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Systems with Feedthrough Terms
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Abstract—In this paper, we consider the following problem:
what passivity properties for a nonlinear system can be inferred
when its linearization around an equilibrium point is known to
be passive. We consider both continuous-time and discrete-time
systems with feedthrough terms. Our main results show that
when the linearized model is simultaneously strictly passive and
strictly input passive, the nonlinear system is passive as well
within a neighborhood of the equilibrium point around which
the linearization is done.

I. INTRODUCTION

Passivity and dissipativity characterize the energy consump-
tion of a dynamical system and form a powerful tool in
many applications. Passivity is closely related to stability and
exhibits a compositional property for parallel and feedback
interconnections [1], [2], [3]. Thus, it is especially useful in
the analysis of large-scale systems.

In this paper, we are interested in the passivity of a nonlinear
system as inferred from studying its linearized model. Using
linearized models for nonlinear systems has a long history both
in analysis and synthesis [4], [5]. These methods rely on results
that can guarantee that certain properties such as stability
‘carry over’ to the nonlinear system from its linearized version.
For the properties of passivity and dissipativity that we are
interested in, the picture is not as clear. The closest works to
ours in the literature are [1], [6]. In [6], nonlinear systems that
are affine in control and without any feedthrough term were
studied. It was shown that for such systems, strict passivity of
the linearized model is sufficient to guarantee local passivity
of the nonlinear system. Since a passive discrete time system
must have a non-zero feedthrough term, consideration was
restricted to continuous time systems only. In [1], once again,
the feedthrough term of the linearized model was assumed to
be zero. Conditions under which dissipativity of the linearized
system can guarantee a similar property of the nonlinear
system are then established. However, since these conditions
assume the supply rate to be of a particular form that does not
include passivity, the results cannot be used to study passivity
of the nonlinear system (even when the feedthrough term is
assumed to be absent).

The main contribution of this paper is the establishment
of one set of sufficient conditions for the linearized model
to ensure local passivity of the corresponding nonlinear sys-
tem, for both continuous-time and discrete-time systems. In
particular, we show that if the linearization of a nonlinear
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system is simultaneously strictly passive and strictly input
passive, then the nonlinear system is guaranteed to be locally
passive. We also establish a similar result for the case when
the linearization is dissipative. Analogous to the results in
[1], [6], for a given nonlinear system, our results hold true
within a neighborhood of the equilibrium point around which
the linearization is done. We do not constrain the system to
have no feedthrough term as was the case in [1], [6] or to be
affine in the control input as in [6]. This requires us to use a
different analysis technique based on Taylor’s theorem and the
positive real lemma. In particular, by allowing the presence of
feedthrough terms, we are able to present passivity results for
discrete time systems as well. Our results are compatible with
those in [6] in the sense that when the system model has the
form in [6], our results reduce to theirs.

The rest of the paper is organized as follows. Section II
provides background material on passivity and dissipativity.
The main results are given in Section III when the linearized
model is assumed to be simultaneously strictly passive and
strictly input passive. When the linearization is merely strictly
passive, the corresponding results are presented in IV. Section
V provides some concluding remarks.

Notation: Rm denotes the Euclidean space of dimension
m. The n-dimensional identity matrix is denoted by In×n or
simply I by omitting the dimensions if clear from the context.
For a matrix P ∈ Rm×n, its transpose is denoted by PT .
For a symmetric matrix P = PT , P > 0 denotes that P is
positive-definite and P ≥ 0 denotes that it is positive semi-
definite. The maximum eigenvalue of P is denoted by λ(P )
and its minimum eigenvalue is denoted by λ(P ). The 2-norm
of a vector x ∈ Rm is denoted by ‖x‖, and analogously, the 2-
norm of a matrix P ∈ Rm×n is denoted by ‖P‖. The absolute
value of x ∈ R is denoted by |x|.

