Rλ · η.

The rationale for introducing the labeled time-abstract transition
system for a labeled timed automaton is due to the fact that a CTL
formula is satisfied by (A, l) if and only if it is satisfied by (TA, L).
However, the direct application of CTL model checking techniques to
(TA, L) is infeasible since the state space of TA is infinite, i.e., TA is an
infinite transition system. Next, we are going to show that there exists
a finite quotient transition system of (TA, L), called region transition
system, that is bisimilar to (TA, L).

It can be shown that all constants can be assumed to be in-
tegers without loss of generality. For a timed automaton A =

(Q, Q0, E ,C, I,→), αA = (Q, Q0, E ,C, Iα,→α) is another timed au-
tomaton obtained simply by replacing all constant c in A by αc,
where α is an arbitrary positive rational number. For a clock valua-
tion η : C → R

|C|
≥0, αη : C → R

|C|
≥0 is defined as αη(x) = α(η(x)) for all

x ∈ C. Let TA and TαA be the time-abstract transition systems corre-
spond to timed automata A and αA respectively. The labels for TαA is

4.3. Timed Automata 115

defined as Lα(q, η) = L(q, 1
α

η).

Lemma 4.1. [Alur and Dill, 1994] (TA, L) is bisimilar to (TαA, Lα).

Since all constants c are assumed to be rational, there exists an in-
teger α, say the common multiple of their denominators, such that all
constants in αA are integers. Therefore, we may assume without loss
of generality that all constants are integers. Let ci denote the largest
integer constant with which xi is compared.

In the following, we are going to show that there exists an auto-
bisimulation relation R for (TA, L) such that its quotient system has
finite states. Let’s define the following equivalent relationship and
prove that it is an auto-bisimulation relationship.

Consider the relationship R, we say ((q, η), (q′, η′)) ∈ R if the fol-
lowing hold:

1. q = q′;

2. for any xi ∈ C, it holds that η(xi) > ci and η′(xi) > ci, or

3. for any xi, xj ∈ C with η(xi), η′(xi) ≤ ci and η(xj), η′(xj) ≤ cj ,
all the following conditions hold

(a) (〈η(xi)〉 ≤ 〈η(xj)〉) ⇔ (〈η′(xi)〉 ≤ 〈η
′(xj)〉);

(b) �η(xi)� = �η′(xi)� and (〈η(xi)〉 = 0) ⇔ (〈η′(xi)〉 = 0).

Here we use the following notation. For any δ ≥ 0, 〈δ〉 denotes the
fraction part of δ, while �δ� the integer part, and δ = �δ� + 〈δ〉.

Two clock values η and η′ are called equivalent, denoted as η ≈ η′,
if there exists q ∈ Q such that ((q, η), (q, η′)) ∈ R. The collection of
all equivalent clock values is called a clock region, denoted by [η] =

{η′ | η ≈ η′}. The clock regions are either open triangles, open line
segments, open parallelograms or points as shown in the following
example.

Example 4.11. Consider the clock set C = {x, y}, Cx = 2, Cy = 1, the
clock region is depicted in Figure 4.1. For example, the collection of
all equivalent clock values for x = 3, y = 2 is {x > 2, y > 1}. The

116 Verification of Hybrid Systems

Figure 4.1: Example of clock equivalence.

clock region contains

(
0

0

)
is the origin itself. A clock region could

be an open triangle, for example {0 < x < 1, 0 < y < 1, x > y}. Line
segments, e.g., {x > 2, y = 1}, {x = 1, 0 < y < 1}, {1 < x < 2, x = y},
are also clock regions. �

Also, clock values η and η′ from the same clock region remain
equivalent after resetting. That is if η ≈ η′ then we haveRλ ·η ≈ Rλ ·η

′

for any subset of clocks λ ⊆ C.
Since the clock constants are all assumed to be integers, the clock

valuations η and η′ will satisfy the same clock constraints if they be-
long to the same clock region. Hence, for any ((q, η), (q′, η′)) ∈ R we
have L(q, η) = L(q′, η′). It can be easily seen that R defined above is
an equivalence relation.

Theorem 4.1. [Alur and Dill, 1994] R is a bisimulation relation.

Since R is a bisimulation relation for (TA, L), then we can derive
a quotient transition system using R that is bisimilar to (TA, L). In
particular, the quotient transition system can be obtained as

TA/R = (QA/R, Q0
A/R, E ∪ {τ}, ⇀R),

where

• QA/R = {(q, [η]) | (q, η) ∈ QA};

• Q0
A/R = {(q0, [η]) | (q0, η) ∈ Q0

A};

4.3. Timed Automata 117

• The transition relation ⇀R is defined as

– τ transition: For q ∈ Q, ((q, [η]), τ, (q, [η′])) ∈⇀R if for all
η ∈ [η] there exists d > 0 such that η′ = η + d and for all
0 ≤ δ ≤ d, (η + δ)(x) ∈ [η] ∪ [η′] ⊆ I(q);

– Discrete-transitions: For an e ∈ E , ((q, [η]), e, (q′ , [η′])) ∈⇀R

if for any η ∈ [η] there exists η′ ∈ [η′] such that
((q, η), e, (q′, η′)) ∈⇀ in TA.

The label for the quotient transition system TA/R is a map LR :

QA/R → 2P ∪ 2ACC(C) an is defined as

LR(q, [η]) = L(q, η).

Note that for any η1, η2 ∈ [η], L(q, η1) = L(q, η2). So, the above defini-
tion is consistent.

The quotient transition system TA/R is using the equivalent clock
regions as its states, so it is called a region transition system of the timed
automaton. Since the clock region is finite, TA/R is a finite transition
system. This is significant since we know how to do model checking
on finite state machines and algorithms always terminate. Combin-
ing with our knowledge that CTL* preserves on bisimilar transition
systems, so we can do CTL* or CTL model checking for a timed au-
tomaton on its corresponding region transition system, as long as the
CTL* or CTL formula is arguing over atomic propositions P defined
for discrete locations.

Example 4.12. [Baier and Katoen, 2008] To illustrate the region tran-
sition system, consider a timed automaton A with two locations:

l

x < 1

y < 1

a,x>0|y=0

�� l̀

x ≥ 0

y ≥ 0

b,(x>1)∧(y>1)|x=0

In this example, we do not label discrete locations, and we are just
interested in the property whether it is possible to keep the clock y

118 Verification of Hybrid Systems

Figure 4.2: The region transition system for the timed automata A in Example 4.12 in
[Baier and Katoen, 2008].

less than one, i.e., the CTL formula ∃�(y < 1). Using the definition of
clock region and region transition system above, we obtain the region
transition system of A, denoted as TA/R, in Figure 4.2. Clearly, TA/R

has finite states and the CTL model checking problem for A can be
carried on TA/R, which is a traditional CTL model checking problem
as we solved in the previous section. It is easy to show that TA/R |=

∃�(y < 1). So, A |= ∃�(y < 1) as A ∼= TA/R. �

4.4 Hybrid Automata

In timed automata, the continuous flow rates are constants equal to
one for all continuous variables (clocks). This maybe restrictive in real
applications, and motivates researchers to consider more general con-
tinuous dynamics in each mode. In particular, we consider multirate
automata and rectangular automata, which are extensions of timed
automata and are also special cases of hybrid automata [Henzinger,

4.4. Hybrid Automata 119

1995, Alur et al., 2000a].

4.4.1 Multirate Automata

Multirate automata [Alur et al., 1995] are generalizations of timed au-
tomata, where each variable follows constant, rational slopes, which
may be different in different locations.

Definition 4.14. A multirate automaton is a hybrid automaton H =

(Q, X, Init, f, Inv, E, G, R), where

• Q is a set of discrete variables, Q = {q1, · · · qm};

• X = {x1 · · · , xn}, X = Rn;

• For each location q ∈ Q, the set Init(q) is either empty or a
singleton set;

• f(q, x) = bq, where bq is a constant vector with all rational
components;

• Init(q) is a rectangle for all q;

• E ⊆ Q×Q;

• The guard set G(e) is a rectangle2 for all e = (q, q′) ∈ E; and

• For all e ∈ E, the reset map R(e, x) = R1(e, x) × · · · ×Rn(e, x),
where Ri(e, x) either equals xi (unchanged) or a constant
(the i-th component of x is reset to be a constant).

As an example, a multi-rate automaton is plotted below

x1:=0

x2:=0
�� "#$%&'()q1

ẋ1 = 2

ẋ2 = 3

(x1≤3)∧(x2≤2)

x1:=0 ��

"#$%&'()q2

ẋ1 = 2

ẋ2 = 1

(x1≤1)

x2:=0��

A multirate automaton is called initialized if after a discrete tran-
sition the bounds on the derivative of a variable change, then its

2A set R ⊂ Rn is called a rectangle if R =
∏n

i=1
Ri where Ri are bounded or

unbounded intervals whose finite end points are rational. For example, the set R =∏3

i=1
Ri with R1 = (1,∞), R2 = {3}, R3 = (−2, 3

4
) is a rectangle.

120 Verification of Hybrid Systems

value must be nondeterministically reset (“re-initialized”) within a
fixed interval. Mathematically, an initialized multirate automaton re-
quests that if for all transitions e = (q, q′) ∈ E and all 1 ≤ i ≤ n,
Ri(e, x) = {xi} then fi(q, ·) = fi(q

′, ·).
It is known that initialized multirate automata have finite bisimu-

lation quotient systems [Alur et al., 1995]. The main idea behind this
is to re-scale the slope of each variable to 1 so to convert the multirate
automaton into a timed automaton. In addition, it is necessary to ap-
propriately adjust all initial, invariant and guard sets, as well as reset
maps. From the region equivalence of the resulting timed automaton,
a bisimulation of the multirate automaton can be obtained.

To illustrate the idea, we consider a part of a multirate automaton
as below

x1:=0

x2:=0
�� "#$%&'()ẋ1 = 2

ẋ2 = 0.5

(x1≤4)∧(x2≤1)

x1:=0
��

It can be converted into a timed automaton

u1:=0

u2:=0
�� "#$%&'()u̇1 = 1

u̇2 = 1

(u1≤ 4

2
)∧(u2≤ 1

0.5
)

u1:=0
��

Hence, the LTL and CTL model checking problem for an initial-
ized multirate automaton can be carried on the corresponding region
transition system that is of a finite number of states, provided every
position occurring in temporal formulas is either an automaton loca-
tion or a rectangular set. Hence, the LTL and CTL model checking
problem for an initialized multirate automaton can terminate in finite
steps (called decidable) [Alur et al., 1995].

4.4.2 Rectangular Automata

A rectangular automaton is a special case of a hybrid automaton
where all initial regions, invariant sets, vector fields, guard sets and
reset maps are rectangular. Formally,

Definition 4.15. [Henzinger et al., 1995] A rectangular automaton is a
hybrid automaton H = (Q, X, Init, f, Inv, E, G, R), where

4.4. Hybrid Automata 121

• Q is a set of discrete variables, Q = {q1, · · · qm};

• X = {x1 · · · , xn}, X = Rn;

• f(q, x) = F (q) for all (q, x), where F (q) = F1(q)× · · · × Fn(q)

is a rectangle;

• Init(q) and Inv(q) are all rectangles for all q;

• E ⊆ Q×Q;

• G(e) = G1(e)× · · · ×Gn(e) is a rectangle for all e = (q, q′) ∈ E;

• For all e ∈ E, the reset map R(e, x) = R1(e, x) × · · · ×Rn(e, x),
where Ri(e, x) either equals xi (unchanged) or a fixed interval
(the i-th component of x is reset to any value within this interval).

In other words, the derivative of each variable stays between two
fixed bounds, which may be different in different discrete modes, i.e.,
lq(i) ≤ ẋi ≤ uq(i), for all 1 ≤ i ≤ n and q ∈ Q. With each discrete
transition between two modes (q, q′) ∈ E, the value of variable xi is
either left unchanged Ri(e, x) = {xi} or reset nondeterministically to
a new value within some fixed, constant interval when Ri(e, x) is a
fixed interval.

As an example, a rectangular automaton is plotted below.

0≤x≤1

0≤y≤1
�� *+,-./01q1

1 ≤ ẋ ≤ 2
1 ≤ ẏ ≤ 2

x < 5

(x>4)

x:=10 ��

*+,-./01q2

0 ≤ ẋ ≤ 1
1 ≤ ẏ ≤ 2

y < 10

y>9

x:=0��

A rectangular automaton is called initialized if after a discrete
transition the bounds on the derivative of a variable change, then
its value must be nondeterministically reset (“re-initialized”) within
a fixed interval. Mathematically, an initialized rectangular automaton
requests that if for all transitions e = (q, q′) ∈ E and all 1 ≤ i ≤ n,
Ri(e, x) = {xi} then Fi(q) = Fi(q

′).
An initialized rectangular automaton can be converted into a lan-

guage equivalent initialized multirate automaton [Henzinger et al.,
1995]. The main idea is to replace each variable xi, which satisfies a

122 Verification of Hybrid Systems

differential inclusion of the form ẋi ∈ [ai, bi] by two variables named
xl

i and xu
i , which satisfy ẋl

i = ai and ẋl
i = bi, respectively. The vari-

ables xl
i and xu

i keep track of the lower and upper bounds of xi. The
initial, invariant, and guard sets, as well as the reset maps must be
adjusted accordingly. This conversion from rectangular to a multirate
automaton is language preserving. Hence, from the existence of finite
bisimulation for an initialized multirate automaton, we can construct
a finite language equivalence of the original initialized rectangular au-
tomaton.

To illustrate the idea, we consider a part of a rectangular automa-
ton as below.

"#$%&'()ẋ ∈ [2, 3]

x≥5

������������

x<2 ��

It can be converted into a multirate automaton by introducing two
variables xu and xl, representing the upper and lower bounds of x

respectively.

