
PLANNING VIA HEURISTIC SEARCH
IN A

PETRI NkT FRAMEWORK.

K.M. Passim and PJ. A n W s
Depaitment of Electrical and computer Enginewing
University of Notre Dame. None Dame IN 46556

Abstract
~n Artifiiial Intelligence planning systrm's main component6 consist of a P~IUUX

and a problem domain. The problem Ppmain is Uy environment that the planner
reasons about and takes actions on. 'a" utis papd. a special type of Extended
Input/Output Petri net is ddmsd and then usad a8 the problem repmentatirm for a wide
class of problem domains. A plarming strategy is developed using results from the
theory of heuristic seach. In p.rticulpr. usmg the developed Petri net frmnewmk and
metric spaces, a class of heuristic functions is 6pSfikd that are both &anisible and
consistent for the A* algorithm as
an illustration of the remlb two Simpie plsnning probluns an modelled md solved.

plarming system architectwe is discussed

1.0 Introduction
According to the viewpoint presented in [13], Artificial Intelligence (AI)

planning systems consist of a planner snd a problem domain, their
interconnections, and exogenous inputs. The problem domain outputs are fed back
to the planner and the planner outputs are the control inputs to the problem
domain. There are disturbance inputs to the problem domain and the exogenous
inputs to the planner are the goals. The planning system functional architecture
considered here is depicted in Figure 1.1. The problem domuin is the domain
(environment) that the planner reasons about and fakes actions on. One develops a
model of the real problem domain, called the problem representation. to study
planning systems. It is the task of the planner to examine the problem domain
outputs, compare them to the current goal, and determine what conml inputs to
apply to the problem domain so that the goal is met. AI planners employ
intelligent problem solving techniques that are fundamental to many intelligent
control systems, for instance, in the intelligent control of robots.

mMbanCrsc

Roblem OUwb

U
Figure 1.1 AI Flanning System Architecture

General information on the theory of AI planning is given in [1-2], and [171.
A very brief overview is given here to establish the terminology. The functional
components and details of the planner architecture vary widely dependhg on the
class of problem domains under consideration. The functional components of a
typical AI planner are as follows [l]: Plan generation is the process of
synthesizing a set of candidate plans to achieve the current goal. This can be done
for the initial plan or for replanning if there is a plan failure. In plan generation,
the system projects (simulates, using the problem representation) into the future,
to determine if a developed plan will succeed. The system then uses heWisticplan
decision rules based on resource utilization, probability of success, etc., to choose
which plan to execute. 'Ihe plan execufor translates the chosen plan into physical
actions to be taken on the problem domain. More advanced planners may use
execution monitoring to determine if the currently executing plan is progressing as
expected. Situation ussessmenr can be used to generate an estimate of the state of
the problem domain. The estimate of the state can be used in execution
monitoring or to update the state of the model used for projection.

From a system and control theoretic viewpoint there are concepts analogous to
controllability, observability, stability, etc., for AI planning systems. There also
exists AI planner functional architectures that are analogous to certain control
system configurations. A detailed discussion of this analogy (e x e m p l i by the
planning system of Figure 1.1) between control systems and planning systems is
gwen in [131. Planner architectures such as the one in Figure 1.1 are discussed at
length, and system and control theoretic concepts are introduced into AI planning
theory. In that paper it is argued that although many of the basic issues in AI
planning systems are well understood empirically, they have not been adequately
quantified in a mathematical framework. It was proposed that the development of a
foundation of basic concepts for AI planning systems from their control theoretic
counterparts is fundamental to the formation of a mathematical theory for
modelling, analysis, and design of A I planning systems for real time
environments.

In this paper, a planner which uses projection and plan decisions to determine
what plans to execute is considered. The complete plan is generated before it is
executed and there is only one goal to be achieved. Also, as in most planning
theory research, no disturbances are allowed in the problem domain. The work here
I S problem representation independent, but a particular representation (the Petri net)

* The ideas m the Introduction pertaming to the system and control theoretic perspective on
AI plamng systems w a e partially supported by McDonnell Aircraft's Artificial Intelligence
Technology Group contract 271 145. The remander of thu work was partially supported by
the Jet Propulsion LaboratoIy. Pasadena Califorma under contract 957856

* S7Fi5-2C'T 2-9/89/0000/0350$01.00 0 1989 IEEE 340

~~
~- ~~~ 7- 7 -1 B -~

is chosen and studied in detail. % resnlts here are domain Independent. The
results of this paper are now summanzed

The class of problem danaifis colrddercd hae are those which can be modelled
by the "Extended Input/Output 0) Petri Net" d e f i i in Section 2. Based on this
Petri net framework, a phrnnu which uses heuristic search techniques, the A*
algorithm. is developed in Section 3. Although for certain special applications the
heuristic function is easy to choose so that it is admissible and consktent, in
general, practitioners often find it difficult to obtain. To make the planna domain
independent, a class of admissile and consistent heuristics for the A* algorithm is
spec%& for AI planningprobletns Uuu can be modelled by the Petri net. This is
done by def- metric speces associated with the Petri ne~ and using the men!! in
the A' algorithm. To illustrate the theory. two simple AI planning problems are
given in Section 4.0, modelled with Petri nets. metrics are specified. and the A*
algorithm is used to generate solutiooS. Next, mievent nscarch is summarized and

The Petri net defmition ltere is similar to the definition given in [lfl but it
also allows for control inputs to the Petri net and outputs. In [7l a "Controlled
Petri Net" was defined in a m e w h a t different " e r . The definition in Section 2
includes the so called "inhibitor arc", generalized input and output m s . and a
generalized transition to obtain a petri net with a relatively high expressive power.
The Petri net defmed here also allows for the specification of a cost to fin a
transition via the specification of the transition cost function. Such costs could,
for example, represent a measure of the resources consumed in performing the
actions associated with firing a transition.