II. BACKGROUND MATERIAL

Consider a continuous-time nonlinear system

ẋ = f(x, u),

y = h(x, u), (1)

where x ∈ Rn is the system state, u ∈ Rm is the control input,
and y ∈ Rm is the system output. The functions f and h are
real analytic about (x = 0, u = 0). Without loss of generality,
we assume that the pair (x = 0, u = 0) is an equilibrium point
for system (1). Thus, f(0, 0) = 0 and h(0, 0) = 0.

Linearization of system (1) around the equilibrium point
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(x = 0, u = 0) is given by

ż = Az +Bv,

w = Cz +Dv, (2)

where z ∈ Rn denotes the system state, v ∈ Rm denotes the
control input and w ∈ Rm denotes the system output. The
system matrices {A,B,C,D} are given by

A =
∂f

∂x
|x=0,u=0, B =

∂f

∂u
|x=0,u=0,

C =
∂h

∂x
|x=0,u=0, D =

∂h

∂u
|x=0,u=0. (3)

Throughout the paper, we assume that {A,B} is controllable
and {A,C} is observable.1 The positive real lemma (see e.g.
Lemma 6.2 in [4]) states that system (2) is positive real if and
only if there exist matrices P = PT > 0, L and W , such that

PA+ATP = −LTL,
PB = CT − LTW,

WTW = D +DT .

The Taylor series expansions for f and h about (0, 0) exist
and are given by

f(x, u) = Ax+Bu+ F (x, u),

h(x, u) = Cx+Du+H(x, u), (4)

where F (x, u) and H(x, u) contain higher-order terms corre-
sponding to f(x, u) and h(x, u), respectively (see e.g. [9, p.
388-393]).

Analogously, for a discrete-time nonlinear system given by

x(k + 1) = f(x(k), u(k)),

y(k) = h(x(k), u(k)), (5)

we can obtain a linearized model given by

z(k + 1) = Az(k) +Bv(k),

w(k) = Cz(k) +Dv(k), (6)

with {A,B,C,D} defined in (3). Note that as opposed to
system (1), system (5) cannot be passive when y(k) = h(x(k))
(i.e. if there is no feedthrough term), see e.g. [10].

Definition 1: ([1], [11]) The state-space system (1) is said
to be dissipative with respect to supply rate w(u(t), y(t)), if
there exists a nonnegative function V (x), called the storage
function, satisfying V (0) = 0 such that for all x0 ∈ X , all
t1 > t0, and all u ∈ Rm,

V (x(t1)) ≤ V (x(t0)) +

∫ t1

t0

w(u(t), y(t))dt, (7)

where x(t0) = x0 and x(t1) is the state at t1 resulting from
initial condition x0 and input function u(·). In particular, if (7)
holds with strict inequality, (1) is called strictly dissipative.

Definition 2: ([10]) The state-space system (5) is said to
be dissipative with respect to supply rate W (u(k), y(k)), if

1Note that we make no assumption on the global controllability or ob-
servability of the nonlinear system (1). The problem considered in this paper
assumes that the linearized system (2) satisfies the positive real lemma. Under
this framework, controllability and observability is a common assumption (see,
e.g., [4, pp. 237-241], [7, pp. 361-372], [8, pp. 218-269]).

there exists a nonnegative function V (x), called the storage
function, satisfying V (0) = 0 such that for all x0 ∈ X , all
k > k0, and all u ∈ Rm,

V (x(k))− V (x(k0)) ≤
k−1∑
i=k0

W (y(i), u(i)), (8)

where x(k0) = x0 and x(k) is the state at k resulting from
initial condition x0 and input function u(·). In particular, if (8)
holds with strict inequality, (5) is called strictly dissipative.

Remark 1: If V (x) is differentiable, (7) is equivalent to

V̇ (x) ,
∂V

∂x
(f(x) + g(x)u) ≤ w(u(t), y(t)). (9)

Further, it has been shown in [10] that in discrete-time domain,
(8) is equivalent to

V (x(k + 1))− V (x(k)) ≤W (u(k), y(k)).