"#$%&'()ẋu = 3

ẋl = 2

xu≥5, xl:=0

������������

xl<2, xu:=2 ��

It then can be converted into a timed automaton. Since we can ob-
tain a language equivalent finite transition system for an initialized
rectangular automaton, its LTL model checking problem can termi-
nate in finite steps (called decidable). However, the conversion from
rectangular to a multirate automaton may not preserve branching
properties, and in general, initialized rectangular automata do not ad-
mit finite bisimulation quotients.

4.5. Notes and Further Reading 123

Consider a rectangular automaton from [Alur et al., 2000a]:

q
1 2
1 2
x
y

≤ ≤
≤ ≤

0 1
0 1
x
y

≤ ≤
≤ ≤

0 1
0 1
x
y

≤ ≤
≤ ≤

()
: 0
Inv q
x =

()
: 0
Inv q
y =

It only contains one location Q = {q}, and all regions are given as rect-
angles. Since it only has one location, it is trivially initialized. How-
ever, it does not have a finite bisimulation quotient.

4.5 Notes and Further Reading

Temporal logic, transition systems and model checking have been
successfully used in applications such as the verification of soft-
ware and communication protocols [Clarke et al., 1999, Bérard et al.,
2010]. Software model checkers have been developed, such as SPIN

[Holzmann, 1997] for LTL model checking, symbolic model checker
NUSMV [Cimatti et al., 2002] and PRISM [Kwiatkowska et al., 2002]
for probabilistic model checking. Due to space limitation, our treat-
ment of these topics are unavoidably very brief and even superficial
in some cases. Interested readers may find a more detailed and com-
prehensive treatment of these topics in books, e.g., [Clarke et al., 1999,
Baier and Katoen, 2008].

Timed automata were proposed in the early 1990s [Alur and Dill,
1994], where a formal timed language theory on timed automata
was developed. Tools such as KRONOS [Yovine, 1997] and UPPAAL
[Behrmann et al., 2004] have been developed for the verification of
real time systems modeled as timed automata. Our discussions on
multirate automata and rectangular automata are mainly based on re-

124 Verification of Hybrid Systems

sults from [Henzinger, 1995, Alur et al., 2000a]. Generally speaking,
the reachability (hence verification) problem is undecidable for hy-
brid systems. Only a small portion of hybrid systems with simple or
specific continuous variable dynamics, such as timed automata and
initialized rectangular automata, have finite quotient transition sys-
tems, and thus the reachability problem for such specific hybrid sys-
tems is known to be decidable [Henzinger et al., 1998]. It is known
that even a slight generalization of the multirate automata or rect-
angular automata could make the reachability problem undecidable
[Henzinger et al., 1995, 1998]. Another class of hybrid automata with
finite bisimulation, called o-minimal hybrid automata, was intro-
duced in [Lafferriere et al., 2000]. In [Alur et al., 2000a], an excellent
survey on abstractions of hybrid automata was given.

Motivated by the undecidability of general hybrid systems, many
efforts have been devoted to the computation/approximation of
reachable sets for a given hybrid system. A good deal of research ef-
fort has focused on developing sophisticated techniques drawn from
optimal control, game theory, and computational geometry to calcu-
late or approximate the reachable sets for various classes of hybrid
systems, and several software tools have been developed for such a
purpose, see e.g., [Chutinan and Krogh, 2003, Tomlin et al., 2003]. The
tool HYTECH [Henzinger et al., 1997] uses symbolic reachability anal-
ysis for linear hybrid automata and represents the reachable sets as
polyhedrons. Linear hybrid automata are a special case of hybrid au-
tomata, where guards, reset and invariants only involve linear expres-
sions, and the continuous dynamics are restricted to linear constraints
such as ẋ = ẏ ∧ 1 ≤ ẋ ≤ 2. More general continuous dynamics are
handled in tools like CHECKMATE [Silva et al., 2000] and later refined
by the tool d/dt [Asarin et al., 2002], which compute over approxi-
mations of reachable sets using polyhedral-based representations, and
the resulting approximation of the reachable set is called the flowpipe
approximation.

Polyhedra-based representations are appealing as they are widely
used and there are open source libraries available for manipulating
them. However, the complexity of operations on polyhedrons is ex-

4.5. Notes and Further Reading 125

ponential with respect to the dimensions of the continuous variables,
so the size of systems that could be handled was modest. To reduce
computational complexity, the tool SPACEEX [Frehse et al., 2011] rep-
resents continuous sets using Zonotopes and support functions to
compute an over-approximation of the reachable states.

Deductive verification methods for hybrid system verification are
also being developed in the literature. A good example is the use
of barrier certificate for safety analysis of continuous, stochastic and
hybrid systems [Prajna and Jadbabaie, 2004]. The basic idea is to
find a barrier function that is decreasing along system trajectories
and have zero level set (barrier) that no solution trajectory crosses.
Should the barrier separate the initial states from unsafe regions, the
safety of the dynamical system can be deduced. The barrier certifi-
cate is conceptually intuitive, but the finding of a barrier certificate
is not easy and is similar to the generation of a Lyapunov func-
tion. Computational methods based on, e.g., sum of squares (SOS)
[Papachristodoulou and Prajna, 2005], have been developed to gen-
erate the barrier certificate, but the dimension of the systems that can
be handled by the computational tool is limited.

To handle higher dimensional dynamical systems and/or sys-
tems without precise mathematical models, which is usually the
case in practical applications, simulation based [Nghiem et al., 2010,
Dang et al., 2008] and sampling-based approaches [Branicky et al.,
2006, Plaku et al., 2013] have been developed recently in the literature.
These numerical based approaches aim to find wittiness traces of the
model to be checked that falsify certain safety properties in concern.
It is more like a testing approach as if the methods cannot find such a
wittiness trace after a long period of testing, one cannot conclude that
the safety property holds for sure. Another trend in the software veri-
fication community is to automatically synthesize codes from required
specifications [Pnueli and Rosner, 1989]. This has a close relationship
with the supervisory control problems that will be discussed in the
next chapter.

5
Hybrid Supervisory Control

So far, we have briefly reviewed some basic results for the analysis
and synthesis of hybrid systems. These results have been introduced
by both the computer science and control engineering communities.
The computer science community has been primarily interested in
verifying the correctness of embedded codes in the face of real time
constraints and interactions with the physical world; while the con-
trol engineering community has been mainly focusing on the effects
of discontinuousness (such as switching of dynamics and jumping of
states) caused by the use of digital processors and communication net-
works that are becoming more and more popular nowadays.

The past decade has seen efforts to merge these two schools of
thought, and a noticeable trend in the recent hybrid system litera-
ture is the emphasis on the synthesis of hybrid controllers for con-
tinuous or hybrid dynamical systems to satisfy complicated temporal
logic specifications. This approach is known as symbolic control or
hybrid supervisory control. The basic idea is first to obtain equivalent
or approximating finite abstractions of the hybrid or continuous sys-
tems to be controlled. Then the design is carried out in the discrete
domain using model checking [Clarke et al., 1999], game theoretic ap-

126

5.1. Discrete Event Supervisory Control 127

proaches [Pnueli and Rosner, 1989] or discrete event supervisory con-
trol theory [Ramadge and Wonham, 1989]. The final step is to convert
the designed discrete supervisor back to a hybrid controller (since the
controller usually contains both discrete transitions and continuous
flows) so that it can be used to control the original hybrid or continu-
ous plants. The effectiveness of the abstraction-based method depends
on whether or not there exists a finite state discrete abstracted model
for the original hybrid or continuous system. Significant research ef-
forts have been devoted to developing abstraction methods based on
reachability analysis, see e.g., [Alur et al., 2000a, Tabuada, 2009].

This chapter introduces the work on hybrid supervisory control. It
is organized as follows. First, the basic theory for supervisory control
of discrete event systems is briefly introduced in Section 5.1. Then, the
supervisory control for timed automata is introduced in Section 5.2
as an extension of supervisory control theory to timed languages. The
supervisory control of discrete event systems is directly applicable to
hybrid systems provided that we could obtain a finite abstraction of
the hybrid system, e.g., a finite bisimilar quotient transition system.
Then Section 5.3 is mainly on illustrating the abstraction-based super-
visory control design process for linear and nonlinear continuous sys-
tems, and hybrid systems with multi-affine dynamics.

5.1 Discrete Event Supervisory Control

Discrete event systems (DESs) refer to a class of dynamical systems
with discrete states, where the evolution of discrete states is driven
by the occurrence of discrete events [Ramadge and Wonham, 1989,
Cassandras and Lafortune, 2008]. It is assumed that these events hap-
pen instantaneously, and the concern is mainly on the ordering of oc-
currence of events and the logic behind it. We usually use symbols,
e.g., {a, b, c}, to represent these events, and the collection of all possi-
ble events of the DES under study is called the event set, denoted as
Σ. The dynamical behavior exhibited by the DES is then captured by
a collection of traces with symbols from Σ, which are called languages
generated from the DES. Formally, let Σ∗ denote the set of all finite

128 Hybrid Supervisory Control

strings over Σ, including the empty string ε. Any subset of Σ∗ is a lan-
guage. A language K ⊆ Σ∗ is said to be prefix-closed if K = pr(K),
where pr(K) = {s ∈ Σ∗ : (∃t ∈ Σ∗) s · t ∈ K} is the prefix closure of
the language K. Here s · t stands for the concatenation of two strings
s and t.

This section aims to briefly introduce the discrete event system
supervisory control theory, and our treatment here mainly follows
[Ramadge and Wonham, 1989]. The basic supervisory control prob-
lem for discrete event systems (DES) can be stated as follows: Given
a plant modeled as a finite automaton, G = (X, Σ, α, x0, XM), and
a specification K ⊆ Σ∗, the control objective is to design a supervi-
sor/controller f such that the closed-loop system, denoted as Gf , be-
haves in a desirable way, in the sense that the generated language of
Gf , denoted as L(Gf), equals K. Besides all possible strings, we also
interested in some subsets (sublanguage) of L(Gf), called marked lan-
guage of Gf and denoted as LM (Gf), which consist of the traces in the
generated language L(Gf) whose executions imply the completion of
a certain task.

To achieve such a desired behavior, the supervisor restricts the
events happening in the plant G. Some events may not be disabled,
for example the failure of a machine. Hence, the event set Σ is parti-
tioned into two disjoint subsets: Σ = Σc ∪ Σu, in which Σc and Σu are
the sets of controllable and uncontrollable events, respectively. The su-
pervisor restricts the behavior of the plant by dynamically disabling
some of the controllable events. Mathematically, a supervisor can be
represented as a map, f : L(G) → 2Σc , which maps a string of the
plant s ∈ L(G) to a set of controllable events. The set f(s) ⊆ Σc stands
for the set of events that are disabled by the supervisor after the exe-
cution of s.

Definition 5.1. The generated language, denoted by L(Gf), and the
marked languageLM (Gf), of the controlled system under supervision
are defined by:

1. ε ∈ L(Gf);

2. ∀s ∈ Σ∗, σ ∈ Σ, if s ∈ L(Gf), sσ ∈ L(G) and σ /∈ f(s) then
sσ ∈ L(Gf);

5.1. Discrete Event Supervisory Control 129

3. LM (Gf) = L(Gf) ∩ LM (G).

In other words, if a string s is in the controlled generated be-
havior, and an event σ, which is not disabled or uncontrollable, i.e.,
σ /∈ f(s), can occur in the plant after s, namely sσ ∈ L(G), then sσ

should be in the controlled generated behavior as well. The marked
languageLM (Gf) = L(Gf)∩LM (G) means that the controlled marked
language equals the set of marked strings of the plant that survive
under control. It is clear that L(Gf) ⊆ L(G), LM (Gf) ⊆ LM(G),
pr(LM(Gf)) ⊆ L(Gf) and L(Gf) is prefix closed. A supervisor f is
said to be non-blocking if pr(LM(Gf)) = L(Gf). For illustration, con-
sider the following example from the DES literature.

Example 5.1. Consider an automaton

G : ��23456789a

�� b ��23456789:;<=>?@Aa ��

Σ = {a, b} and assume Σc = {a}.

L(G) = pr(a∗ba∗) = a∗ + a∗ba∗

and
LM(G) = a∗ba∗.

Consider the desired generated behavior to be:

K = pr({akbak, k ≤ m}),

which basically requests that b needs to happen exactly once and a

occurs the same number of times before and after b.
When m = 1, K = {ε, b, a, ab, aba}, it is easy to check that

∅ �= K = pr(K) ⊆ L(G),

and we can specify the supervisor as follows.

f(s) =

{
{a} s = a, b, aba

∅ otherwise

It is not difficult to check that the closed-loop system behavior satisfies
that L(Gf) = K for m = 1. �

130 Hybrid Supervisory Control

5.1.1 Existence of Supervisors

A basic question is when the supervisory control problem has a feasi-
ble solution, i.e., the existence of a supervisor f for the plant G with
respect to a given specification K. Recall that the basic idea in the
supervisory control is to disable certain events and their associated
transitions of the plant G so that its behavior lies within some pre-
scribed range. However, the transitions triggered by uncontrollable
events cannot be disabled. A supervisor should never try to disable
an uncontrollable event. Instead, it needs to disable upstream control-
lable events. This requirement on f is called Σu-enabling.

Definition 5.2. A supervisor f : Σ∗ → 2Σ is called Σu-enabling if ∀s ∈

Σ∗, σ ∈ Σu, we have (s ∈ L(Gf)) ∧ (sσ ∈ L(G)) ⇒ sσ ∈ L(Gf).

Intuitively, it means that if a string s is in the controlled generated
behavior (i.e., s ∈ L(Gf)), and an uncontrollable event σ can occur
in the plant after s, namely sσ ∈ L(G), then sσ should be in the con-
trolled generated behavior as well (i.e., sσ ∈ L(Gf)).

Due to the requirement of Σu-enabling, a specification K should
not request a supervisor to disable uncontrollable events. This can be
captured by the definition of controllability.

Definition 5.3. Given a plant G, a language K ⊆ Σ∗ is said to be
controllable if pr(K)Σu ∩ L(G) ⊆ pr(K).