The results from the theory of helaistic search using the A* algorithm outlined
in Section 3.1 mainly come from [S. 6,3,16]. Other information can be found in
[lo, 11,141. Under certain conditions the A* algorithm can, from an initial node
of a graph, find a least cost path to aome goal node. When applied m planning
problems the algorithm can be used for projection and the plan deciions discussed
above, to determine which plan will achieve some goal with least cost in terms of,
for instance, resome consumption. Once the appropriate plan is found A* gives it
to the plan executor so that the actions can be talren on the pmblem domain.

In Section 3 the problem of specifying the heuristic function for a wide class
of problem domains is addressed. h u h from the theory of metric spaces ace
o~tlined and used to prove that for an j 8-GrFh there exists an admissible and
consistent heuristic function for the A algonthm. It is shown that if a bounded
metric is used then there is a whole class of admissible and consistent heuristics.
Also, it is shown that if the wsts are picked in a certain way then any meuic can
be used in the heuristic function. Heuristic sernch via the A* algorithm in a Petri
net framework is in tmdud. It is proven that the Extended ID Petri net defined in
Section 2 generates a certain class of &Graphs for which there are known metrics
that can be used to specify admissible and consistent hemistic functions.

Work most closely related to ours on how to find admissible and consistent
heuristics is called "the genedon of heuristics". and "auxiliary models" are often
used. These methods are outl id in (141. They involve searching for a value of
the heuristic at each step in the heuristic search; consequently, they are
computationally intensive [14]. The results developed here allow for the
specification of the heuristic function a priori and thus avoid the search for the
value of the heuristic at each step. Details about how the results of this paper
extend those QiginaUy repxted m [I21 are provided

Other relevant wearch is given in [4]. There the authors use a high level
Petri net to represent both the knowledge and inf- strategy in expert systems.
Some analysis results are obtained. Some planning systems are implemented in
the computer programming language named PROLOG. An analysis of
concurrency in PROLOG via Petri nets is reported in [9].

2.0 The Extended InpuUOutppt Petri Net for Problem

Petri net model used for the
problem domain representation is defined. The definition allows for the control
inputs from the planner via a control input arc and dow the planner to sense the
state of the problem domain via the measurement places. Also, associated with
each "ition of the Extended Ix) Petri net is its cost to fire. Generalized Ix) arcs
and transitions are added for modelling tlexiiiity.

A Petri net with a high expmsive powa (language complexity) has the
ability to represent a wide class of dynamic systems whereas one with poor
expressive power is limited in the sort of dynamic system that UII~ be repmented.
For a derailed discussion on topic see [151. The net to be definod below
contains "inhibitor arcs", hence it has the expressive powa of the "Extended Petri
Nets" discussed in [15, pp. 189-2031. Pevrson provides a proof that "an extended
petri net is equivalent to a Turing machine", and hence can model any computable
system, i.e., one that can be simulated on a computer. Consequently, the Extended
VO Petri net defined below has a relatively high expressive power. The definition
below refines and extends the definition originally given in [121 by adding the
generalized VO arcs and transitions.

Compared to the d t s of this paw.

Representation
In this section, the Extended Input/Output

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on August 27, 2009 at 14:40 from IEEE Xplore. Restrictions apply.

K. M. Passino and P. J. Antsaklis, "Planning via Heuristic Search in a Petri Net Framework,” P roc. o f t he
3 rd I EEE I nternational S ymposium o n I ntelligent C ontrol , pp. 350-355, Arlington, VA, Aug. 24-26, 1988.

Let R denote the set of reals and R+ the strictly positive reals. Let N denote
the set of nonnegative integers. A multiset (bag) is a collection of objects over
some domain X, but unlike standard definitions of a set, multisets allow multiple
occurrences of elements [15]. Let B be a multiset, then #(x,B) represents the
number of Occurrences of element x in multiset B. The set X" is the set of all
multisets over a domain X. If x,yeNn, x=lxl,x2, ... ,xnIt, and y=[yi.Y2. ... Jnl'
(t indicates transpose) then the statement x2y is true iff xi2yi l<i<n. Similarly
for >,c, and <. Let 0 denote the null set.

The Extended 1 / 0 Petri Net structure is described by
Ps=(P,T,T~,ID,IN,OD,IG~ OGL.U,T,Y,Y) where:
(i) P=(pl.P;?. .__ ,hJ is a non-empty finite set of n=IPI (state) places represented
graphical~y with circles (0).
(ii) T=(tl,t2,tm) is a non-empty finite set of m=ITI transitions represented
graphically by line segments (I).
(iii) Tg=(tgl.tg2.tgmgJ is a finite set of mg=IT,I generalized transitions

represented graphically by rectangles (U) . In the development below, when it is
clear, t, will also be used to denote any transition, either normal or generalized.
The notation tgk will be used for emphasis.