Definition 3: ([2], [11]) Suppose system (1) is dissipative.
It is called:

1) passive if (7) holds for w(u, y) = uT y;
2) strictly passive (SP) if (7) holds with strict inequality

for w(u, y) = uT y;
3) strictly input passive (SIP) if (7) holds for w(u, y) =

uT y − νuTu, where ν > 0.
4) strictly passive and strictly input passive (SSIP) if it is

simultaneously SP and SIP.
5) (Q,S,R)-dissipative, if (7) holds for w(u, y) = uTRu+

2yTSu + yTQy, where Q = QT , S and R = RT are
matrices of appropriate dimensions. In particular, if Q =
−ρI, S = 1

2I, R = 0, then ρ is called the output
feedback passivity index (OFP); if Q = 0, S = 1

2I,R =
−νI , then ν is called the input feedforward passivity
index (IFP).

Analogously, we can define passivity and other properties
mentioned above for the discrete-time system (5) as well. �

Remark 2: As shown in [4], a system is SP if uT y ≥ V̇ +
ψ(x) for some positive definite function ψ. SSIP has been
defined as input-state strictly passivity in [12] where it is also
shown that a system is SSIP if uT y ≥ V̇ + ψ(x) + εuTu
for some positive definite function ψ(x) and some positive
constant ε > 0.

Definition 4: ([13]) If any of the properties for system (1)
or (5) as defined above in Definitions 1, 2, 3 hold in a
neighborhood of (x = 0, u = 0) ∈ X × U , it is called a
local property of system (1) or (5).

Remark 3: In the literature, alternate definitions of local
passivity have been proposed. For instance, in [6], local pas-
sivity is defined in a ball around x = 0 and all control inputs u
that do ‘not drive the state too far from the equilibrium point’.
In [14], Sobolev spaces have been used to define local passivity
by constraining the magnitudes of u and its derivatives. In
[15], local dissipativity is defined both in terms of small-gain
inputs and local internal stability regions. In this paper, we
define local passivity or dissipativity in a neighborhood of
(x = 0, u = 0) ∈ X × U as in [13].
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III. MAIN RESULTS

In this section, we establish conditions under which a
linear system is SSIP and show that a SSIP linearized model
guarantees local SSIP of the nonlinear system.2

A. SSIP: from linearity to nonlinearity

We now present our main result. The following theorem
shows that if the linearized model is SSIP, then the nonlinear
system is guaranteed to be locally SSIP. Thus, in particular,
the nonlinear system is locally passive.

Theorem 1: Consider the continuous-time nonlinear system
given by (1) and its linearized model given by (2) and (3). If
the linearized model (2) is SSIP, then system (1) is locally
SSIP. Analogously, for the discrete-time nonlinear system
given by (5) and its linearized model given by (6) and (3).
If the linearized model (6) is SSIP, then system (5) is locally
SSIP.

Proof: See the Appendix.
Remark 4: For the nonlinear systems (1) and (5), the above

results hold true only in a neighborhood of the equilibrium
point (x = 0, u = 0).

Remark 5: Note that the converse of this result does not
hold in general. In other words, if the nonlinear system (1) is
SSIP, then the linearized model (2) need not to be SSIP [6],
[7].

Remark 6: Our result that SSIP of the linearized model
implies local passivity of the corresponding nonlinear sys-
tem is analogous to the result that asymptotic stability of
the linearized model implies local Lyapunov stability of the
corresponding nonlinear system.