This means that ∀s ∈ Σ∗, σ ∈ Σu, if s ∈ pr(K) and sσ ∈ L(G) then
sσ ∈ pr(K). It is easy to see from the definition that a Language K is
controllable if and only if pr(K) is controllable. Also, a supervisor f is
Σu enabling if and only if L(Gf) is controllable.

Example 5.2. Continuing the previous example, consider the lan-
guage K1 = {a, b, ab} and K2 = {a, ba, ab}. Both K1 and K2 are con-
trollable, so is their union. In general, the union of controllable lan-
guages is still controllable. However, controllability does not hold for
intersections. For example, K1∩K2 = {a, ab} is not controllable (since
ε ∈ pr(K1 ∩K2), b ∈ L(G) but b /∈ pr(K1 ∩K2)). �

5.1. Discrete Event Supervisory Control 131

The following theorem states necessary and sufficient conditions
for the existence of a Σu-enabling and non-blocking supervisor f for a
given specification language K.

Theorem 5.1. [Ramadge and Wonham, 1989] Let G be a plant, and
a prefix closed nonempty language ∅ �= K = pr(K) ⊆ L(G) be a
given specification. There exists a Σu-enabling supervisor f such that
L(Gf) = K if and only if K is controllable.

To illustrate the result, let’s revisit the previous example.

Example 5.3. Consider the previous example. The desired generated
behavior K = pr({akbak, k ≤ 1}). Then, K = {ε, b, a, ab, aba}, so ∅ �=
K = pr(K) ⊆ L(G). Further, to check the controllability of K, it is
easy to see that ∀s ∈ Σ∗, if s ∈ pr(K), for b ∈ Σu, sb ∈ L(G) then
sb ∈ pr(K). So, K is controllable. Hence, there exists a Σu-enabling
supervisor f such that L(Gf) = K as given in Example 5.1. �

Example 5.4. Consider another language Ka = {a∗}. Ka ⊆ L(G) is
prefix closed but not controllable since for example s = an ∈ Ka for
any integer n, sb ∈ L(G) but sb /∈ Ka. Hence, by the above theorem, we
can say that there does not exist a controller to enforce the generated
behavior Ka. �

The following theorem states necessary and sufficient conditions
for the existence of a Σu-enabling and non-blocking supervisor f for a
given specification language K.

Theorem 5.2. [Ramadge and Wonham, 1989] Let G be a plant, and
∅ �= K ⊆ LM (G) be a given specification. There exists a Σu-enabling
and non-blocking supervisor f such that LM (Gf) = K if and only if
K is controllable and relative closed, i.e., K = pr(K) ∩ LM (G).

Example 5.5. Consider the previous example. A language K =

{akbak, k ≥ 0}, K is controllable, but not relative closed (for exam-
ple, ab ∈ pr(K) ∩ LM (G) but ab /∈ K since any string in K needs to
have the same number of a before and after b). Hence, there does not
exist any Σu-enabling and non-blocking, supervisor f to enforce the
marked behavior to be K exactly. �

132 Hybrid Supervisory Control

5.1.2 Realization of Supervisors

In this subsection, we show that the supervisor defined as a map f in
the previous section can equivalently be realized as a finite automaton
operating in synchronous composition with the plant G under certain
conditions. Formally, the synchronous composition between two au-
tomata can be defined as follows.

Definition 5.4. The synchronous composition of two automata
Gi = (Xi, Σi, αi, x0

i , XM
i), for i = 1, 2, denoted as G1‖G2 =

(X, Σ, α, x0, XM), is defined by

1. X = X1 ×X2;

2. Σ = Σ1 ∪ Σ2;

3. x0 = (x0
1, x0

2);

4. XM = XM
1 ×XM

2 ;

5. For each x ∈ (x1, x2), σ ∈ Σ,

α(x, σ)

=

⎧⎪⎪⎨
⎪⎪⎩

(α1(x1, σ), α2(x2, σ)), σ ∈ Σ1 ∩ Σ2, α1(x1, σ) �= ∅, α2(x2, σ) �= ∅
(α1(x1, σ), x2), σ ∈ Σ1 − Σ2, α1(x1, σ) �= ∅,
(x1, α2(x2, σ)), σ ∈ Σ2 − Σ1, α2(x2, σ) �= ∅,
∅, otherwise.

In other words, the two automata need to be synchronized with
respect to all common events σ ∈ Σ1 ∩ Σ2.

Lemma 5.1. [Cassandras and Lafortune, 2008] Let G1 and G2 be two
finite automata, if Σ1 = Σ2, then L(G1‖G2) = L(G1)

⋂
L(G2) and

LM (G1‖G2) = LM (G1)
⋂
LM(G2).

It is assumed that the plant G is given as a finite automaton and
the specification K is regular (i.e., K can be accepted by a finite au-
tomaton). In addition, it is assumed that K is controllable and rela-
tive closed, so there exists a supervisor f : L(G) → 2Σc such that
LM (Gf) = K. In order for the control achieved by a synchronous com-
position based supervisor S to be equivalent to the one achieved by a
control law based supervisor f , we build S as the state machine that
L(S) = LM(S) = pr(K).

5.1. Discrete Event Supervisory Control 133

Let G = (X, Σ, α, x0, XM) and S = (Y, Σ, β, y0, Y M) denote the
plant and supervisor respectively. Then, the control loop is closed
through connecting S to G by the synchronous composition G‖S =

(Z, Σ, γ, z0, ZM). Since L(G‖S) = L(G)
⋂
L(S) and LM (G‖S) =

LM (G)
⋂
LM (S), synchronous composition restricts the behavior of

the plant. An event σ can occur when G‖S is in the state (x, y) only
if σ is possible in both G and S for state x and y respectively. In this
case, the control action of S on G is implicit in the transition struc-
ture of S. In particular, if s ∈ L(Gf) then s ∈ L(S), and sσ ∈ L(S)

only if σ /∈ f(s), which ensures that those transitions disabled by f do
not appear in the transition structure of S. In addition, if s ∈ L(Gf),
sσ ∈ L(G) and σ /∈ f(s) then sσ ∈ L(S), which means that the su-
pervisor S does allow all transitions that is feasible in G and not dis-
abled by f . In this manner, the supervisor S restricts the transitions
that can occur in G, and therefore controls the behavior of the closed-
loop system. Next, we are going to show the equivalence of control
effects between G‖S and the mapping f that has been adopted so far.

L(G‖S) = L(G) ∩ L(S) = L(G) ∩ pr(K) = pr(K) = L(Gf)

LM (G‖S) = LM (G) ∩ LM (S) = LM(G) ∩ pr(K) = LM (G) ∩ L(Gf)

= LM (Gf)

Hence, the closed-loop system G‖S achieves the same control objec-
tive as Gf . The representation of a controller as finite automaton has
several advantages, e.g., automata representation is more compact
than the mapping f which needs to be defined for all strings s in L(G).

Example 5.6. Consider the previous example, the supervisor f can
be realized as a finite automaton

S : ��23456789:;<=>?@A a ��

b

23456789:;<=>?@A b ��23456789:;<=>?@A a ��23456789:;<=>?@A
with L(S) = LM(S) = pr(K) = K = {ε, b, a, ab, aba}. The syn-
chronous composition between S and G can be obtained as:

G‖S : ��23456789 a ��

b

23456789 b ��23456789:;<=>?@A a ��23456789:;<=>?@A

134 Hybrid Supervisory Control

It can be seen that LM (G‖S) = {b, ab, aba}, and L(G‖S) = L(Gf) =

K = pr(LM(G‖S)). �

5.1.3 Checking the Existence Condition

Next we illustrate how to check the controllability and relative closure
of a given specification language K. Let’s assume that K is regular, so
there exists a finite automaton S = (Y, Σ, β, y0, Y M) that recognizes K ,
i.e., LM (S) = K. Without loss of generality, we assume that L(S) =

pr(LM(S)) = K.
First, for the relative closure condition K = pr(K)∩LM (G), we only

need to verify whether K ⊇ pr(K)∩LM(G), since K ⊆ pr(K)∩LM(G)

always holds due to the facts that K ⊆ pr(K) and K ⊆ LM (G). In
order to check whether K ⊇ pr(K)∩LM (G), we consider the product
G‖S, and it can be seen that the condition pr(K) ∩ LM (G) ⊇ K if and
only if XM × Y ⊆ XM × Y M . Thus the relative closure of K can be
determined in O(mn) time [Cassandras and Lafortune, 2008], where
m, n stand for the number of states in G and S respectively.

Next, to test the controllability condition, we need to verify whether
pr(K)Σu∩L(G) ⊆ K. For such a purpose, we compare the active event
set of each state of G‖S with the active event set of the corresponding
state in G. If there exists an uncontrollable event in the latter that does
not appear in the former, then K is not controllable. Thus the controlla-
bility of K can be determined in O(mn) time [Ramadge and Wonham,
1989, Cassandras and Lafortune, 2008].

As shown above, given a regular language K, the existence of
a supervisor depends on the relative closure and controllability of
K. However, many specifications of practical significance may fail
to satisfy these conditions. Then, we usually turn to computing the
maximum sub-language of K satisfying these properties. Since con-
trollability is closed under union, so there exists a unique supre-
mal controllable sub-language of K, which can be calculated itera-
tively. Interested readers may refer to [Ramadge and Wonham, 1989,
Cassandras and Lafortune, 2008] for more details and more advanced
topics such control under partial observations, modular and decen-
tralized supervisory control.

5.2. Timed Language Supervisory Control 135

5.2 Timed Language Supervisory Control

In this section, we deal with the supervisory control problem for timed
automata, which is known as the timed supervisory control problem.
One possible method is to use the finite region transition system for a
timed automaton as derived in the previous chapter, based on which
the DES supervisory control theory presented in the previous sec-
tion can be directly applied. Instead, we describe an extension of the
Ramadge-Wonham framework of supervisory control over discrete-
event systems to timed languages. The concept of controllability and
the existence of the maximally permissive supervisor can be suitably
generalized by using timed automata as models. The discussion of
timed language and supervisory control for timed automata is based
on [Wong-Toi and Hoffmann, 1991].

5.2.1 Timed Language

First, we briefly review the formal language theory for timed au-
tomata. A time sequence τ̄ = τ1τ2 . . . is an infinite sequence of time
values, τi ∈ R≥0 satisfying:

• Monotonicity: τi ≤ τi+1,∀i ≥ 1.

• Progress: ∀t ≥ 0,∃i ≥ 1 such that τi > t.

A timed word over Σ is a pair (σ̄, τ̄) where σ̄ = σ1σ2... is an infinite
word over Σ. A timed language T over Σ is a set of timed words over
Σ. For example, T1 = {((ab)ω , τ̄) | 1 ≤ (τ2i − τ2i−1) ≤ 2, i ≥ 1} is a
timed language over Σ = {a, b}, and the timed words in T1 are like
{(a, τ1)(b, τ2)(a, τ3)(b, τ4) · · · (a, τ2i−1)(b, τ2i) · · · } with the requirement
that once a happens the event b will happen within 1 to 2 time units.

A timed automaton T A = (Q, Q0, Σ,C, I,→) reads a timed word
(σ̄, τ̄) if the following conditions hold: There is an initial state q0 ∈ Q0

such that a run of T A starting from (q0, 0) and staying at q0 till τ1.
Then, there exists a transition, (q0, σ1, ϕ1, λ1, q1) ∈→, in T A, with
0 + τ1 satisfying ϕ1. After the transition and a clock reset to zero
in λ, the state of T A becomes (q1, x1), and it stays at q1 for a du-

136 Hybrid Supervisory Control

ration of length τ2 − τ1, then the event σ2 occurs and the transition
(q1, σ2, ϕ2, λ2, q2) ∈→ is taken with clock reset and so on.

Example 5.7. Consider the timed language T1. The timed words in
T1 can be accepted by the following timed automaton:

T A : �� BCDEFGHIs

x ≥ 0

a, x:=0

�� BCDEFGHIs
′

x ≤ 2

b, x:=0

��

A run corresponding to a timed word (a, τ1)(b, τ2)(a, τ3)(b, τ4)

· · · (a, τ2i−1) (b, τ2i) · · · can be described as below: (s, 0) →τ1 (s, τ1)

���a (s′, 0)→τ2−τ1 (s′, τ2 − τ1) ���b (s, 0) → · · · . Here we use the solid
arrow to represent the elapse of time with duration at the superscript,
while the dashed arrow is used to represent the transitions caused by
an event. �

As we are interested in nonterminating behaviors of timed au-
tomata, we hence adopt the Büchi acceptance condition in timed au-
tomata, and call them Büchi timed automata. A timed word is accepted
by a Büchi timed automaton (BTA), if its corresponding run visit the
marked states, F ⊆ Q, infinitely often. A timed language is timed
ω-regular if it is accepted by a Büchi timed automaton. It can be
shown that, for a timed ω-regular language T , denoted as T , its un-
timed version, denoted as Untime(T) with Untime(T) = {σ̄ ∈ Σω |

∃τ̄ s.t. (σ̄, τ̄) ∈ T}, is ω-regular. For example, the un-timed version of
T1 is {(ab)ω}.

Timed ω-regular language is closed under intersection and union,
but it is not closed under complementation. For example, the timed
language T = {(aω, τ̄) | for some 1 ≤ i ≤ j, τj = τi + 1} is timed
ω-regular since it is accepted by a Büchi time automaton given below

�� �������	s0

a

��
a

x:=0
�� �������	s1

a

��
a

x=1
�� �������	
������s2

a

��

However its complement T c = {(aω, τ̄) | ∀i, j : τj �= τi + 1} is
not timed ω-regular. To see why, we first observe that any timed au-

5.2. Timed Language Supervisory Control 137

tomaton accepting T c needs to remember all the time instances once
the event a occurred within the past one time unit since it has to avoid
a happening again exactly after one time unit. However, it is possi-
ble that a occurs infinite number of times within one time unit, which
means that we need infinite number of time clocks to track the occur-
rence of event a.