(iv) ID:TuT~+P- is a mapping from transitions or generalized transitions to the
set of all multisets over P. It is represented graphically by directed arcs (4)
pointing from each input place of l j , pie ID(tj), to tj. If for some pi€ P ,
#@iJD(t,))=k>l, then the mapping can be represented graphically by a directed arc
with multiplicity k (k,). Note that k is finite. If t j ~ Tg then for all pie P,

(v) 1~:T-p" is a mapping from transitions to the set of all multisets over P. It
is represented graphically by not arcs (inhibitor arcs) (+) pointing from each
input place of tj. pie IN(tj), to tj. If for some pie P , #(pi.IN(tj))=bl, then the
mapping can be represented by a not arc with multiplicity k (k,). Note that k
is finite.
(vi) OD:TuTg-rP" is a mapping from transitions or generalized transitions to the
set of all multisets over P. It is represented graphically by directed arcs pointing
from the transition tje TuTg to each output place oftj. pi€ OD(tj). A directed arc
with multiplicity k can be used in a manner similar to (iv), except k=#@i,oD(tj)).
If tje Tg then for all pi6 P, #(pi,oD(tj))=k<l.
(vii) I G ~ : T + ~ ~ is a mapping from transitions to the set of all subsets of P. It is

represented graphically by generalized directed input arcs of type k (4)
pointing from each input place of l j , Pi€ IGk(tj), to tj.
(viii) Ock:T+2P is a mapping from transitions to the set of all subsets of P. It
is represented graphically by generalized directed output arcs of type k (similar to
(vii)) pointing from the transition tj€T to each output place of?, Pi€ OGk(tj).

For convenience, a rwo-way directed arc (e)) is used to indicate a self
loop, i.e. pie OD(tj) and pi~ID(tj). A directed not arc (eo) is used to indicate
the connections pie OD(tj) and pie IN(tj). Also, every arc has a transition on one
end and a place on the other, and no transition or place exists without being
connected to an arc.
(ix) U=(ul,u2, ... , uncJ is the nonempty finite set of nc=IUI control places which
are represented graphically with circles as in (i).
(x) T:TuTg+2" is a mapping from transitions or generalized transitions to the
set of all subsets of U. It is represented graphically by control arcs (4)

pointing from each uie r(t,) to t,. It is required that for all tje T u T g there exist
u i ~ r(tj), i.e., all transitions have control arcs connected to them.
(xi) Y=(y1,y2.ynyJ is the finite set of ny=IYI measurement places, represented
graphically with circles as in (i).
(xii) Y:P+Y is a mapping from places to measurement places. It is represented
graphically with a connection arc (w) from pi€ P to y j ~ "(pi). In this
paper we require that for all pie P there exist a unique y j ~ Y(pi).

Note that PnTnTg=O and PuTuTg#O.

#@iJD(tj))sl.

A complete description, which also includes the execution characteristics of
the Extended I/O Petri Net, is given by PN=(Ps,T,,X~X~~,U~,Y~,&,O~,Z) where:
(i) Ps is described above.
(ii) T,=N is the time index set. The initial time is 0, and each successive natural
number represents an arbitrary length time step.
(iii) Xp:PxT,+N i s the marking function, a mapping from (state) places and time
steps into nonnegative integers representing the marking of the place. The n-
dimensional column vector xp(k)=[Xp(pl,k),Xp(p2,k), ... ,Xp(pn,k)lt is used to
denote the state of the Petri net. The state is represented graphically by tokens

(0) that are put inside places (e.g. Xp(pi,k)=2 is represented as 0). The
complete set of "reachable states" [15] will be denoted by Xp.
(iv) Xpo is a non-empty finite set of inifial conditions xp(0) for the state of the
Petri Net; NnaXpo. For this paper IXp,l=l.
(v) Up:UxT,+N is a mapping from control places and time steps into
nonnegative integers representing the marking of the control place. The n,-

dimensional column vector up(k)=[Up(ul,k), Up(u2,k;), .._ ,l+(iinC,k)lL 15 u m i to
denote the control input to the Petri net. I t is reprcscntcd graphlcally wlih tokens
as in (iii). It is required that Up(u,,k)=O or 1 for all U,E U and kE T,, and only one
element of up(k) is equal to 1 for any k.
(vi) Yp:YxT,+N is a mapping from measurement places and time steps to a
nonnegative integer representing the marking of the measurement place. Here we
k t Yp(y;,k)=Xp(pi,k) for all ke T, where y ; ~ "(pi). Thc ny(n)-dimensional column
vector Yp(k)=[yp(Y~ k), Yp(~2,k), ... ,Yp(yny,k)lt is used to denote the output of
the Petri net
(vii) E,:N"xTS+2TUTg is the Petri net enable rule, a mapping from an n-
dimensional column vector of nonnegative integers representing xp(k) and time
steps into subsets of transitions that are said to be enabled at step k. The notation
tjc Er@) is used to indicate that tje TuTg is enabled at step k.

The
generalized arc defined by 1~~ is used to specify certain portions of the enable rule
E, that will be denoted E,k. For instance, a type 1 arc connected to place pi may
indicate that for tJ. where p ic I~~(t ,) . to be enabled at step k it must be the case that
Xp(pi,k)=#(pi,IGI(t,)). New types of generalized input arcs can be invented as
required, but all must be represent functions E,k Of the form

The enable rule is chosen based on the specific modelling task.

where nlsn.
The form for the generalized transition tgk is

The function Egk is the enable function for the generalized transition tgk€Tg and it
is defined by Egk:NngkxT,+ (0,l J. It is also used to specify portions of E,. It
uses the value of the state of the Petri net to determine if tgk is enabled at Some
time. Note that

ngk=C#@iJD(tgk))

and "1" indicates that tgk is enabled while "0" indicates that it is not enabled. A
full specification of the enable rule E, involves saying how each transition
tjE TuT, is enabled.

As an example, assume that T,=0 and that there are no generalized arcs. A
candidate for the enable rule is given by E;(xp(k),k)= (t,IX,(pi~)~##@j.I~t,)), for all
pi€ P, and if pi€ IN(tj), Xp@i,k)<#(p;J~(tj))). A transition tj can fire whenever it
is enabled. Tokens are redistributed in the Petri net when a transition fires
according to the next state function described below.
(viii) O,:TuT,xN"xT,+N" is the Pem net next state function (firing rule), a
mapping from a transition t,. an n-dimensional column vector of nonnegative
integers representing xp(k), and time steps into an n-dimensional column vector of
nonnegative integers representing the next state xp(k+l). The next state function
is defined iff tje&.