Example 1: To better understand Theorem 1, we consider
a particular form of system (1) which is affine in control and
given by

ẋ = α(x) + β(x)u,

y = γ(x) + ζ(x)u, (10)

where α, β, γ and ζ are real analytic at x = 0. We assume
that α(0) = 0 and γ(0) = 0. Further, let the Taylor series
expansions for α, β, γ and ζ about x = 0 be given by

α(x) = Ax+ F̃ (x), γ(x) = Cx+ H̃(x),

β(x) = B + G̃(x), ζ(x) = D + M̃(x), (11)

If the linearized model (2) is SSIP, then there exist a storage
function V = 1

2z
TPz and positive constants ε1 > 0 and ε2 >

0 such that vTw−V̇ ≥ ε1zT z+ε2v
T v. Apply V (x) = 1

2x
TPx

as a storage function for (10) and define Υ(x, u) , uT y −
V̇ (x). From (11), we obtain

Υ(x, u) = uT (γ(x) + ζ(x)u)− ∂V

∂x
(α(x) + β(x)u)

= uT (Cx+Du) + uT (H̃(x) + M̃(x)u)

− xTP (Ax+Bu)− xTP (F̃ (x) + G̃(x)u)

≥ 1

2
(ε1x

Tx+ ε2u
Tu) + ψ(x, u), (12)

2In this paper, we will present proofs for the case when the system is in
continuous-time. The proofs for the case when the system is in the discrete-
time domain are largely analagous and are provided in [16].

where ψ(x, u) , 1
2 (ε1x

Tx+ε2u
Tu)+uT (H̃(x)+M̃(x)u)−

xTP (F̃ (x) + G̃(x)u). Next, we show that (0, 0) is a lo-
cal minimum of the function ψ(x, u). It is obvious that
ψ(0, 0) = 0. Through simple calculations, we can obtain that
the first derivatives of ψ(x, u) are given by ∂ψ

∂x |x=0,u=0 =

0, ∂ψ
∂u |x=0,u=0 = 0 and the Hessian matrix is given by

H ,

[
∂2ψ
∂2x |x=0,u=0

∂2ψ
∂x∂u |x=0,u=0

∂2ψ
∂u∂x |x=0,u=0

∂2ψ
∂2u |x=0,u=0

]

=

[
1
2ε1I 0

0 1
2ε2I

]
> 0.

Therefore, the point (0, 0) is a local minimum of the function
ψ(x, u). In other words, in a sufficiently small neighborhood
of (0, 0), we have ψ(x, u) ≥ 0. Then, from (12), we obtain

Υ(x, u) ≥ 1

2
ε1x

Tx+
1

2
ε2u

Tu.

Therefore, the system (10) is locally SSIP. �
We show that it is relatively straight-forward to check if a

linear system is SSIP. Thus, Theorem 1, which shows the SSIP
of the linearized system guarantees passivity of the nonlinear
system, can be used in a computationally efficient manner.

Proposition 1: 1) If the linear system (2) is strictly pas-
sive and further satisfies D +DT > 0, then it is SSIP.

2) If the linear system (6) is strictly passive with a storage
function V (z) = 1

2z
TPz and further satisfies D+DT −

BTPB > 0, then it is SSIP.
Proof: See the Appendix.

Remark 7: We note here that if a continuous time linear
system of the form (2) is strictly passive and satisfies D +
DT > 0, then the system has been called strongly positive
real or extended strictly positive real in the literature [3], [7],
[17]. Also a discrete-time system of the form (5) cannot be
strongly positive real [17].

Remark 8: As shown in [17], [18], to test whether the
system (2) is SSIP, we can test if the following LMI has a
solution P > 0:[

ATP + PA PB − CT
BTP − C −(DT +D)

]
< 0. (13)

Similarly, to test if the LTI system (5) is SSIP, we can test if
the following LMI has a solution P > 0:[

ATPA− P ATPB − CT
BTPA− C BTPB − (DT +D)

]
< 0.

An example is now given to illustrate the application of
Theorem 1.