5.2.2 Timed Language Supervisory Control

Now we turn to the timed language supervisory control problem,
which can be stated as follows. Given a timed automaton T A =

(Q, Q0, Σ,C, I,→, F) associated with the accepted timed language
L(T A) and the timed specification K ⊆ L(T A). Design a supervisor
f : pr(L(T A))×R≥0 → 2Σc , where Σc is the set of controllable events,
such that L(T Af) = K , where L(T Af), the timed behaviors of the
controlled system, is defined as

• (ε, 0) ∈ L0,

• (ē, τ̄)(σ, t) ∈ L0, if (ē, τ̄) ∈ L0, (ē, τ̄)(σ, t) ∈ pr(L(T A)) and σ /∈

f((ē, τ̄), t),

• L(T Af) = L(T A) ∩ L0.

Before we establish a necessary and sufficient condition for the ex-
istence of a supervisor for a timed automaton, we first extend the con-
cept of the controllability of languages to the case of timed languages.

Definition 5.5. Given a timed automaton T A, a timed language K ⊆

Σ∗ × R≥0 is said to be controllable if

pr(K)(Σu × R≥0) ∩ pr(L(T A)) ⊆ pr(K).

The following theorem states a necessary and sufficient condition
for the existence of the supervisor for timed automata, which can be
seen as a direct extension of the existence conditions of a supervisor
for finite automata given in the previous section.

Theorem 5.3. [Wong-Toi and Hoffmann, 1991] Let T A be a plant,
and K ⊆ L(T A) be the specification. There exists a Σu-enabling and

138 Hybrid Supervisory Control

non-marking supervisor f such that L(T Af) = K if and only if K

is controllable with respect to L(T A), and K is L(T A) closed, i. e.,
K = pr(K) ∩ L(T A).

We illustrate the design of supervisors for timed automata via the
following example.

Example 5.8. Consider the previous example. The desired generated
behavior

K = pr({(akbak, τ̄)|τi = i, k ≤ 1}) = pr({(b, 1), (a, 1)(b, 2)(a, 3)}).

It is clear that K ⊆ L(T A) is L(T A) closed and controllable. The su-
pervisor can be realized as the following timed automaton:

S : �� JKLMNOPQJKLMNOPQs1

y ≤ 1
a

y≥1,y:=0

��

b

y≥1,y:=0

��JKLMNOPQJKLMNOPQs2

y ≤ 1
b

y≥1,y:=0

�� JKLMNOPQJKLMNOPQs3

y ≤ 1
a

y≥1,y:=0

�� JKLMNOPQJKLMNOPQs4

y ≥ 0

The supervisory control law f : Σ∗ × R≥0 → 2Σ
c then is given by

f(s, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
{a} s = (b, 1), t = 2

{a} s = (a, 1), t = 2

{a} s = (a, 1)(b, 2)(a, 3)t = 4

∅ otherwise

�

In the next section, we will briefly review recent developments in
hybrid supervisory control that aims to design hybrid controllers for
continuous systems with respect to temporal logic specifications.

5.3 Hybrid Supervisory Control

The supervisory control of hybrid systems using abstracted mod-
els has been advocated in the literature since the early 1990’s, see
e.g., [Lemmon et al., 1999, Koutsoukos et al., 2000] and the references
therein. A recent trend is to synthesize hybrid controllers for contin-
uous or hybrid dynamical systems to satisfy complicated temporal

5.3. Hybrid Supervisory Control 139

logic specifications. This is also known as the symbolic control prob-
lem, and can be formulated as follows. Consider a continuous variable
dynamical system

Σ :

{
ẋ(t) = f(x(t), u(t))

y(t) = g(x(t))
(5.1)

where x(t) ∈ Rn is the state of the system, u(t) ∈ Rr is the control
input and y(t) ∈ Rp is the observed output of the system.

It is assumed that the initial condition x0 is restricted to a certain
region in the state space X0 ⊆ Rn. The goal is to design a controller
such that the output y(t) generated by the closed-loop system satisfies
a given temporal logic specification. For example, one may request
that the output y(t) visits certain regions in the output space Rp with
a specific order while avoiding some forbidden regions in Rp.

5.3.1 Temporal Logic over Reals

To capture such requirements in temporal logic, we adopt the tempo-
ral logic over reals (RTL) [Reynolds, 2001] and define a set of atomic
propositions as Π = {π0, π1, · · · , πm}, which is a finite set of symbols
that label these regions of interest. Furthermore, the denotation �·� of
each symbol is defined as the region labeled by π, i.e., �πi� ⊆ Rp for
any πi in Π. The atom πi is true if and only if y(t) is in �πi�. The symbol
π0 is reserved for initial conditions, y(0) ∈ �π0�, and correspondingly
the state is started from x(0) ∈ X0 ⊆ Rn.

The syntax of the propositional temporal logic over the reals can
be formally introduced as below.

Definition 5.6. Let Π be a finite set of atomic propositions, i.e., Π =

{π1, π2, · · · , πn}. The set of all well formed propositional temporal
logic (RTL) formulas over the reals are recursively defined from pred-
icates in Π according to the following rules

1. true, false, and πi are RTL formulas for all πi ∈ Π;

2. if ϕ1 and ϕ2 are RTL formulas, then ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2 and ¬ϕ1

are RTL formulas;

140 Hybrid Supervisory Control

3. if ϕ1 and ϕ2 are RTL formulas, then ϕ1Uϕ2 and ϕ1Rϕ2 are
RTL formulas

Formally, the semantics of RTL formulas are defined over contin-
uous time signals. Given a function y : R+ → Rr, we define y|t to be
the t time shift of y with definition y|t(s) = y(s + t) for all s ∈ R+.

Definition 5.7. Let y(t) be a function y : R+ → Rr, and Π a finite set of
atomic propositions, i.e., Π = {π1, π2, · · · , πn}with atom mapping �·�.
For t, s ∈ R+, the semantics of an RTL formula over Π can be defined
as

1. (y, �·�) |= πi iff y(0) ∈ �πi�;

2. (y, �·�) |= ¬p iff y(0) /∈ �πi�;

3. (y, �·�) |= ϕ1 ∧ ϕ2 if (y, �·�) |= ϕ1 and (y, �·�) |= ϕ2;

4. (y, �·�) |= ϕ1 ∨ ϕ2 if (y, �·�) |= ϕ1 or (y, �·�) |= ϕ2;

5. (y, �·�) |= ϕ1Uϕ2 if there exists t ≥ 0 such that (y|t, �·�) |= ϕ2

and for all s with 0 ≤ s ≤ t we have (y|s, �·�) |= ϕ1;

6. (y, �·�) |= ϕ1Rϕ2 if for all t ≥ 0 it is (y|t, �·�) |= ϕ2 or there exists
some s such that 0 ≤ s ≤ t and (y|s, �·�) |= ϕ1.

Intuitively speaking, the formula ϕ1Uϕ2 expresses the property
that over the trajectory y(t), ϕ1 is true until ϕ2 becomes true. On the
contrary, the release operator ϕ1Rϕ2 means that ϕ2 should hold true
and be released when ϕ1 becomes true.

Furthermore, we can derive several additional temporal operators
such as

• ♦ϕ = true Uϕ means that the sub-formula ϕ eventually becomes
true for a trajectory y(t);

• �ϕ = ¬♦¬ϕ indicates that ϕ always holds true for y(t);

The following examples from [Fainekos et al., 2009] illustrate some
typical control specifications that can be formulated as temporal logic
formulas based on the atomic proposition set Π.

5.3. Hybrid Supervisory Control 141

• Reachability while avoiding regions: The formula ¬(π1∨π2)�π3

represents the requirement that the output finally reaches the
region �π3� while keeping away from the regions �π1� and �π2�;

• Sequencing: The formula ♦(π1 ∧ ♦(π2 ∧ ♦π3)) represents the re-
quirement that the output reaches the regions �π1�, �π2� and �π3�

in order;

• Coverage: The formula ♦π1 ∧ ♦π2 ∧ ♦π3 represents the require-
ment that the output eventually reaches all the regions �π1�, �π2�

and �π3� without any particular order;

• Recurrence (Liveness): The formula �(♦π1 ∧ ♦π2 ∧ ♦π3) repre-
sents the requirement that the output reaches these regions �π1�,
�π2� and �π3� infinitely often.

More complicated specifications can be composed from the basic
specifications using the logic operators. The goal is to design a hybrid
controller such that the trajectories of the closed-loop system satisfy a
given specification formula φ.

5.3.2 Linear Control Systems

We first consider the case when the dynamical system to be controlled
is linear, i.e., {

ẋ(t) = Ax(t) + a + Bu(t)

y(t) = Cx(t)
(5.2)

where x(t) ∈ Rn is the state of the system, u(t) ∈ Rm is the control
input and y(t) ∈ Rp is the observed output of the system, while A ∈

Rn×n, a ∈ Rn, B ∈ Rn×m and C ∈ Rp×n are state matrices. The results
in this sub-section are mainly based on [Habets and van Schuppen,
2004, Kloetzer and Belta, 2008], where it is assumed that all regions
of interest are polyhedral sets.

A polyhedral set P is a subset of RN , described by a finite num-
ber of linear inequalities. Namely, there exist K non-zero vectors
n1, · · · , nK ∈ RN and scalars α1, · · · , αK ∈ R, such that

P =
{

x ∈ RN |∀i = 1, · · · , K : nT
i x ≤ αi

}
. (5.3)

142 Hybrid Supervisory Control

Each linear inequality nT
i x ≤ αi forms a half-space, so this is called

the half-space representation of a polyhedral set P . Correspondingly, the
hyperplane formed by nT

i x = αi is called a supporting hyperplane for
P . A bounded polyhedral set is called a polytope. A polytope can al-
ternatively be characterized as the convex hull of a finite number of
points, v1, · · · , vM ∈ RN ,

P =

{
x ∈ RN |x =

M∑
i=1

λivi,
M∑

i=1

λi = 1, λi ≥ 0

}
(5.4)

where v1, · · · , vM are called vertices of the polytope P . This is called
the vertex representation of a polytope.

The half-space representation and the vertex representation for
a polytope are equivalent and can be transformed from one to the
other [Ziegler, 1995]. Which definition should be employed depends
on what is more suitable for the problem at hand. The intersection of
a polytope P with one of its supporting hyperplanes

Fi = {x ∈ RN |nT
i x = αi} ∩ P (5.5)

is called a facet of P , if the dimension of the intersection is equal to
N−1. The vector ni is the normal vector of the facet Fi, (i = 1, · · · , K),
and, by convention, ni is of unit length and always points out of the
polytope P . Also, the corresponding hyperplane nT

i x = αi is called
a bounding hyperplane for P . Later on, we assume that each facet of P

corresponds to exactly one ni, and vice versa. Namely, each ni corre-
sponds to a bounding hyperplane and is linearly independent of other
norm vectors.

The set of vertices of a polytope P is denoted by V(P). Given a
vertex v ∈ V(P), we denote by F(v) the set of all facets containing v.
It can be shown that for a polytope there are at least N + 1 vertices, i.e.
M ≥ N + 1. A polytope that has exactly N + 1 vertices is called a sim-
plex in RN . Any full dimensional polytope can be triangularized [Lee,
1997]. In other words, for any full dimensional polytope P , there exists
full dimensional simplex S1, · · · , SL such that: (1) P = ∪i=1,2,··· ,LSi,
(2) Si ∩ Sj is either empty or a common facet of Si and Sj , for all
i, j = 1, · · · , L with i �= j, (3) The set of vertices of simplex Si is a
subset of {v1, v2, · · · , vM } for all i = 1, · · · , L.

5.3. Hybrid Supervisory Control 143

A reason for restricting polytopes is due to the fact that an affine
function’s value inside a polytope P will be uniquely determined by
its values at the vertices of P . An affine function f : RN → Rr is of the
form

f(x) = Ax + b (5.6)

for constant matrices A ∈ Rr×N and vector b ∈ Rr. Due to convexity
and linearity, it is easy to obtain:

Lemma 5.2. Let w ∈ Rr and d ∈ R. Then wT f(x) > d everywhere in a
polytope P , if and only if the inequality holds at all the vertices of P ,
i.e., wT f(vi) > d for i = 1, · · · , N + 1.

It is easy to see that the result remains valid if > is replaced by
≥, =, <,≤. Also, the result remains valid if f is restricted to a facet
Fi. The following result tells us that the function value of an affine
function on polytope P is completely determined by the values of f

on the vertices of P .

Lemma 5.3. [Habets and van Schuppen, 2004] Let P be a polytope
in RN and f : RN → Rr an affine function. The function value of
x ∈ P , f(x) is completely determined by the values of f on the
vertices of P , f(vi) = gi, i = 1, · · · , M , i.e., x ∈ P ⇒ f(x) =∑

v∈V(P) λvf(v),
∑

v∈V(P) λv = 1, λv ≥ 0.

Moreover, f is unique. Assume not, and there is another affine
function f ′ : RN → Rr satisfying f ′|V(P) = g. Then, consider f − f ′,
which is affine and (f − f ′)|V(P) = g − g = 0. It then follows from the
previous lemma that f − f ′ is the function identically zero and thus
f = f ′. In particular, we can present an explicit reconstruction for the
case of an affine function on a simplex.

Lemma 5.4. [Habets and van Schuppen, 2004] Let SN be a simplex in
RN and f : RN → Rr an affine function. The restriction of f to SN is a
convex combination of its values at the vertices, and is given by

f(x) = GW −1

[
x

1

]
, x ∈ P (5.7)

144 Hybrid Supervisory Control

where

G =
[

g1 · · · gN+1

]

W =

[
v1 · · · vN+1

1 · · · 1

]

are r × (N + 1) and (N + 1)× (N + 1) real matrices respectively.