The firing rule is also chosen according to the specific modelling task at hand.
For instance, the generalized output arc defined by Ock is used to specify certain
portions of the next state function Q, which will be denoted @,k. As an example,
a type 1 arc connected from transition tJ to place pi may indicate that if tJ is enabled
and it fires then no matter how many tokens are in place pi, 3 tokens should be
placed there. New types of generalized output arcs can be invented as required but
all must represent functions Qrk where Ork:TuTgx@xTs+@, where nlsn and
n21n.

IR

i=l

The & form for the generalized transition tgk is

The function Ogk 1s the next State function for the generalized transition t&€ Tg
and it is defined by @gk:N"gkxT,+N"fk. It is only defined if tgkE Egk. It uses
values of the state of the Petri net to say how tokens are redismbuted if tgk is fired
at some time. The function Egk IS defined above. The value Of IIgk is given above
in (vii) and nfk. the dimension of the portion of the next state that is affected by
firing tgk is given by

IPI
nW,?#@i,OD(tgk)).

F1
The full specification of the firing rule Or involves saying how the tokens are
redistributed if any transition tjc TuTg is fired.

Consider the following example of a next state function. Let O'~[@1,$2, ...
,@nit. Let A'=[aijl, where qi= #(pi,ID(t;)) and A+=[%?, where q$=#(pi.OD(tj)). Let

A=A+-A-. Let B=lbijl where bi,=#(pi,IN(tj)). Let a-,, and b, refer to the jth

35 1

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on August 27, 2009 at 14:40 from IEEE Xplore. Restrictions apply.

K. M. Passino and P. J. Antsaklis, "Planning via Heuristic Search in a Petri Net Framework,” P roc. o f t he
3 rd I EEE I nternational S ymposium o n I ntelligent C ontrol , pp. 350-355, Arlington, VA, Aug. 24-26, 1988.

columns of A- and B respectively. Assume T e 0 and that there are no generalized
m s . Tken the example enable rule E; above can be restated as E;=(tj I xp(k)Za-j.
xp(k)<bj). Let up(k)=[O 0 ... 1 ... 0 OIt where the 1 is in the jth position l l j lm .
Let C=[ci,] with cij=l if yie Y(Pj) and qj=O if yict Y@j). Using E; as the enable
rule, the next state function +i(Xp@iSc),tjSc) = Xp@i,k+l)=Xp@i.k) - #@i,ID(tj)) +
#(pi,O~(tj)) for all i, Ki ln . Hence, for tjE E#) firing the next state function
@rOj(tjrp(k)kPxp(k+1) Or,

xp(k+l)=xp(k) + Au@)
Yp@XXp&)

which are similar to the State equations described in [15]. For this next state
function tokens are not removed from any control input place if tj fires, but they
must be present to fm tj. Likewise, tokens are not removed from places connected
to transitions via a not arc. The connection arcs between any place pi and a
measurement place yj indicate that any tokens added or subtracted from pi are also
added and subtracted from yj, i.e. with the connection arc they are essentially
duplicate places.
(ix) Z:TuTgxNnxNn+R+u(0) is the transition cost function, a mapping from a
transition or generalized transistion tje Er. x#). and xp(k+l) into a nonnegative
real number that represents the cost of firing tj. Since the f h n g of a transition
often represents some computation or action performed, 2 is a measure of the cost
to process the state xp@) into xp(k+l) by firinp tj. The transition cost function is
defined iff the transiuon tj is enabled at step k.

3.0 Metric Spaces and Admissible and Consistent Heuristic
Functions in a Petri Net Framework
In this section some of the main results of the theory of heuristic search

involving the A* algorithm are briefly outlined. Results from the theory of metric
spaces are outlined and used to prove that for an i &Graph there exists an
admissible and consistent heuristic function for the A algorithm. It is shown that
if a bounded metric is used then there is a whole class of admissible and consistent
heuristics. Also, it is shown that if the costs are picked in a CeRain way then any
metric can be used in the heuristic function. Heuristic search via the A' algorithm
in a Petri net framework is inuoduced. It is proven that the Extended VO peei net
defmed in Section 2 generates a Certain class of &Graphs for which then are known
metria that can be used to specify an admissible and consistent heuristic function.

3.1 Heuristic Search: The A* Algori thm
Some results from the theory of a heuristic search involving the A' algorithm

are outlined below. The main results of the A* algorithm studied here were
obtained in [5,6,31. Probably the most complete reference on heuristic search is
[151.

(i) X = (X ~ , X ~ , X ~ , ...) is the non-empty possibly infmite set of nodes.
(ii) E=(eij)=((xi,xj)l xi.xjeX) is the non-empty possibly infinite set of directed
arcs pointing from Xi to Xj.
(ii) C=(cij)=(cijleijeE) is the non-empty possibly infinite set of costs associated
with each arc. Also, for all CijE C, ~ij28>0.
An implicit representation of the &Graph G is given by a set of some nodes and
a successor operator r:X+ZxXc. When r is applied to a node x it is expanded.
It is required that for all xi. Ir(xi)l is finite. The explicit &Graph is generated by
repeated application of the successor operator r to nodes that are generated in
expanding nodes.