Example 2: Consider the continuous-time nonlinear system

ẋ1 = −x21 + x2,

ẋ2 = −x1 − x2 + (ax1 + 1)u,

y = x1 + 2x2 + (bx2 + 1)u,

where a 6= 0, b 6= 0. The linearized model of the system
around the origin is given by (2) with

A =

[
0 1
−1 −1

]
, B =

[
0
1

]
, C =

[
1 2

]
, D = 1.
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Fig. 1. In the top plot are the state trajectories in Example 2 and in the bottom
plot are the trajectories of functions V̇ −uT y (blue line) and − 1

16
(x2

1+x2
2)−

1
2
u2 (red line) in Example 2.

By solving the LMI (13), we can obtain that

P =

[
1 1

2
1
2 1

]
> 0. Applying V (x) = x21 + x1x2 + x22 as

a locally defined storage function for the nonlinear system,
we obtain

V̇ − uT y ≤ − 1

2
(x21 + x22)− u2(1− |bx2|)

− x21(2x1 + x2 − au− |au|) + |au|x22

≤ − x21(
1

2
− |2x1| − |x2| − 2|au|)− u2(1− |bx2|)

− x22(
1

2
− |au|).

Consider a neighborhood of (x = 0, u = 0) for which |u| ≤
1

8|a| , |x1| ≤
1
16 , |x2| ≤ min{ 1

16 ,
1

2|b|}. We obtain 1
2 − |2x1| −

|x2| − 2|au| ≥ 1
16 and thus

V̇ − uT y ≤ − 1

16
(x21 + x22)− 1

2
u2. (14)

Therefore, the nonlinear system is locally SSIP as guaranteed
by Theorem 1. Now, let a = 1, b = 2 and x(0) = [0.01, 0]T .
Let the control input u be given by u = 1

8 exp (−0.8t). It is
shown in the top plot of Fig. 1 that |x1(t)| ≤ 1

16 and |x2(t)| ≤
1
16 . Consider a neighborhood of (x = 0, u = 0) which is given
by {(x, u) | |x1| ≤ 1

16 , |x2| ≤
1
16 , |u| ≤

1
8}. It is shown in

the bottom plot of Fig. 1 that the function V̇ − uT y is upper
bounded by the function − 1

16 (x21 + x22)− 1
2u

2 for any t ≥ 0,
i.e. (14) is satisfied. Thus, the system is locally SSIP. �

B. QSR-dissipative systems

The arguments so far generalize to the case when the
linearized model is strictly (Q,S,R)-dissipative. By setting
(Q, S, R) to be of particular forms, we can consider the
case when the linearized model may not be passive or SSIP
as in Section III-A. We present without proof conditions under
which a strictly (Q,S,R)-dissipative linearized system implies
local (Q,S,R)-dissipativity of the nonlinear system. The proof
can be found in [16].

Corollary 1: Consider the continuous-time system (1) and
its linearized model given by (2) and (3). Assume that the

linearized model (2) is strictly (Q,S,R)-dissipative. If

R+ STD +DTS +DTQD > 0, (15)

then system (1) is locally strictly (Q,S,R)-dissipative. Anal-
ogously, for the discrete-time system (5) and its linearized
model given by (6) and (3). Assume that the linearized model
(6) is strictly (Q,S,R)-dissipative with with a storage function
V (z) = 1

2z
TPz. If

R+ STD +DTS +DTQD −BTPB > 0. (16)

then system (5) is locally strictly (Q,S,R)-dissipative. �
Remark 9: For the continuous-time case, if D = 0, then

(15) is reduced to R > 0. Particularly, if R = γ2I > 0,
S = 1

2I and Q = −I , then the linearized model has finite
gain γ > 0. Then from Corollary 1, the nonlinear system has
local finite-gain γ (see also [1]).