For the linear control system (5.2), it is assumed that all the re-
gions are given as polytopes with �πi� = {y ∈ Rp|nT

i y ≤ gi}, where
ni ∈ Rp and gi ∈ R. Note that y(t) ∈ �πi� holds true if and only
if nT

i Cx(t) ≤ gi, which corresponds to a polytope in the state space
Pi = {x ∈ Rn|nT

i Cx ≤ gi}.
We restrict our control u(t) to be in the form of an affine function

of state, i.e., u(t) = kx(t) + v, where k and v are to be designed. The
closed-loop dynamics will be

ẋ(t) = (A + Bk)x(t) + w, (5.8)

which has an affine function on its right hand side. Our task is to de-
sign the controller u, i.e., k and v, in such a way that all trajectories
of the closed-loop system starting from a polytope Pi can either all
stay inside Pi or all transit to a neighboring polytope Pj after a finite
period of time without intersecting with another regions during this
transition process. The closed-loop system becomes a piecewise affine
system with polytopes as the partition of the state space, which repre-
sents a special class of a hybrid system.

For each polytope, the following two problems are considered:

• Invariant Control Problem: The invariant control problem for the
linear control system (5.2) with respect to a polytope P seeks an
affine feedback control law u = kx + v such that all trajectories
for the closed-loop system ξ(t) starting from P will remain in P

forever, i.e., ξ(0) ∈ P ⇒ ξ(t) ∈ P, ∀t ∈ R+.

• Control to Facet Problem: Consider the linear control system (5.2)
on a polytope P , and let F be a facet of P . The control to facet
problem is to determine whether there exists an affine feedback

5.3. Hybrid Supervisory Control 145

control law u = kx + v such that all trajectories for the closed-
loop system starting from P will leave P through F after a finite
time τ . Namely, there exists a finite escape time τ > 0 such that
the following hold

– ξ(t) ∈ P for 0 ≤ t < τ ,

– ξ(τ) ∈ F ,

– ∃ε > 0 such that ξ(t) /∈ P ∪ F for τ < t < τ + ε.

Since the value of an affine function in a polytope can be deter-
mined by its values at the vertices of the polytope, the existence of
such an affine feedback can be determined by some linear inequalities
evaluated at (a finite number of) vertices of the polytope P . The fol-
lowing proposition characterizes all affine vector fields for which the
polytope is an invariant.

Theorem 5.4. [Habets and van Schuppen, 2004, Kloetzer and Belta,
2008] The invariant control problem for the linear control system (5.2)
with respect to a polytope P is solvable provided that the following
sets are non-empty

UP (vi) =
⋂

F ∈F(vi)

{u ∈ Rm| ηT
F (Avi + a + Bu) < 0}

for all vi ∈ V(P), where ηF is the normal vector for the facet F .

It is a very intuitive condition, and basically requests the existence
of a control signal to make the vector field point inside to the polytope
P for all vertices. The conditions form a collection of linear inequalities
and can be easily checked. Moreover, when the sets are nonempty, a
multi-affine control law u = kx+v can be constructed, with the control
value at vertex vi being any element in UP (vi). Similarly, the control to
facet problem also admits a simple solution.

Theorem 5.5. [Habets and van Schuppen, 2004, Kloetzer and Belta,
2008] Let P be a polytope in Rn with a facet F and ẋ = Ax+a+Bu be

146 Hybrid Supervisory Control

a linear control system. The control to facet problem admits a solution
if the following sets are non-empty

UP (vi) =
⋂

G∈F(vi)

{
u ∈ Rm|ηT

G(Avi + a + Bu) < 0
}

for all vi ∈ V(P) such that F /∈ F(vi), and

UP (vi) =
⋂

G∈F(vi),G �=F

{
u ∈ Rm

∣∣∣∣∣ ηT
G(Avi + a + Bu) < 0

ηT
F (Avi + a + Bu) > 0

}

for all vi ∈ V(P) such that F ∈ F(vi).

Intuitively speaking, the sufficient conditions above forces the vec-
tor fields of the closed-loop system point inside to P for all vertices
except the vertices of the facet F . It therefore guarantees that all trajec-
tory starting from P will exit P through the facet F within finite time
durations. Hence, such a control solves the “Control to Facet Prob-
lem.”

Once the above two control problems are solved, we can deduce a
finite labeled transition system that is bisimilar to the closed-loop con-
tinuous system (seen as an infinite state transition system with label
mapping consistent with �·�). The construction of the finite abstrac-
tion is conceptually simple. Note that the specification regions �πi� for
the output y(t) are assumed to be polytopes and mutually exclusive
and only share facets if adjacent. Correspondingly, �πi� will imply a
collection of polyhedrons in Rn, denoted as Pi. All states in Pi are la-
beled with πi for consistency. The collection of all such Pi forms the
set of discrete states, while the initial state is the polytope containing
x0, i.e., x0 ∈ P0. There is a transition from Pi to Pj , i.e., (Pi, Pj) ∈→P

(assume i �= j), if they share a facet F and the control to the facet F

is solvable for Pi. There is a self-loop transition for a polytope Pi, i.e.,
(Pi, Pi) ∈→P , if the invariant control problem is feasible for the poly-
tope Pi. Hence, we obtain a transition system TP = ({Pi}, {P0},→P),
which has finite states. The symbol πi is then used to label the discrete
state Pi. It is not difficult to see that the deduced labeled transition
system is bisimilar to the continuous control system (5.2). Actually,

5.3. Hybrid Supervisory Control 147

the relation R ⊆ {Pi} × Rn, defined by (Pi, x) ∈ R if x ∈ Pi, together
with its reverse, forms a bisimulation relation between TP and (5.2).

After obtaining the finite abstraction model TP , one can apply the
supervisory control design theory in Section 5.1 with respect to TP ,
or use model checking methods to design a sequence of region tran-
sitions such that the required RTL specifications are satisfied, see e.g.,
[Kloetzer and Belta, 2008]. Due to bisimulation relation between the
linear control system and the abstracted model, the sequence of dis-
crete region transitions can be mimicked by continuous trajectories
x(t), i.e., there exist continuous control signals to drive the output y(t)

so to satisfy the RTL specifications. Furthermore, continuous control
signals can be designed based on Theorem 5.4 and 5.5. For example,
if a self-loop transition for region πi occurs, then the invariant control
law for region Pi can be designed based on results in Theorem 5.4. On
the other hand, if there is a transition from region πi to πi, the control
law proposed in Theorem 5.5 can be adopted to achieve the region
transition.

5.3.3 Multi-affine Control Systems

Next we consider the symbolic control problem for a class of nonlinear
dynamics

ẋ(t) = f(x(t), u(t)) = g(x) + Bu (5.9)

where g(x) : Rn → Rn is assumed to be multi-affine, and B ∈ Rn×m is
constant.

A map f : R→ R is said to be affine when for every x, y ∈ R and for
every α, β ∈ R satisfying α + β = 1 the equality f(αx + βy) = αf(x) +

βf(y) holds. The number αx+βy is said to be an affine combination of
x and y when α+β = 1. The constraint α+β = 1 can be expressed as a
single variable λ ∈ R to define the affine combination as λx + (1−λ)y.

Definition 5.8. [Belta and Habets, 2006] A map f : Rn → R is said to
be multi-affine when its projection to each xi, i = 1, · · · , n, is affine.

A map f : Rn → Rm is said to be multi-affine if for each i = 1, · · · , m

the map fi : Rn → R is multi-affine.

148 Hybrid Supervisory Control

In other words, when we fix all variables except xi, the map be-
comes affine. More specifically, the multi-affine map f consists of the
sum of polynomials in the indeterminates x1, · · · , xn, with the prop-
erty that the degree of any of the indeterminates x1, · · · , xn is less than
or equal to 1. State differently, f has the form

f(x) =
∑

i1,··· ,in∈{0,1}

ci1,··· ,inxi1

1 · · · x
in
n ,

where ci1,··· ,in ∈ R for all i1, · · · , in ∈ {0, 1} and using the convention
that if ik = 0, then xik

k = 1.
It is also assumed that the regions of interest are all rectangles.

Definition 5.9. A n-rectangle E in Rn is a set defined by: E =∏n
i=1(ai, bi), where ai, bi ∈ R satisfying ai < bi for i = 1, · · · , n.

The set of vertices of an n-rectangle is denoted by V(E) and de-
fined by V(E) = {x ∈ Rn|xi ∈ {ai, bi}}. The facet of an n-rectangle E

is the intersection of the closure of E, Ē, with the hyperplane defined
by xi = ai or xi = bi. Given a vertex v ∈ V(E), we denote by F(v) the
set of all facets containing v.

The following theorem tells us that the function value of a multi-
affine function on an n-rectangle E is completely determined by the
values of f on the vertices of E.

Theorem 5.6. [Belta and Habets, 2006] Let E be an n-rectangle in Rn

and f : Rn → Rm a multi-affine function. The function value of x ∈ E,
f(x) is completely determined by the values of f on the vertices of E,
i.e.,

x ∈ E ⇒ f(x) =
∑

v∈V(E)

λvf(v),
∑

v∈V(E)

λv = 1.

Furthermore, the function f constructed is multi-affine and is unique.

The multi-affine control problem is to design (multi-affine state
feedback) control laws u(t) such that its closed loop system state tra-
jectories x(t) (with proper initial conditions) satisfies a give RTL for-
mula φ. It is assumed that the regions corresponding to the atomic
propositions in RTL are all bounded rectangles in Rn. The reason for

5.3. Hybrid Supervisory Control 149

restricting the control law u(t) to be a multi-affine function of x(t), i.e.,
u(t) = h(x(t)) with h(x) a multi-affine function, is to make the closed-
loop system ẋ = g(x) + Bh(x) remain to be multi-affine so to take
advantage of the nice properties of multi-affine functions described in
Theorem 5.6.

The basic idea for multi-affine control design is very similar to the
case of linear control systems over polytopes. It basically relies on
the nice properties of multi-affine functions (Theorem 5.6) to obtain
symbolic abstractions based on partitions of state space induced by
n-rectangles. Similarly, we also try to make an n-rectangle E either in-
variant or all trajectories leaving E through the same facet. Recall that
the facet of E is given by either xi = ai or xi = bi. Moreover, to each
facet F defined by xi = ai we associate a normal vector ηF defined by
ηF j = 0 for j �= i and ηF j = −1 for j �= i. Contrarily, the normal vector
ηF for facet defined by xi = bi is given as ηF j = 0 for j �= i and ηF j = 1

for j �= i.
For each n-rectangle, the following two problems are considered:

• Invariant Control Problem: The invariant control problem for a
multi-affine control system ẋ = g(x) + Bu on an n-rectangle E

seeks a multi-affine feedback control law k : Rn → Rm such that
all trajectories for the closed-loop system ξ(t) starting from E

will remain in E forever, i.e., ξ(0) ∈ E ⇒ ξ(t) ∈ E, ∀t ∈ R+.

• Control to Facet Problem:Consider a multi-affine control system
ẋ = g(x) + Bu on an n-rectangle E, and let F be a facet of E.
The control to facet problem is to determine whether there exists
a multi-affine feedback control law k : Rn → Rm such that all
trajectories for the closed-loop system starting from E will leave
E through F after a finite time τ . Namely, there exists a finite
escaping time τ > 0 such that the following hold

– ξ(t) ∈ E for 0 ≤ t < τ ,

– ξ(τ) ∈ F ,

– ∃ε > 0 such that ξ(t) /∈ E ∪ F for τ < t < τ + ε.

150 Hybrid Supervisory Control

Similar to the linear control systems, we have the following results
for multi-affine control systems.

Theorem 5.7. [Belta and Habets, 2006, Tabuada, 2009]Let E be an n-
rectangle in Rn and ẋ = g(x) + Bu be a multi-affine control system.
The rectangle invariant problem admits a solution if the following sets
are non-empty

UE(v) =
⋂

F ∈F(v)

{u ∈ Rm|ηT
F (g(v) + Bu) < 0}

for all v ∈ V(E).

If the sets are non-empty, a multi-affine control law k can be con-
structed by the theorem and with the control value at vertex v being
any element in UE(v).

Theorem 5.8. [Belta and Habets, 2006, Tabuada, 2009]Let E be an n-
rectangle in Rn with a facet F and ẋ = g(x) + Bu be a multi-affine
control system. The control to facet problem admits a solution if the
following sets are non-empty

UE(v) =
⋂

G∈F(v)

{
u ∈ Rm

∣∣∣ηT
G(g(v) + Bu) < 0

}

for all v ∈ V(E) such that F /∈ F(v), and

UE(v) =
⋂

G∈F(v),G �=F

{
u ∈ Rm

∣∣∣∣∣ ηT
G(g(v) + Bu) < 0

ηT
F (g(v) + Bu) > 0

}

for all v ∈ V(E) such that F ∈ F(v).

The above results enable us to construct finite transition systems
that are bisimilar abstractions for multi-affine control systems. To ob-
tain the abstraction, we use n-rectangle as states and we place a tran-
sition from a rectangle E to itself when the invariant control problem
has a solution for E, and a transition from E to E′ is added when E

and E′ shares a common facet F and the control to facet problem is
solvable for E with respect to the common facet F .

5.3. Hybrid Supervisory Control 151

5.3.4 Nonlinear Control Systems

So far, we have considered special cases when the continuous dynam-
ics are linear or multi-affine control systems. In this subsection, we
consider a general nonlinear control system

Σ :

{
ẋ(t) = f(x(t), u(t))

y(t) = g(x(t))
(5.10)

where x(t) ∈ Rn is the state of the system, u(t) ∈ U ⊆ Rr is the control
input and y(t) ∈ Rp is the observed output of the system.

Once again, the goal is to design a controller such that the output
y(t) generated from the closed-loop system satisfies a given tempo-
ral logic specification φ. It is also assumed that φ is build from atomic
propositions, Π = {π0, π1, · · · , πm}, where each �πi� stands for a re-
gions in concern. Also, it is assumed that the region �πi� is bounded
and convex.