The subgraph Gx from any XE X is the graph defined implicitly by a single
source node x and some r defined on X. Each node in Gx is accessible from x.
A path from x i to xk is an ordered set of nodes <x1,x2. ... ,xk> such that
x i + l ~ r(xi) for all 14G-1. There exists a path from xi to xj iff xj is accessible
from xi. Every path has a cost which is obtained by adding the costs of each arc
ci i+ l c C. An optimal path from xi to xj is a path having the smallest cost over
th; set of all paths from xi to xj, call this cost h(xi,xj). Denote an estimate of this
cost by k(xi,xj). The concern is with the subgraph Cxo from a single specified
start node XOE X. Define the non-empty set Xg, XaXg of nodes in Gxo as goal
nodes. For any node x in Gxo an element x@ Xg is aprcferred goal node of x iff
the cost of the optimal path from x to xg does not exceed the cost of any other
path from x to any other member X'E Xg. The symbols x ' ~ and x ' i will be used to
denote preferred goal nodes below.

The objective is to find the optimal path from the start node to a @erred goal
node. To help guide the search an evaluation function v:X+R+u(O) is used to
rank how promising it is that a node is on an optimal path. The evaluation
function is defined so that the node with the smallest value of v(x) is chosen for
expansion. One algorithm that performs heuristic search is the A* algorithm[5].
The details of the algorithm are given there. The evaluation function v(x) must be
chosen. Let f(x) be the actual cost of an optimal path constrained to go through x
from the start node xo to a preferred goal node xge Xg. Let f(x)=g(x)+h(x) where
g(x) is the actual cost of an optimal path from xo to x and h(x) is the cost of an
o p m a l path from x to a preferred goal node of x called x " ~ . i.e., h(x,x"g)=

,Tse(h(x,xg)). Since f(x), g(x), and h(x) are not known a priori, the estimates

The problem space is represented explicitly by a 8-Graoh G=(X,E,C) where:

?(x), &x), and &x) are used. Therefore, choose v(x)=~(x~(x)+b). The
iimction fi(x), called the heuristic component of the evaluation function, is USXI to
capturc informauon from the problem domain to guide the search. U&x) satisfies
renilin pmpcnies hcn the A* algorithm perfomr~ well.

11 somc goal nodc is accessible from the shut node and d(x,%x'g)h(x.X"g) fOr

all XE X. ihai A* IS Ndmisstble i.e.. it is guaranteed to fmd an optimal path from
the s t a t nodc to a prcfcrred goal node. for any &-Graph [SI. The heuristic t(x) is
said to be consistent i l h(xi,xj)+fi(xj,X"g)~(xi,X'~ for all Xi,XjE X. The heuristic
&x) is said to satisfy a monotone restriction (or is said to be monotone) if for all
XJE T(xl), Xi€ X, h(xi,xj) + l?(Xj,x"g)A(xi.x'g). If k(x) is consistent then it
automatidly satisfies the monotone restriction. If fi(x) satisfies the monotone
restriction then if A* selects x for expansion &x)=g(x), and the value of f(x3 for x'
on the path from xo to x is nondecreasing; consequently step (ii) in the A*
algorithm is vacuous and can be removed [5 , 111. Suppose that there are two
versions of the A* algorithm called A1 and A2 which use evaluation functions

to be more informed than A1 if for all nongoal nodes x. fi2(x)>fil(x). The
following optimality result was obtained. If fi2(x)>ki(x) then at the termination
of their A* searches every node expanded by A2 was also expanded by Ai. It
follows that A1 expands at least as many nodes as does A2. See [141 for a more
complete discussion.

3.2 Metric Spaces and Admissible and Consistent Heuristics
In the literature on heuristic search the heuristic function fi(x,xeg) is used to

estimate the distance from the current node x to a p r e f d goal node x ' ~ . The
theory developed to date malres the notion of this distance intuitively clear. In this
section the notion of distance is quantified in a formal mathematical framework
then used in fmding heuristic functions. First. some. of the results from the theory
of metric spaces taken from [8] are outlined.

Let % be an arbitrary non-empty set and let p:Xx%+R where p has the

(0 p(x,y)M for all XJE x and p(x,y)=O iff x=y,
(io p(x.y)=pO..x) for all X,Y€ X,
(iii) p(x,y)~p(x&+p(z,y) for all x,y,ze X Uriangle inequality).

The function p is called a metric on X and the mathematical system consisting of

p and %,denoted (Rp), is called a metric space. The elements of are often
called points. and p(x,y) is frequently called the distance from a point XE X, to a
point y e g . Equivalently, p is a metric iff, (i) p(x.y)=O iff x=y. and (ii)
p(y,z)z)sp(x,y)+p(x+?) for all x,y,ze X. Let A@) denote the class of functions that

are metrics over the set X.
If p is a metric over the set % then so is up where a>O. There is a

distinction between bounded and unbounded meaic spaces. Let (%;p) be a metric
space. If there exists a positive number y where p(x,y)<y for all x , y ~ %, (X;p) is
said to be a bounded merric space. If (Rp) is not bounded, (%;p) is said to be an
unbounded metric space. The claw of all bounded meaics 0ve.r will be denoted
Ab@). Define the function pl:%xX+R by

?i(X&(x)+fii(X) where d i (x)h(X) for all XE X. i=1,2. The algorithm A2 is aid

following propliies:

P l (X J) = i $ &
The metric space (x;pl) is a bounded metric space even though (%p) may not be
bounded. In fact, (Kpl(x,y)<l for all x,yc%. The notion of distance between sets

is also defmed. Let (Xp) be a metric space, and let Y and 2 be two non-empty

subsets of X. The distance beween sets Y and 2 is defmed to be
dfl.Z)=s(pO..z) I YE Y, ZE Z) .