To test if the LTI system (2) satisfies the conditions in
Corollary 1, one can test if the following LMI has a positive
definite solution P :

Π ,

[
ATP + PA− CTQC PB − Ŝ

BTP − ŜT −R̂

]
< 0, (17)

where Ŝ , CTS + CTQD and R̂ , DTQD + (DTS +
STD)+R. Similarly, to test if the LTI system (6) satisfies the
conditions in Corollary 1, one can test if the following LMI
has a positive definite solution P :[

ATPA− P − CTQC ATPB − Ŝ
BTPA− ŜT BTPB − R̂

]
< 0,

where Ŝ, and R̂ are the same as in (17).
Remark 10: If Π ≤ 0, then the LTI system (2) is (Q,S,R)-

dissipative, see e.g. [17]. Further, if Π < 0, then local
(Q,S,R)-dissipativity of the nonlinear system (1) can be
guaranteed from (Q,S,R)-dissipativity of its linearization (3).

Corollary 1 can be used to find (local) passivity indices of a
nonlinear system from those of its linearized model. The two
passivity indices (OFP ρ and IFP ν) informally characterize
how passive a dynamical system is. In particular, if ρ > 0 or
ν > 0, then the system has an excess of passivity. Similarly,
if ρ < 0 or ν < 0, then the system has a shortage of passivity
[3]. The passivity indices can be used in control designs and
stability analysis [19].

Corollary 2: Consider the continuous-time system (1) and
its linearized model given by (2) and (3). Assume that the
linearized model (2) is strictly (0, 12I,−νI)-dissipative. If
1
2 (D + DT ) − νI > 0, then system (1) has local IFP(ν).
Analogously, for the discrete-time system (5) and its linearized
model given by (6) and (3). Assume that the linearized model
(6) is strictly (0, 12I,−νI)-dissipative with a storage function
V (z) = 1

2z
TPz. If 1

2 (D + DT ) − νI − BTPB > 0, then
system (5) has local IFP(ν). �

Corollary 3: Consider the continuous-time system (1) and
its linearized model given by (2) and (3). Assume that the
linearized model (2) is strictly (−ρI, 12I, 0)-dissipative. If
1
2 (D+DT )− ρDTD > 0, then system (1) has local OFP(ρ).
Analogously, for the discrete-time system (5) and its linearized
model given by (6) and (3). Assume that the linearized model
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(6) is strictly (−ρI, 12I, 0)-dissipative with a storage function
V (z) = 1

2z
TPz. If 1

2 (D+DT )− ρDTD−BTPB > 0, then
system (5) has local OFP(ρ). �

IV. DISCUSSION

In the previous section, we assumed that the linearized
model is SSIP. SSIP is a more restrictive condition than SP
as assumed e.g. in [6]. In this section, we show that the
property of SP alone for the linearized model may not be suf-
ficient to guarantee local passivity of a nonlinear system with
feedthrough terms. This is particularly relevant for discrete-
time systems since a discrete-time system with no feedthrough
term cannot be passive. For simplicity, in this section we focus
on system models that are affine in control.

Theorem 2: 1) Consider the system (10) and its lin-
earized model given by (2) and (3). If the linearized
model (2) is SP and there exists a constant l ≥ 0 such
that

lim
‖x‖2→0

‖ζ(x)−D‖
‖x‖2

≤ l, (18)

then the nonlinear system (10) is locally SP (LSP).
2) Consider the discrete-time nonlinear system given by

x(k + 1) = α(x(k)) + β(x(k))u(k),

y(k) = γ(x(k)) + ζ(x(k))u(k). (19)

where ζ(x(k)) 6= 0 and its linearized model given by
(6) and (3). If the linearized model (6) is SP and there
exist constants l1 ≥ 0 and l2 ≥ 0 such that

lim
‖x‖2→0

‖ζ(x)−D‖
‖x‖2

≤ l1, lim
‖x‖2→0

‖β(x)−B‖
‖x‖2

≤ l2,

(20)

then the nonlinear system (19) is LSP.
Proof: See the Appendix.