The development here follows the results in [Fainekos et al., 2009],
and the basic idea is to introduce a simpler linear model in Rp, for
which we design a hybrid controller to achieve a modified version
of the specification φ. Then, a controller is designed for the original
nonlinear system to keep its trajectory always within a neighborhood
of the trajectory from the designed linear systems provided that their
initial conditions are close enough. Note that the modification on the
specification φ is made in such a way that once the trajectories are close
enough to a trajectory satisfying the modified version of φ, then the
original specification φ holds true for all these nearby trajectories. For
such a purpose, we under-approximate the region �πi� using a poly-
tope when it needs to be reached by y(t), otherwise over-approximate
it using another polytope. Based on these approximations, we intro-
duce new atomic propositions, π̃i, and construct a new version of the
specification φ, called φ̃. Then, based on the previous section results of
controlling a linear control system over polytopes, we can design con-
trollers and successful runs for proper initial conditions. Finally, we
design controllers for the nonlinear system such that its output y(t)

tracks the trajectory of the closed-loop linear system with specified
bounded errors. Then, The resulting output trajectory y(t) is guaran-

152 Hybrid Supervisory Control

teed to satisfy the initial user specification.
Next, we introduce briefly the tracking problem and modifications

on the temporal logic specifications. First, the nonlinear control sys-
tem (5.10) is abstracted to a linear control system:

Σ′ : ż(t) = Az(t) + Bv(t), z(t) ∈ Rp, z0 ∈ �π0�, v ∈ V. (5.11)

We would like the linear control system approximates the trajecto-
ries of the nonlinear control system (5.10) in the following sense.

Definition 5.10. [Girard and Pappas, 2005] A relationW ⊆ Rp×Rn is
an approximate simulation relation of precision δ of Σ′ by Σ if for all
(z0, x0) ∈ W ,

1. ‖z0 − g(x0)‖ ≤ δ

2. For all state trajectories z(t) of Σ′ such that z(0) = z0 there
exists a state trajectory x(t) of Σ such that x(0) = x0 and
satisfies (z(t), x(t)) ∈ W for all t ≥ 0.

An interface associated with the approximation simulation rela-
tionW allows us to choose the control inputs for the nonlinear control
system (5.10) so that the states in the linear control system (5.11) and
the states of the nonlinear control system (5.10) remain inW .

Definition 5.11. [Fainekos et al., 2009] A continuous function uW :

V × W → U is an interface associated with the approximate simu-
lation relation W , if for all (z0, x0) ∈ W , for all trajectories z(t) of Σ′

associated to input v(t) such that z(0) = z0, the trajectory of Σ given
by

ẋ(t) = f(x(t), uW(v(t), z(t), x(t))), x(0) = x0 (5.12)

satisfies for all t ≥ 0, (z(t), x(t)) ∈ W .

It is clear from the definitions that interconnecting the linear con-
trol system (5.11) and the nonlinear control system (5.10) through the
interface uW{

ẋ(t) = f(x(t), uW(v(t), z(t), x(t))), x(0) = x0

y(t) = g(x(t))

5.3. Hybrid Supervisory Control 153

satisfies for all t ≥ 0, ‖y(t)− z(t)‖ ≤ δ provided ‖g(x0)− z0‖ ≤ δ.
The approximate simulation relation can be constructed by the

level sets of a simulation function, which is a positive function bound-
ing the distance between the observations and non-increasing under
parallel evolution of the systems.

Definition 5.12. [Girard and Pappas, 2005] Let V : Rp × Rn → R+

be a continuous and piecewise differentiable function. Let uV : V ×

Rp × Rn → Rp be continuous function. The function V is a simulation
function of Σ′ by Σ, and uV is an associated interface if for all (z, x) ∈

Rp ×Rn,
V(z, x) ≥ ‖z − g(x)‖2, (5.13)

sup
v∈V

(
∂V(z, x)

∂z
(Ax + Bv) +

∂V(z, x)

∂x
f(x, uV(v, z, x))

)
≤ 0 (5.14)

Then, the approximate simulation relation can be defined as level
sets of the simulation function.

Theorem 5.9. [Girard and Pappas, 2005, Fainekos et al., 2009] Let the
relationW ⊆ Rp × Rn be given by

W = {(z, x)|V(z, x) ≤ δ2}. (5.15)

If for all v ∈ V , for all (z, x) ∈ W , uV(v, z, x) ∈ U , thenW is an approxi-
mate simulation relation of precision δ of Σ′ by Σ and uW : V ×W → U

given by uW(v, z, x) = uV(v, z, x) is an associated interface.

Usually it is not easy to find such a simulation function except in
some special cases. Also, the arguments used by the simulation func-
tion is similar to Lyapunov functions, so it is usually very conserva-
tive.

In our setup, an RTL formula φ is provided as a controller spec-
ification for the original nonlinear control system, while we need to
deduce a new RTL formula for the auxiliary linear system such that
once a trajectory satisfies the modified specification all neighboring
trajectories will satisfy the original specification φ. Hence, we intro-
duce the notation of δ-contraction so as to capture the robustness of
satisfaction for a formula.

154 Hybrid Supervisory Control

Definition 5.13. [Fainekos et al., 2009] Given a radius δ ∈ R+∪{+∞}

and a point α in a normed space A, the δ-ball centered at α is defined
as Bδ(α) = {β ∈ A| ‖α− β‖ ≤ δ}. If Γ ⊆ A, then

Cδ(Γ) = {α ∈ A|Bδ(α) ⊆ Γ}

is the δ-contraction and Bδ(Γ) = {α ∈ A|Bδ(α) ∩ Γ �= ∅} is the δ-
expansion.

Now, we define a new set of atomic propositions

Π̃ = {ξα|α = π or ¬π for π ∈ Π} .

Next, we describe how to translate an RTL φ on Π into a new RTL,
denoted as rob(φ), on Π̃. First, we write φ into the Negation Normal
Form (NNF). Second, replace the occurrence of atomic proposition π

and ¬π with ξπ and ξ¬π respectively. Thirdly, we define a new atomic
map �·�δ as follows:

∀ξ ∈ Π̃, �ξ�δ =

{
Cδ(�π�c) if ξ = ξ¬π

Cδ(�π�) if ξ = ξ¬π
, (5.16)

where δ ∈ R+ is a given positive scalar, and �π�c stands for the com-
plement of a the set �π�.

Intuitively, it means that we expand the region that y(t) must avoid
and δ-contract the region that it needs to reach. The following result
tells us that the trajectory satisfies the δ-robust specification, then any
other trajectories that remain δ-close to the initial one will satisfy φ.

Theorem 5.10. [Fainekos et al., 2009] Consider a formula φ ∈ ΦΠ,
which is built on a set of atoms Π, a map �·� : Π → P(Rp), and a num-
ber δ ∈ R+, then for all functions y(t) and z(t) from R+ to Rp such
that for all t ≥ 0, ‖z(t) − y(t)‖ ≤ δ, it holds that (z, �·�δ) |= rob(φ) ⇒

(y, �·�) |= φ.

Then, one can design a hybrid controller for the linear control sys-
tem to satisfy rob(φ) as introduced in Section 5.3.1, i.e., the closed-
loop trajectory z(t) satisfies rob(φ). Once this is done, the remaining
task is to design the interface so that the trajectory y(t) always stay in
the δ neighborhood of z(t).

5.4. Notes and Further Reading 155

5.4 Notes and Further Reading

The supervisory control theory was developed by Ramadge and
Wonham in the 1980’s [Ramadge and Wonham, 1987, 1989], and
has seen significant growth in 1990’s [Cassandras and Lafortune,
2008]. The discussion on the timed language and supervisory
control for timed automata is based on [Wong-Toi and Hoffmann,
1991]. Related works on timed language supervisory control include
[Brandin and Wonham, 1994, Maler et al., 1995].

Reachability control on simplex for linear and affine dynam-
ics follows the work in [Habets and van Schuppen, 2004]. The re-
sults on multi-affine systems are mainly based on [Belta and Habets,
2006]. The concept of approximate bisimulation was proposed in
[Girard and Pappas, 2007]. Our treatment of the synthesis of hy-
brid controllers for nonlinear systems mainly follows the results in
[Girard and Pappas, 2009]. Although we only considered the symbolic
control for continuous control systems, the extension of the idea to the
cases of hybrid systems is not difficult provided that the regions of
concern, such as invariant sets and guard sets, are all assumed to be
polyhedrons or rectangles (for multi-affine dynamics). For example,
the control problems for rectangular multi-affine hybrid systems were
investigated in [Habets et al., 2006b] using similar ideas described in
Section 5.3.2, while the reachability and control problems for hybrid
systems with piecewise affine dynamics defined on simplices were
considered in [Habets et al., 2006a] using the techniques discussed in
Section 5.3.1. The finite quotient transition systems obtained for cor-
responding hybrid systems in [Habets et al., 2006b,a] can also be used
for more general supervisory control synthesis using the techniques
introduced Section 5.1.

The supervisory control of hybrid systems using abstracted
models has been advocated in the literature since early 1990’s,
see e.g., [Lemmon et al., 1999, Cury et al., 1998, Raisch and O’Young,
1998, Koutsoukos et al., 2000] and the references therein. Early
work in the area of hybrid supervisory control, e.g., [Cury et al.,
1998, Raisch and O’Young, 1998, Koutsoukos et al., 2000], mainly per-
formed the supervisor synthesis with respect to regular language

156 Hybrid Supervisory Control

specifications (see Section 5.1) based on language equivalent or ap-
proximating quotient systems. However, language equivalence does
not guarantee branching logic, such as CTL, specifications, so we
adopt a stronger equivalence condition, namely bisimulation, instead.

Symbolic control methods using simulation or approximate simu-
lation based quotient transition systems have been exploited in the lit-
erature and the trend is to design controllers in an automatic way, see
e.g., [Tabuada, 2008, Kloetzer and Belta, 2008]. As an application of the
theory introduced here, symbolic motion planning for robots has been
considered in the literature, see e.g., [Belta et al., 2007, Fainekos et al.,
2009]. Readers who are interested in symbolic control may refer to
the book [Tabuada, 2009] for more comprehensive and detailed dis-
cussions on this topic. The design methods introduced in [Tabuada,
2009] also include reactive synthesis based on similarity games and
fixed-point computation, which are rooted in the computer science lit-
erature, see e.g., [Thomas, 1995], and form a parallel approach to the
supervisory control theory discussed here.

6
Concluding Remarks

This paper gives an overview of the theory on hybrid dynamical sys-
tems. This is a very ambitious goal as hybrid systems literature is very
dynamic with a wide spectrum of approaches and applications rang-
ing from computer science, mathematics and control theory. It is per-
fectly possible, and perhaps probable, that we have missed important
results in spite of our best efforts. If this has happened, we do apolo-
gize.

At the same time, this paper aims to serve as an introductory ar-
ticle to the field of hybrid systems for readers with various back-
grounds. Hybrid system theory offers a critical piece of foundation
and a unified theoretical framework for cyber-physical systems as it
helps to better understand and design the interaction of discrete logic
(arising from cyber part) and continuous physical dynamics. For such
a purpose, a variety of basic materials are included to help readers
understand the key ideas in hybrid systems.

Finally, we would like to draw attention to the similarity between
hybrid theory literature and a box of tools. There are many kinds
of models for hybrid systems and their corresponding analysis and
design methods. Hybrid automata is very general and convenient

157

158 Concluding Remarks

to model a wide variety of dynamical systems. Unfortunately, many
problems become undecidable and hence untractable if one uses ex-
clusively with the hybrid automata framework. Some of the models
may be very specific to certain classes of dynamics, but efficient an-
alytical or computational tools exist. So, which modeling framework
should be followed depends on the problem at hand.

Acknowledgements

We highly appreciate the constructive and helpful comments from
four anonymous reviewers. The financial supports of NSF-CNS-
1239222 and NSF-CAREER-1253488 for this work are greatly acknowl-
edged.

159

References

R. Alur and D. Dill. The theory of timed automata. Theoretical Computer
Science, 126:193–235, 1994.

R. Alur and T. Henzinger. Modularity for timed and hybrid systems. In
A. Mazurkiewicz and J. Winkowski, editors, CONCUR ’97: Concurrency
Theory, volume 1243 of Lecture Notes in Computer Science, pages 74–88.
Springer Berlin Heidelberg, 1997. ISBN 978-3-540-63141-5.

R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time systems.
In Logic in Computer Science, 1990. LICS ’90, pages 414–425, Jun 1990.

R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid
systems. Theoretical Computer Science, 138:3–34, 1995.

R. Alur, T. Henzinger, G. Lafferriere, and G. J. Pappas. Discrete abstractions
of hybrid systems. In P. J. Antsaklis, editor, Proceedings of the IEEE: Special
issue on hybrid systems, volume 88, pages 971–984. IEEE Press, 2000a.

Rajeev Alur, Costas Courcoubetis, ThomasA. Henzinger, and Pei-Hsin Ho.
Hybrid automata: An algorithmic approach to the specification and veri-
fication of hybrid systems. In RobertL. Grossman, Anil Nerode, AndersP.
Ravn, and Hans Rischel, editors, Hybrid Systems, volume 736 of Lecture
Notes in Computer Science, pages 209–229. Springer Berlin Heidelberg, 1993.
ISBN 978-3-540-57318-0.

Rajeev Alur, Radu Grosu, Yerang Hur, Vijay Kumar, and Insup Lee. Modular
specification of hybrid systems in charon. In Hybrid Systems: Computation
and Control, pages 6–19. Springer, 2000b.

160

References 161

P. J. Antsaklis and A. Nerode. Hybrid control systems: An introductory dis-
cussion to the special issue. IEEE Trans. Automat. Contr., 43(4):457–460,
1998.

Panos J Antsaklis. A brief introduction to the theory and applications of
hybrid systems. In Proc IEEE, Special Issue on Hybrid Systems: Theory and
Applications, 2000.

Eugene Asarin and Oded Maler. As soon as possible: Time optimal control
for timed automata. In Hybrid Systems: Computation and Control, pages 19–
30. Springer, 1999.

Eugene Asarin, Thao Dang, and Oded Maler. The d/dt tool for verification
of hybrid systems. In Computer Aided Verification, pages 365–370. Springer,
2002.

J. Aubin, J. Lygeros, M. Quincampoix, S. Sastry, and N. Seube. Impulse dif-
ferential inclusions: A viability approach to hybrid systems. IEEE Trans.
Automat. Contr., 47(1):2–20, 2002.