Letw%anddefine
d@ZFinf(pW I wZ):

The value of d@&) is called the d~~tunce b e m e n pouu p and set 2. If IZI is finite
then d(p,Z)=O implies that p~ Z. The standard notation "inf' is used to denote the
infimum. A number UE R is an infimum of some set S, RaS (denoted u-inf(S))
if it SatisfEs the two conditions:

(i) US& for all SE S
(ii) if vc R and VSS for all seS, then vSu.

If inf(S)e S then min(S) is equivalent to inf(S), hence if IS1 is finite inf is
equivalent to min.

I ~ G w ~ U Given a y &Graph G=(X.E,C) there exists a heuristic function
k(xi,x'g) that can be constructetl from functions in the cl as^ A,,(X) that is both
admissible and caMistent.

352

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on August 27, 2009 at 14:40 from IEEE Xplore. Restrictions apply.

K. M. Passino and P. J. Antsaklis, "Planning via Heuristic Search in a Petri Net Framework,” P roc. o f t he
3 rd I EEE I nternational S ymposium o n I ntelligent C ontrol , pp. 350-355, Arlington, VA, Aug. 24-26, 1988.

Erpef: The proof proceeds by constructing a particular heuristic function that is
both admissible and consistent for any &Graph. Let p be an arbitrary memc from
Ap(X). Let

Po
P'(XJh+p(x,y)

so that [X;pl) is a bounded metric space. Recall that for all cijs C, it is given that
cijz&O. It follows that (X;pa] is a metric space where pa(x.y)=Gpl(x.y) for all
x,ye X. Define functions qij:R+u(O)+R+ and nij(r)h for all rE R+u[O)
associated with each edge eijc E . The functions q i J are chosen so that
cij=qij(pa(xi,xj)) with x j ~ l-(x;). For instance, a simple choice for q i j is
qij(pa(Xi,Xj))=Cij=pa(Xi.Xj)eb'ij, where bijM. The ci, and p,(x;,xj) are given, hence
the values of the bij can be found.

From the triangle
inequality, Pa(xi.xk)~Pa(xi.xi+l)+Pa(xi+l.xk) for all i, 095k-1. Therefore,

Let <xo,xl, ... ,xk> be any path generated by A*.

k-l
Pa(xi&g,CPa(xi.xi+ 1).

I*

Selecting qj, as stated above, it follows that
k-l k-l

io i 4
pa(xi.xk)sC qi,i+l@a(xi.xi+l))=C ci,i+l=h'(xi&.

Where h(Xi,Xk) is the actual cost of some path between xi and xk. but not
necessarily the optimal one. The A* algorithm is known to be complete, i.e., it
will terminate with a solution if one exists [5. 141. By assumption, the node xg is
accessible, therefore for some path generated by A*, Xk=Xg, hence
Pa(xi,xg)<h(xi.xg). Since this is true for any path it will be true for the optimal
path. hence for all X ~ E X and xge Xg. Pa(xi.xg)<h(xi.xg). If there were just one
goal node xg the proof would be finished by choosing fi(xi.xg)=Pa(xi.xg). In
general, lXg121 so it must be shown that fi(xi,x'g)<h(xi.x"g) where x ' ~ is the
preferred goal node for fi from node xi and x " ~ is the preferred goal node for h from
xi. It is not necessarily the case that X ' ~ = X ' ' ~ . The preferred goal node changes
depending on what the current node xi is.

Choose
fi(xis;'g)=d(xi,Xg)=inf(Pa(xi,xg) I xgc X ~ I

as the heuristic function. The value at which the Inf is achieved is called x ' ~ and is
the preferred goal node at xi. For this heuristic function it is assumed that for any
set S i n f (S) ~ S hence if xi€ Xg then d(xi,Xg)=O. For all xjc X and xge Xg.
fi(xi,x'g)lpa(xi.xg). and in particular fi(x;,x'g)~pa(xi.x"g). From above, for all

X, Pa(xi,x"g)~h(xi,x"g). This gives fi(xi.x'g)Sh(xi,x"g) for all xi€ X. For
admissibility it must be shown that ~fi(xi,x'g)<h(xi,x"g) for all xi€ X. Since
d(xi,Xg)X the proof for admissibility is done.

To prove consistency, which is equivalent to monotonicity, it must be shown

x " ~ are the (not necessarily equal) preferred goal nodes for fi from xi and x,
respectively. By the triangle inequality Pa(Xi,X"g)~Pa(Xi.Xj)+Pa(Xj,X"g). Also due to
the way that preferred goal nodes are chosen pa(xi.x'g)<pa(xi.x"g). It follows that
pa(x i ,x 'g)Spa(x i ,x j)+p~(x j ,x"g) for all x j ~ X , so it is the case that
d(xi,Xg)Sd(xi,xj)+d(xj,Xg). Given the choice for fi(xi,x'g) above the proof for
consistency is done. Q.E.D.

Theorem 1 does a give the actual heuristic function to be used in A*. It
only says that for any problem space that can be represented by a &Graph one can
~XIYS construct a heuristic function that is both admissible and consistent no
matter how difficult it may seem. The often rather difficult job of finding the
heuristic function remains. Also the theorem does not say how good the heuristic
is. Theorem 1 quantifies in a mathematical framework the statements in the theory
of heuristic search about "distance". It also makes it clear how the A* algorithm
operates in evaluating distance to preferred goal nodes and how it switches preferred
goal nodes.

Often it is the case that a bounded metric can be found for the underlying set
X. In this case the following corollary is useful.

Corollan,: For any &Graph G=(X,E.C), fi(xi;r'g)=d(xi,Xd=inf(p(xi;rg)lxgE Xg),
where pcAb(X), is an admissible and consistent heuristic function.