Remark 11: For the system (10), if ζ(x) ≡ 0, we obtain
the following system with no feedthrough,

ẋ = α(x) + β(x)u,

y = γ(x). (21)

The linearization of system (21) is given by (3) with D ≡ 0.
Then, ζ(x) − D ≡ 0. Therefore, (18) is necessarily satisfied
with l ≡ 0. The following result is immediate from Theorem
2. Note that Corollary 4 has been established in [6].

Corollary 4: Consider a nonlinear system (21) and its lin-
earized model (3) where D ≡ 0. If its linearization is SP, then
system (21) is LSP.

V. CONCLUSIONS AND FUTURE DIRECTION
In this paper, we established conditions under which local

passivity of a nonlinear system can be obtained by analyzing
its linearization. The general result states that if the linearized
model is simultaneously strictly passive and strictly input
passive (SSIP), then the corresponding nonlinear system is
SSIP as well within a neighborhood of the equilibrium point
around which the linearization is done. Possible directions for
future work may include investigation of local linearizations
around trajectories.
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VI. APPENDIX

Proof of Theorem 1: Linear system (2) is SSIP, thus there
exist P = PT > 0 and positive constants ε1 > 0 and ε2 > 0,
such that V (z) = 1

2z
TPz is a storage function for system (2)

and

vTw − V̇ = vT (Cz +Dv)− zTP (Az +Bv)

≥ ε1z
T z + ε2v

T v.
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Apply V (x) = 1
2x

TPx as a locally defined storage function
for the nonlinear system (1). Define Υ(x, u) , uT y − V̇ (x).
From (4), we obtain

Υ(x, u) = uTh(x, u)− ∂V

∂x
f(x, u)

= uT (Cx+Du) + uTH(x, u)

− xTP (Ax+Bu)− xTPF (x, u)

≥ ε1x
Tx+ ε2u

Tu+ uTH(x, u)− xTPF (x, u).

Denote σu (resp. σx) as the smallest order for u (resp. x)
contained in a polynomial of x and u. From Taylor’s Theorem,
we have either σx ≥ 2 or σu ≥ 2 for terms contained
in polynomials xTF (x, u) and uTH(x, u). Thus, the terms
contained in polynomial uTH(x, u) − xTPF (x, u) can be
classified into two categories:

1) the terms with σx ≥ 2 and σu ≤ 1, denoted by Γ1(x, u),
2) the terms with σu ≥ 2, denoted by Γ2(x, u).

Further, in a neighborhood of (x = 0, u = 0), there exist
constants ci ≥ 0 where i = 1, 2, 3, 4, and at least one ci > 0
(since system (1) is nonlinear), such that

‖Γ1(x, u)‖ ≤ ‖x‖2(c1‖u‖+ c2‖x‖),
‖Γ2(x, u)‖ ≤ ‖u‖2(c3‖u‖+ c4‖x‖).

Consider a neighborhood of (x = 0, u = 0) for which
c1‖u‖ + c2‖x‖ ≤ 1

2ε1 and c3‖u‖ + c4‖x‖ ≤ 1
2ε2. Then, in

this neighborhood, we can obtain

Υ(x, u)

≥ ‖x‖2(ε1 − c1‖u‖ − c2‖x‖) + ‖u‖2(ε2 − c3‖u‖ − c4‖x‖)

≥ 1

2
ε1‖x‖2 +

1

2
ε2‖u‖2.

Therefore, the nonlinear system (1) is locally SSIP.
Proof of Proposition 1: We prove the result for the

continuous-time system (2). The proof for discrete-time system
(6) is along similar lines and is omitted here. The proof can
be found in [16].

Since system (2) is SP, there exist a constant ε > 0, matrices
P > 0, L and W , for which V (z) = 1

2z
TPz is a storage

function for the system and (see e.g. Lemma 6.4 [4])

V̇ − vTw = −1

2
(Lz +Wv)T (Lz +Wv)− 1

2
εzTPz. (22)

Further, WTW > 0 because we assume that D + DT > 0.
For b ∈ R such that 0 < b2 < 1, we can obtain

− 1

2
(Lz +Wv)T (Lz +Wv)− 1

2
εzTPz

=− 1

2
(
1

b
Lz + bWv)T (

1

b
Lz + bWv)

− 1

2
zT
(
εP − (

1

b2
− 1)LTL

)
z − 1

2
(1− b2)vTWTWv

≤− 1

2
vTQ1v −

1

2
zTQ2z (23)

where Q1 , (1 − b2)WTW and Q2 , εP −
(

1
b2 − 1

)
LTL.