R. Baheti and H. Gill. Cyber-physical systems. The Impact of Control Technol-
ogy, pages 161–166, 2011.

C. Baier and J. P. Katoen. Principles of model checking. MIT press Cambridge,
2008.

A. Balluchi, L. Benvenuti, M.D. Di Benedetto, C. Pinello, and A.L.
Sangiovanni-Vincentelli. Automotive engine control and hybrid systems:
challenges and opportunities. Proceedings of the IEEE, 88(7):888–912, July
2000.

Gerd Behrmann, Alexandre David, and Kim G Larsen. A tutorial on uppaal.
In Formal methods for the design of real-time systems, pages 200–236. Springer,
2004.

C. Belta and L. C G J M Habets. Controlling a class of nonlinear systems on
rectangles. Automatic Control, IEEE Transactions on, 51(11):1749–1759, Nov
2006.

C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G.J. Pappas.
Symbolic planning and control of robot motion. Robotics and Automation
Magazine, IEEE, 14(1):61–70, March 2007.

A. Bemporad and M. Morari. Control of systems integrating logic, dynamics,
and constraints. Automatica, 35(3):407–427, 1999.

A. Bemporad, F. Borrelli, and M. Morari. On the optimal control law for
linear discrete time hybrid systems. In Hybrid systems: Computation and
control, volume 2289 of Lecture Notes in Computer Science, pages 105–119.
Springer, 2002.

162 References

Alberto Bemporad, Giancarlo Ferrari-Trecate, and Manfred Morari. Observ-
ability and controllability of piecewise affine and hybrid systems. IEEE
transactions on automatic control, 45(10):1864–1876, 2000.

S. C. Bengea and R. A. DeCarlo. Optimal control of switching systems. Au-
tomatica, 41(1):11–27, January 2005.

Béatrice Bérard, Michel Bidoit, Alain Finkel, François Laroussinie, Antoine
Petit, Laure Petrucci, and Philippe Schnoebelen. Systems and software veri-
fication: model-checking techniques and tools. Springer Publishing Company,
Incorporated, 2010.

A. Bhaya and F. Mota. Equivalence of stability concepts for discrete time-
varying systems. Int. J. Robust and Nonlin. Contr., 4:725–740, 1994.

F. Borrelli. Constrained Optimal Control of Linear and Hybrid Systems, volume
290 of Lecture Notes in Control and Information Sciences. Springer-Verlag,
2003.

Francesco Borrelli, Mato Baotić, Alberto Bemporad, and Manfred Morari.
Dynamic programming for constrained optimal control of discrete-time
linear hybrid systems. Automatica, 41(10):1709–1721, 2005.

S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities
in System and Control Theory. SIAM, 1994.

B.A. Brandin and W.M. Wonham. Supervisory control of timed discrete-
event systems. Automatic Control, IEEE Transactions on, 39(2):329–342, 1994.

M. S. Branicky. Multiple lyapunov functions and other analysis tools for
switched and hybrid systems. IEEE Trans. Automat. Contr., 43(4):475–482,
1998.

M.S. Branicky, V.S. Borkar, and S.K. Mitter. A unified framework for hybrid
control: model and optimal control theory. Automatic Control, IEEE Trans-
actions on, 43(1):31–45, 1998.

M.S. Branicky, M.M. Curtiss, J. Levine, and S. Morgan. Sampling-based plan-
ning, control and verification of hybrid systems. IEE Proceedings - Control
Theory and Applications, 153:575–590(15), September 2006.

R. W. Brockett. Asymptotic stability and feedback stabilization. In R. W.
Brockett, R. S. Millman, and H. J. Sussmann, editors, Differential Geometric
Control Theory, pages 181–191. Boston, MA: Birkhuser, 1983.

C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems (2nd
Edition). Springer-Verlag, 2008.

C.G. Cassandras, D.L. Pepyne, and Y. Wardi. Optimal control of a class of
hybrid systems. IEEE Trans. Automat. Contr., 46(3):398–415, 2001.

References 163

Christos G Cassandras and John Lygeros. Stochastic hybrid systems. CRC
Press, 2010.

A. Chutinan and B. H. Krogh. Computational techniques for hybrid system
verification. IEEE Trans. Automat. Contr., 48(1):64–75, 2003.

Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto
Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani, and
Armando Tacchella. Nusmv 2: An opensource tool for symbolic model
checking. In Computer Aided Verification, pages 359–364. Springer, 2002.

E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT press, 1999.

Edmund M. Clarke, E Allen Emerson, and A Prasad Sistla. Automatic ver-
ification of finite-state concurrent systems using temporal logic specifica-
tions. ACM Transactions on Programming Languages and Systems (TOPLAS),
8(2):244–263, 1986.

José ER Cury, Bruce H Krogh, and Toshihiko Niinomi. Synthesis of super-
visory controllers for hybrid systems based on approximating automata.
Automatic Control, IEEE Transactions on, 43(4):564–568, 1998.

J. Daafouz, R. Riedinger, and C. Iung. Stability analysis and control synthesis
for switched systems: a switched lyapunov function approach. IEEE Trans.
Automat. Contr., 47(11):1883–1887, 2002.

Thao Dang, Alexandre Donzé, Oded Maler, and Noa Shalev. Sensitive state-
space exploration. In Decision and Control, 2008. CDC 2008. 47th IEEE Con-
ference on, pages 4049–4054. IEEE, 2008.

Tuhin Das and Ranjan Mukherjee. Optimally switched linear systems. Auto-
matica, 44(5):1437–1441, 2008.

H. De Jong. Modeling and simulation of genetic regulatory systems: a litera-
ture review. Journal of computational biology, 9(1):67–103, 2002.

R. A. DeCarlo, M. S. Branicky, S. Pettersson, and B. Lennartson. Perspec-
tives and results on the stability and stabilizability of hybrid systems. In
P. J. Antsaklis, editor, Proceedings of the IEEE: Special issue on hybrid systems,
volume 88, pages 1069–1082. IEEE Press, 2000.

Akash Deshpande, Aleks GÃűllÃij, and Pravin Varaiya. Shift: A formalism
and a programming language for dynamic networks of hybrid automata.
In Panos Antsaklis, Wolf Kohn, Anil Nerode, and Shankar Sastry, editors,
Hybrid Systems IV, volume 1273 of Lecture Notes in Computer Science, pages
113–133. Springer Berlin Heidelberg, 1997.

164 References

Stephen Edwards, Luciano Lavagno, Edward A Lee, and Alberto
Sangiovanni-Vincentelli. Design of embedded systems: Formal models,
validation, and synthesis. Readings in hardware/software co-design, page 86,
2001.

Magnus Egerstedt. Behavior based robotics using hybrid automata. In
Nancy Lynch and BruceH. Krogh, editors, Hybrid Systems: Computation and
Control, volume 1790 of Lecture Notes in Computer Science, pages 103–116.
Springer Berlin Heidelberg, 2000.

Magnus Egerstedt, Yorai Wardi, and Henrik Axelsson. Transition-time opti-
mization for switched-mode dynamical systems. Automatic Control, IEEE
Transactions on, 51(1):110–115, 2006.

E Allen Emerson. Temporal and modal logic. Handbook of Theoretical Com-
puter Science, Volume B: Formal Models and Sematics (B), 995:1072, 1990.

S. Engell, S. Kowalewski, C. Schulz, and O. Stursberg. Continuous-discrete
interactions in chemical processing plants. Proceedings of the IEEE, 88(7):
1050–1068, July 2000.

G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas. Temporal logic
motion planning for dynamic robots. Automatica, 45(2):343–352, 2009.
ISSN 0005-1098.

E. Feron. Quadratic stabilizability of switched systems via state and output
feedback. Technical Report CICS-P-468, MIT, 1996.

Giancarlo Ferrari-Trecate, Marco Muselli, Diego Liberati, and Manfred
Morari. A clustering technique for the identification of piecewise affine
systems. Automatica, 39(2):205–217, 2003.

Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi
Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang, and
Oded Maler. Spaceex: Scalable verification of hybrid systems. In Computer
Aided Verification, pages 379–395. Springer, 2011.

Paul Gastin and Denis Oddoux. Fast ltl to büchi automata translation. In
Computer Aided Verification, pages 53–65. Springer, 2001.

A. Girard and G. J. Pappas. Approximation metrics for discrete and continu-
ous systems. Automatic Control, IEEE Transactions on, 52(5):782–798, 2007.

A. Girard and G. J. Pappas. Hierarchical control system design using approx-
imate simulation. Automatica, 45(2):566–571, 2009. ISSN 0005-1098.

Antoine Girard and George J Pappas. Approximation metrics for discrete
and continuous systems. 2005.

References 165

R. Goebel, R. Sanfelice, and A. R. Teel. Hybrid dynamical systems. IEEE
Control Systems Magazine, 29(2):28ĺC93, 2009.

R. Goebel, R. G. Sanfelice, and A. R. Teel. Hybrid Dynamical Systems: modeling,
stability, and robustness. Princeton University Press, 2012.

Humberto Gonzalez, Ramanarayan Vasudevan, Maryam Kamgarpour,
S Shankar Sastry, Ruzena Bajcsy, and Claire Tomlin. A numerical method
for the optimal control of switched systems. In Decision and Control (CDC),
2010 49th IEEE Conference on, pages 7519–7526. IEEE, 2010.

L. Habets and Jan H. van Schuppen. A control problem for affine dynamical
systems on a full-dimensional polytope. Automatica, 40(1):21–35, 2004.

LCGJM Habets, Pieter J Collins, and Jan H van Schuppen. Reachability and
control synthesis for piecewise-affine hybrid systems on simplices. Auto-
matic Control, IEEE Transactions on, 51(6):938–948, 2006a.

LCGJM Habets, M Kloetzer, and Calin Belta. Control of rectangular multi-
affine hybrid systems. In Decision and Control, 2006 45th IEEE Conference
on, pages 2619–2624. IEEE, 2006b.

S. Hedlund and A. Rantzer. Cdp tool: A matlab tool for optimal control
of hybrid systems. department of automatic control. In Lund Institute of
Technology, 1999.

S. Hedlund and A. Rantzer. Convex dynamic programming for hybrid sys-
tems. Automatic Control, IEEE Transactions on, 47(9):1536–1540, Sep 2002.

W. PMH Heemels, B. De Schutter, and A. Bemporad. Equivalence of hybrid
dynamical models. Automatica, 37(7):1085–1091, 2001.

T. Henzinger. Hybrid automata with finite bisimulations. In Z. Füllöp
and G. Gécgeg, editors, ICALP’95: Automata, Languages, and Programming.
Springer-Verlag, 1995.

T. Henzinger. The theory of hybrid automata. In M.K. Inan and R.P. Kurshan,
editors, Verification of Digital and Hybrid Systems, volume 170 of NATO ASI
Series, pages 265–292. Springer Berlin Heidelberg, 2000.

T. Henzinger, P. Ho, and H. Wong-Toi. Hytech: A model checker for hybrid
systems. In Computer aided verification, pages 460–463. Springer, 1997.

T. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable about
hybrid automata? Journal of Computer and System Sciences, 57:94–124, 1998.

Thomas A Henzinger, Peter W Kopke, Anuj Puri, and Pravin Varaiya. What’s
decidable about hybrid automata? In Proceedings of the twenty-seventh an-
nual ACM symposium on Theory of computing, pages 373–382. ACM, 1995.

166 References

J. P. Hespanha. Stabilization through hybrid control. In H. Unbehauen, edi-
tor, Encyclopedia of Life Support Systems (EOLSS), volume Control Systems,
Robotics, and Automation. Oxford, UK, 2004a.

J. P. Hespanha and A. S. Morse. Stability of switched systems with aver-
age dwell-time. In Proc. 38th IEEE Conf. Decision Control, pages 2655–2660,
1999.

J. P. Hespanha, D. Liberzon, and A. S. Morse. Logic-based switching control
of a nonholonomic system with parametric modeling uncertainty. Systems
& Control Letters, 38(3):167–177, 1999.

J. P. Hespanha, D. Liberzon, D. Angeli, and E. D. Sontag. Nonlinear norm-
observability notions and stability of switched systems. IEEE Trans. Au-
tomat. Contr., 52(2):154–168, 2005.

Joao P Hespanha. Stochastic hybrid systems: Application to communica-
tion networks. In Hybrid systems: computation and control, pages 387–401.
Springer, 2004b.

Gerard J Holzmann. The model checker spin. IEEE Transactions on software
engineering, 23(5):279–295, 1997.

J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Prentice Hall, third edition, 2006.

Jianghai Hu, John Lygeros, and Shankar Sastry. Towards a theory of stochas-
tic hybrid systems. In Hybrid Systems: Computation and Control, pages 160–
173. Springer, 2000.

J. Imura and A. van der Schaft. Characterization of well-posedness of
piecewise-linear systems. IEEE Trans. Automat. Contr., 45(9):1600–1619,
2000.

Karl Henrik Johansson, Magnus Egerstedt, John Lygeros, and Shankar Sas-
try. On the regularization of zeno hybrid automata. Systems & Control
Letters, 38(3):141–150, 1999.

M. Johansson. Piecewise Linear Control Systems: A Computational Approach,
volume 284 of Lecture Notes in Control and Information Sciences. Springer-
Verlag, 2003a.

M. K.-J. Johansson, editor. Piecewise Linear Control Systems: A Computational
Approach, volume 284 of Lecture Notes in Control and Information Sciences.
Springer-Verlag, 2003b.

Aleksandar Lj Juloski, Siep Weiland, and WPMH Heemels. A bayesian ap-
proach to identification of hybrid systems. Automatic Control, IEEE Trans-
actions on, 50(10):1520–1533, 2005.

References 167

Matt Kaufmann, J Strother Moore, and Panagiotis Manolios. Computer-aided
reasoning: an approach. Kluwer Academic Publishers, 2000.

Hassan K Khalil and JW Grizzle. Nonlinear systems, volume 3. Prentice hall
Upper Saddle River, 2002.

C. King and R. Shorten. A singularity test for the existence of common
quadratic lyapunov functions for pairs of stable LTI systems. In Proc. 2004
American Contr. Conf., pages 3881–3884, 2004.