Erpnf: Suppose that p is bounded by P O . Replace pa above with p,(xi,xj) =
(6/Y)p(xi,xj). The heuristic function fi(xi,x'g) is the one constructed in the proof of
Theorem 1, hence it is admissible and consistent.

Sometimes it is the case that the costs are not specified for a problem domain,
and the objective is to just find a solution, i.e., any path from the start node to any
goal node. Also, sometimes it is possible to load heuristic information from the
problem domain into the costs. For instance, if a heuristic says "if you are at
some set of nodes it is in general better to have some other set of nodes as
successors". The costs associated with the arcs that connect these sets of nodes can
be made small, hence A* may be more likely to make the proper expansion. In
either case the following corollary to Theorem 1 is useful.

that fi(xi,x'g)~h(xi,xj)+fi(xj,x"g) for all Xi,Xj€ X such that XjE T(xi) where x ' ~ and

Q.E.D.

Define functions ~ ' , ~ : R + U (O] + R + and q',j(r)>r lor ill1 re R + i i { O]
associated with each edge eiJs E.
Corollarv 2: Assume that the costs C ~ ~ E C associated with the edges E that connect
nodes from X are not specified. If the costs are obtained by choosing q'l, so that
cij=q'ij(p(xi x.)) with xje r(x,), where PE A,(X), then d(xi,X~)=inf[p(xi,x~)lxgc Xg)
is an admiss%e and consistent heuristic.

m: From the definition of q'ij it is clear that G=(X,E,C) is indeed a &Graph.
Let pa(xi,xj)=p(xi,x,). Using the proof of Theorem 1 and replacing qi, with q'i, the
corollary IS proven. Q E D .

Hence if the costs for the &Graph can be chosen, and they are chosen in a
certain manner described above, then the metric used in the heuristic function can
be chosen arbitrarily from Ap(X). This corollary was originally proven in [121 for
the case of IXgl=l. Note that if there are no self loops on the &Graph, i.e., it is
not the case that XE r(x) for some XE X, then the functions q'ij can be chosen as
q'ij(r)& and Corollary 2 will still be valid. This is important since qij(r)=r is
simpler to implement. The problem of specifying the exact value of the metric for
the heuristic function remains and will now be addressed.

3.3 Admissible and Consistent Heuristics in a Petri Net
Framework

First, a certain class of &Graphs is defined. Let Qe denote the class of 6-
Graphs that have nodes that are @-dimensional vectors of real numbers, i.e.,
Qe=((X,E,C) I for all x ~ E X , xic Re, 021).

Theorem 2: Suppose that an Extended I/O Petri net PN is used for a prohlem
representation and that its initial state Xpo is specified. Then the Petri net
generates a &Graph of class Qe. Also, if the metric for the heuristic function
(defined in the proof of Theorem 1) is of class then there are known metrics
that can be used to form an admissible and consistent heuristic function.

w: Let X=Nn. the state space of the Petri net P N .
xg=xp(0)c Xpo and the edges and costs are generated by

The start node

r(xp(k))=((xp(k+l),c)l xp(k+l)=O(tj,xp(k),k) and c=Z(tj,xp(k),xp(k+l)) for all
tjE Er1

The function Z is chosen according to vi,. Note that Ir(xp(k))l is finite for all
xp(k) and the assigned cost cS>O. Let @=n and the Petri net generates a &Graph
of class Qe. Using Corollary 1, the proof is complete if there are known metrics
that can be used in the heuristic function d(xi,Xg). Some of these are given below.

First note that for R"2X if (Rn;p] is a metric space then so is (x;p] [8j.
Hence any metric over Rn is also a metric over N", the nodes of the &Graph, i.e.,
the state space of the Petri net. Denote elements x,yc R n by x=[51,52. .._ .cnjt
and y=[hl,h2, ... &It where E,i,hic R for i=1,2, ... ,n. A few candidate metrics
are listed below:
(i) pd(X,y)=o if x=y and 1 if xzy is a metric on (an arbitrary non-empty set)
called the discrete metric. If it is used in the heuristic function breadth Fist search
is obtained.

(ii) Let X=Rn, pc R, I Q G - , and a p 0 , then [Rn;pp) is a metric space where

~ (x , Y) X a i l t i - XilP
=[i:l]

(iii) In particular, let W be a positive definite matrix. Then if

P2(x,Y)=[(x-Y)'W(x-Y)] I n

(Rn;p;?) is a metric space.
(iv) Let 8=Rn and x,yc Rn, apO, and

then [Rn:pm) is a metric space.
pm(x,y)=max(ailE,l - hil, a2152 - h21,anlcn - hnl]

The metrics listed are several of the more common metrics used. Any metric over
Rn will satisfy Theorem 2. Q E D .

The proof for Theorem 2 originally appeared in [12] for the case of IXgl=l. If
the costs cij for the &Graph are not specified then Corollary 2 applies here also.
Another question left to be answered is how good the above metrics are. This is a
standard problem in the theory of the A* algorithm. For instance, if the chosen
metric is such that it gives an extremely conservative estimate of the cost from all
nodes x to the preferred goal node, then A* may expand too many nodes in finding
a solution. The computational complexity involved in computing the metric itself
must also be considered when studying the computational demands of a particular
A* algorithm.

Theorem 2 allows the planning system designer to transfer the work of
choosing the heuristic function fi(xi,xSg) to forming the Petri net model of the
problem domain under consideration. Since a problem domain representation of
some sort must be used, it is uscful to usc the Extcndcd I/O Pctrl nct modcl sincc

353

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on August 27, 2009 at 14:40 from IEEE Xplore. Restrictions apply.