We have Q1 > 0 and λ(Q1) > 0. Next, we prove that there
exists b ∈ R such that 0 < b2 < 1 and

λ(Q2) = λ(P )ε−
(

1

b2
− 1

)
λ(LTL) > 0.

Two cases are possible:
1) if λ(LTL) = 0, we obtain λ(Q2) = λ(P )ε > 0;
2) if λ(LTL) > 0, we obtain λ(Q2) > 0 when b satisfies

0 < λ(LTL)

ελ(P )+λ(LTL)
< b2 < 1.

Thus, we obtain λ(Q2) > 0 and Q2 > 0 for appropriate choice
of b. Together with (22) and (23), we have shown that there
exist λ(Q1) > 0 and λ(Q2) > 0 for which

V̇ − vTw ≤ − 1

2
λ(Q1)vT v − 1

2
λ(Q2)zT z.

Therefore, the linear system (2) is SSIP.
Proof of Theorem 2: Since the linearized model (2) is

SP, there exist a constant ε > 0 and P = PT > 0 such that
(see e.g. Lemma 6.4 [4])

vT (Cz +Dv)− zTP (Az +Bv) ≥ 1

2
εzTPz.

Apply V (x) = 1
2x

TPx as a locally defined storage function
for system (10). Define Υ(x, u) , uT y − V̇ (x). From (11),
we obtain

Υ(x, u)

= uT (γ(x) + ζ(x)u)− ∂V

∂x
(α(x) + β(x)u)

= uT (Cx+Du)− xTP (Ax+Bu)

+ uT (H̃(x) + M̃(x)u)− xTP (F̃ (x) + G̃(x)u)

≥ 1

2
εxTPx+ uT (H̃(x) + M̃(x)u)− xTP (F̃ (x) + G̃(x)u)

≥ 1

2
ελ(P )‖x‖2 + Λ(x, u),

where Λ(x, u) , uT (H̃(x)+M̃(x)u)−xTP (F̃ (x)+G̃(x)u).
We have the following relation

|Λ(x, u)| ≤ ‖x‖‖P‖‖F̃ (x)‖+ ‖u‖2‖M̃(x)‖
+ ‖u‖‖H̃(x)‖+ ‖u‖‖G̃(x)‖‖P‖‖x‖.

From Taylor’s theorem, there exist a constant c ≥ 0 and a ball
around x = 0 for which

‖x‖‖P‖‖F̃ (x)‖+ ‖u‖(‖H̃(x)‖+ ‖G̃(x)‖‖P‖‖x‖)
≤ c‖x‖2(‖x‖+ ‖u‖). (24)

Further, from assumption (18), in a neighborhood of x = 0,
we obtain

‖u‖2‖M̃(x)‖ ≤ `‖u‖2‖x‖2. (25)

Thus, consider a ball around (x = 0, u = 0) such that (24),
(25) hold and for some θ ∈ (0, 1),

c(‖x‖+ ‖u‖) + `‖u‖2 ≤ 1

2
θελ(P ). (26)

In this ball, we obtain |Λ(x, u)| ≤ 1
2θελ(P )‖x‖2. Thus, we

have the following inequality

Υ(x, u) ≥ 1

2
ελ(P )‖x‖2 − |Λ(x, u)|

≥ 1

2
(1− θ)ελ(P )‖x‖2.

Therefore, system (10) is SP in a in a neighborhood of (x =
0, u = 0), i.e. LSP.
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