M. Kloetzer and C. Belta. A fully automated framework for control of lin-
ear systems from temporal logic specifications. Automatic Control, IEEE
Transactions on, 53(1):287–297, 2008.

X.D. Koutsoukos, P.J. Antsaklis, J.A. Stiver, and M.D. Lemmon. Supervisory
control of hybrid systems. Proceedings of the IEEE, 88(7):1026–1049, July
2000.

Marta Kwiatkowska, Gethin Norman, and David Parker. Prism: Probabilis-
tic symbolic model checker. In Computer performance evaluation: modelling
techniques and tools, pages 200–204. Springer, 2002.

G. Lafferriere, G. J. Pappas, and S. Sastry. O-minimal hybrid systems. Math-
ematics of control, signals and systems, 13(1):1–21, 2000.

Carl W Lee. Subdivisions and triangulations of polytopes. In Handbook of
discrete and computational geometry, pages 271–290. CRC Press, Inc., 1997.

E.A. Lee. Cyber physical systems: Design challenges. In Object Oriented Real-
Time Distributed Computing (ISORC), 2008 11th IEEE International Sympo-
sium on, pages 363–369, May 2008.

Domine MW Leenaerts and Wim MG Van Bokhoven. Piecewise linear model-
ing and analysis. Springer, 1998.

M. D. Lemmon, K. He, and I. Markovsky. Supervisory hybrid systems. Con-
trol Systems, IEEE, 19(4):42–55, 1999.

D. Liberzon. Switching in Systems and Control. Birkhauser, Boston, 2003.

D. Liberzon and A. S. Morse. Basic problems in stability and design of
switched systems. IEEE Contr. Syst. Magazine, 19(5):59–70, 1999.

D. Liberzon, J. P. Hespanha, and A. S. Morse. Stability of switched linear
systems: A lie-algebraic condition. Syst. Contr. Lett., 37(3):117–122, 1999.

H. Lin and P. J. Antsaklis. Switching stabilizability for continuous-time un-
certain switched linear systems. IEEE Trans. Automat. Contr., 52(4):633–646,
2007.

168 References

H. Lin and P.J. Antsaklis. Stability and stabilizability of switched linear sys-
tems: A survey of recent results. Automatic Control, IEEE Transactions on,
54(2):308–322, 2009.

Hai Lin and Panos J Antsaklis. Hybrid state feedback stabilization with l 2
performance for discrete-time switched linear systems. International Jour-
nal of Control, 81(7):1114–1124, 2008.

Ji-Nan Lin and Rolf Unbehauen. Canonical piecewise-linear approximations.
IEEE Transactions on circuits and systems. I: Fundamental theory and applica-
tions, 39(8):697–699, 1992.

Jie Liu, Xiaojun Liu, Tak-Kuen J.Koo, B. Sinopoli, S. Sastry, and E.A. Lee.
A hierarchical hybrid system model and its simulation. In Decision and
Control, 1999. Proceedings of the 38th IEEE Conference on, volume 4, pages
3508–3513 vol.4, 1999.

J. Lygeros, S. Sastry, and C. Tomlin. The Art of Hybrid Systems. 2001. URL
http://robotics.eecs.berkeley.edu/~sastry/ee291e/book.pdf.

J. Lygeros, K.H. Johansson, S.N. Simic, Jun Zhang, and S.S. Sastry. Dynamical
properties of hybrid automata. Automatic Control, IEEE Transactions on, 48
(1):2–17, 2003.

N. Lynch, R. Segala, and F. Vaandrager. Hybrid I/O automata. Information
and Computation, 185(1):103–157, 2003.

Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of discrete
controllers for timed systems. In STACS 95, pages 229–242. Springer, 1995.

Michael Margaliot and Daniel Liberzon. Lie-algebraic stability conditions for
nonlinear switched systems and differential inclusions. Systems & control
letters, 55(1):8–16, 2006.

A. N. Michel. Recent trends in the stability analysis of hybrid dynamical
systems. IEEE Trans. Circuits Syst. I, 46(1):120–134, 1999.

R. Milner. Communication and Concurrency. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1989.

Eduardo Mojica-Nava, Nicanor Quijano, and Naly Rakoto-Ravalontsalama.
A polynomial approach for optimal control of switched nonlinear systems.
International Journal of Robust and Nonlinear Control, 2013.

A. P. Molchanov and D. Liu. Robust absolute stability of time-varying non-
linear discrete-time systems. IEEE Trans. Circuits Syst. I, 49(8):1129–1137,
2002.

References 169

A. P. Molchanov and E. Pyatnitskiy. Criteria of asymptotic stability of differ-
ential and difference inclusions encountered in control theory. Systems &
Control Letters, 13:59–64, 1989.

A. S. Morse. Supervisory control of families of linear set-point controllers
- part 1: Exact matching. IEEE Trans. Automat. Contr., 41(10):1413–1431,
1996.

K. S. Narendra and J. Balakrishnan. A common lyapunov function for stable
LTI systems with commuting a-matrices. IEEE Trans. Automat. Contr., 39
(12):2469–2471, 1994.

Truong Nghiem, Sriram Sankaranarayanan, Georgios Fainekos, Franjo Ivan-
cić, Aarti Gupta, and George J Pappas. Monte-carlo techniques for falsifi-
cation of temporal properties of non-linear hybrid systems. In Proceedings
of the 13th ACM international conference on Hybrid systems: computation and
control, pages 211–220. ACM, 2010.

A. Papachristodoulou and S. Prajna. A tutorial on sum of squares techniques
for systems analysis. In Proc. 2005 American Control Conf., 2005.

Antonis Papchristodoulou and Stephen Prajna. Robust stability analysis of
nonlinear hybrid systems. IEEE Transactions on Automatic Control, 54(5):
1034–1041, 2009.

D.L. Pepyne and C.G. Cassandras. Optimal control of hybrid systems in
manufacturing. Proceedings of the IEEE, 88(7):1108–1123, July 2000.

S. Pettersson. Synthesis of switched linear systems. In Proc. 42nd IEEE Conf.
Decision Control, pages 5283–5288, 2003.

S. Pettersson and B. Lennartson. Stabilization of hybrid systems using a
min-projection strategy. In Proc. 2001 American Contr. Conf., pages 223–228,
2001.

S. Pettersson and B. Lennartson. Hybrid system stability and robustness ver-
ification using linear matrix inequalities. Inter. J. Contr., 75(16-17):1335–
1355, 2002.

Erion Plaku, Lydia E Kavraki, and Moshe Y Vardi. Falsification of ltl safety
properties in hybrid systems. International Journal on Software Tools for Tech-
nology Transfer, 15(4):305–320, 2013.

Amir Pnueli. The temporal logic of programs. In Foundations of Computer
Science, 1977., 18th Annual Symposium on, pages 46–57, Oct 1977.

Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In
Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 179–190. ACM, 1989.

170 References

G Pola, ML Bujorianu, J Lygeros, and MDD Benedetto. Stochastic hybrid
models: An overview. In Proc. IFAC Conf. Anal. Design Hybrid Syst, pages
45–50, 2003.

S. Prajna and A. Papachristodoulou. Analysis of switched and hybrid sys-
tems - beyond piecewise quadratic methods. In Proc. 42nd IEEE Conf. De-
cision Control, pages 2779–2784, 2003.

Stephen Prajna and Ali Jadbabaie. Safety verification of hybrid systems using
barrier certificates. In Hybrid Systems: Computation and Control, pages 477–
492. Springer, 2004.

Michael Melholt Quottrup, Thomas Bak, and RI Zamanabadi. Multi-robot
planning: A timed automata approach. In Robotics and Automation, 2004.
Proceedings. ICRA’04. 2004 IEEE International Conference on, volume 5,
pages 4417–4422. IEEE, 2004.

Jörg Raisch and Siu D O’Young. Discrete approximation and supervisory
control of continuous systems. Automatic Control, IEEE Transactions on, 43
(4):569–573, 1998.

P. Ramadge and W. M. Wonham. The control of discrete event systems. Pro-
ceedings of the IEEE, 77(1):81–98, 1989.

Peter J Ramadge and W Murray Wonham. Supervisory control of a class of
discrete event processes. SIAM journal on control and optimization, 25(1):
206–230, 1987.

A. Rantzer and M. Johansson. Piecewise linear quadratic optimal control.
IEEE Trans. Automat. Contr., 45(4):629–637, 2000.

Mark Reynolds. Continuous temporal models. In AI 2001: Advances in Arti-
ficial Intelligence, pages 414–425. Springer, 2001.

Jacob Roll, Alberto Bemporad, and Lennart Ljung. Identification of piecewise
affine systems via mixed-integer programming. Automatica, 40(1):37–50,
2004.

A. van der Schaft and H. Schumacher. An Introduction to Hybrid Dynamical
Systems, volume 251 of Lecture Notes in Control and Information Sciences.
Springer-Verlag, London, 2000.

M Shahid Shaikh and Peter E Caines. On the hybrid optimal control problem:
theory and algorithms. Automatic Control, IEEE Transactions on, 52(9):1587–
1603, 2007.

Robert Shorten, Fabian Wirth, Oliver Mason, Kai Wulff, and Christopher
King. Stability criteria for switched and hybrid systems. SIAM review,
49(4):545–592, 2007.

References 171

B Izaias Silva, Keith Richeson, Bruce Krogh, and Alongkrit Chutinan. Mod-
eling and verifying hybrid dynamic systems using checkmate. In Proceed-
ings of 4th International Conference on Automation of Mixed Processes, pages
323–328, 2000.

E. Skafidas, R. J. Evans, A. V. Savkin, and I. R. Petersen. Stability results for
switched controller systems. Automatica, 35(4):553–564, 1999.

Eduardo Sontag. Nonlinear regulation: The piecewise linear approach. Au-
tomatic Control, IEEE Transactions on, 26(2):346–358, 1981.

Eduardo D Sontag. Mathematical control theory: deterministic finite dimensional
systems, volume 6. Springer, 1998.

Zhendong Sun, Shuzhi Sam Ge, and Tong Heng Lee. Controllability and
reachability criteria for switched linear systems. Automatica, 38(5):775–786,
2002.

H.J. Sussmann. A maximum principle for hybrid optimal control problems.
In Decision and Control, 1999. Proceedings of the 38th IEEE Conference on, vol-
ume 1, pages 425–430 vol.1, 1999.

P. Tabuada. Verification and Control of Hybrid Systems: A Symbolic Approach.
Springer, Springer New York, 2009.

Paulo Tabuada. An approximate simulation approach to symbolic control.
Automatic Control, IEEE Transactions on, 53(6):1406–1418, 2008.

Wolfgang Thomas. On the synthesis of strategies in infinite games. In STACS
95, pages 1–13. Springer, 1995.

C. Tomlin, G.J. Pappas, and S. Sastry. Conflict resolution for air traffic man-
agement: a study in multiagent hybrid systems. Automatic Control, IEEE
Transactions on, 43(4):509–521, Apr 1998.

Claire J Tomlin, Ian Mitchell, Alexandre M Bayen, and Meeko Oishi. Com-
putational techniques for the verification of hybrid systems. Proceedings of
the IEEE, 91(7):986–1001, 2003.

Fabio Danilo Torrisi and Alberto Bemporad. Hysdel-a tool for generating
computational hybrid models for analysis and synthesis problems. Control
Systems Technology, IEEE Transactions on, 12(2):235–249, 2004.

Moshe Y Vardi. An automata-theoretic approach to linear temporal logic. In
Logics for concurrency, pages 238–266. Springer, 1996.

Yorai Wardi and Magnus Egerstedt. Algorithm for optimal mode scheduling
in switched systems. In American Control Conference (ACC), 2012, pages
4546–4551. IEEE, 2012.

172 References

M. A. Wicks and R. A. DeCarlo. Solution of coupled lyapunov equations
for the stabilization of multi-modal linear systems. In Proc. 1997 American
Contr. Conf., pages 1709–1713, 1997.

M. A. Wicks, P. Peleties, and R. A. DeCarlo. Switched controller design for
the quadratic stabilization of a pair of unstable linear systems. European J.
Control, 4:140–147, 1998.

H. Witsenhausen. A class of hybrid-state continuous-time dynamic systems.
Automatic Control, IEEE Transactions on, 11(2):161–167, Apr 1966.

H. Wong-Toi and G. Hoffmann. The control of dense real-time discrete event
systems. In Decision and Control, 1991., Proceedings of the 30th IEEE Confer-
ence on, pages 1527–1528. IEEE, 1991.

Guangming Xie and Long Wang. Controllability and stabilizability of
switched linear-systems. Systems & Control Letters, 48(2):135–155, 2003.

X. Xu and P. J. Antsaklis. Results and perspectives on computational methods
for optimal control of switched systems. In Hybrid Systems: Computation
and Control, pages 540–555. Springer, 2003.

X. Xu and P. J. Antsaklis. Optimal control of switched systems based on
parameterization of the switching instants. IEEE Trans. Automat. Contr., 49
(1):2–16, 2004.

H. Ye, A. N. Michel, and L. Hou. Stability theory for hybrid dynamical sys-
tems. IEEE Trans. Automat. Contr., 43(4):461–474, 1998.

Sergio Yovine. Kronos: A verification tool for real-time systems. International
Journal on Software Tools for Technology Transfer (STTT), 1(1):123–133, 1997.

G. Zhai, B. Hu, K. Yasuda, and A. N. Michel. Qualitative analysis of discrete-
time switched systems. In Proc. 2002 American Contr. Conf., volume 3,
pages 1880–1885, 2002.

G. Zhai, H. Lin, and P. J. Antsaklis. Quadratic stabilizability of switched
linear systems with polytopic uncertainties. Inter. J. Contr., 76(7):747–753,
2003.

F. Zhu and P. J. Antsaklis. Optimal control of switched hybrid systems: a brief
survey. ISIS Tech. Report (to appera in Discrete Event Dynamic Systems), 3,
2011.

Günter M Ziegler. Lectures on polytopes, volume 152. Springer, 1995.