K. M. Passino and P. J. Antsaklis, "Planning via Heuristic Search in a Petri Net Framework,” P roc. o f t he
3 rd I EEE I nternational S ymposium o n I ntelligent C ontrol , pp. 350-355, Arlington, VA, Aug. 24-26, 1988.

it leads LO the specification of admissible and consistent heuristic functions via the
results of this section. This can be valuable if i t i s not clear how to pick the
heuristic function for a particular problem domain. However, if the problem
domain cannot be modelled via the Petri net defined the result cannot be utilized.
Also, practically speaking, the Petri net model may be too complex to be utilized
in the implementation of the A* algorithm.

4.0 Examples
This section contains two simple examples that illustrate some of the results

in Section 3. These include the the 8-Puzzle and a "Think and Jump" game.

&PuZZh: The first example is called the 8-Puzzle and is a classic example used in
the literature on heuristic search [lo, 11. 141. This example will be used to
illustrate that the heuristic functions chosen via the results in Section 3 include
those which have been previously developed in the literature. This shows that for
this example "good" heuristic functions can be developed based on the use of
metric spaces and Petri nets in this paper.

The 8-Puzzle has a board with nine cells, eight tiles that lie in the cells. and
one blank cell. The game is shown in Figure 4.1. The tiles are shaded, labeled
with numbers 1-8. and lie in the cells that are. labelled with numbers 1-9. A tile
can be moved from one cell to another if any adjacent cell has no tile in it. For
instance, from the tile configuration in Figure 4.1 a) tile 1 can be placed in cell 8
leaving cell 9 empty. The game begins with a arbitrary initial state and the pmper
sequence of tile moves must be chosen by the planner so that the god state shown
in Fieure 4.1 b) is reached.

a) Arbitrary Initial State b) Goal State

Figure 4.1 The 8-Puzzle
First the Petri net model of the 8-Puzzle is developed. To help visualize the

Petri net model developed below it is convenient to associate the cells of the 8-
Puzzle with points in the 2-d imens id space of real numbers. Use (i j) to denote
a point in this space. For instance, cell 1 is associated with the point (0.2). cell 2
with (1,2), cell 9 with (1.1) and so on. The association is depicted in Figure 4.2.

y p l c k 2 I...... c u 3 4

p 8 ~.......m...... T 9 Cii4.

ell7 dell6 Ce$5

0 1 2 x

We think of the game beiig played "on" this coordinate system, i.e. if tile 5 is in
cell 4 it is "at" point (2.1). Essentially, there is a copy of the coordinate system
for each tile. The marking of the Petri net will reflect the position of every tile in
this coordinate system. To do this, two places pic P are associated with each tile
and the blank cell (which will be considered to be "tile 0"). one with the x-
coordinate and one with the y-coordinate. Generalized transitions are used to
indiczte the action of moving each tile to the blank cell if it is adjacent to the tile.
The Petri net is given in Figure 4.3.

Figure 4.2

The marking of these two places
represmm the position of tile k.

i

The marking of these two p1-s
represents the position of tile 0.

The markings of Plk and p2k represent the x and y coordinates of tile k, and hence
its cell position. There is a a copy of the portions of the net indexed with k far
each k, 1m. The 8 control inputs from the planner are connected to each Of the
8 generalized transitions. If Up(ui,k)=l for some step k then bansition t& is to f i
if it is enabled. There are 18 output places to allow the p h n e r to measure the

vector representing the marking of places pli and pzi at step k. i.e., it = m m
the cell that tile i is in. The enable rule for the 8-Puzzle is given by

enable d e , called E;8, is composed of each of the eight generalized h2uIsitiOn
enable rules E&. It indicates that transition 'si is enabled if the blank cell is a
distance of 1 away from tile i. The firing rules agj for each of the eight
generalized transtions are: if%€ Eg, and is chosen to be f d at sep k, then the
values of X@ and x&) are switched for step k+l. The complete fhng rule is
called Or8. The transition cost function i s defined by assigning a cost of "1" for
firing each generalized transition.

There have been several admissible and consistent heuristics specified for this
example. Among these are (i) the number of tiles that are not in their appropriate
goal cells, and (ii) the so called "Manhattan Distance", i.e., the sum of the nurr'er
of moves that it would take to move the tiles that are not in their goal state into
their goal state assuming lhat there are no otha tiles in the way [141. Case (i) will
be referred to as ti, and case (U) as fiz. It is now shown that both of these
heuristics can be specified via the resulu of Section 3.

Let ~~(k)=[x@(k)~ xpl(k)* ._. x&k)tJt and let xpg; denote the goal state for tile
i. For instance, the goal state for tile 5 is given by xpg5=[2 01'. Let the entire
goal state be xg=[xPgo xpg, ... xpgg]t. The discrete metric is pd. The vector

ith element that tile i is not in its goal state and a 0 if it is. Define to be equal
to a column vector of zeros the same size as x&). The heuristic function
&(xp@),x~=~(xc@)srco) with p=l is a sum of the elements of the vector.
i.e., the number of tiles that are not in their proper cells. The heuristic function
f&(xp(k).xg)=pp(xp(k).xg) with p=l. This is the case because the pp metric with
p=l measures distance the same way that we count the number of moves it takes to
move a tile to its goal position if no other tiles are in the way. Note that both
metrics used are bounded because the state space of the Petri net is finite and the
qi,(r)=r. Using Corollary 1 both heuristics are admissible and consistent. The
metrics p2(xp@)sxe) and p.dxp@).xg) are also candidate metrics with special
interpretations. Hence, for this example the metric space formulation facilitates
the discovery of new heuristics. Notice that for the general N-Puzzle the results
indicate that the chosen metrics are sti l l admissible and consistent.

It may be interesting to note that the results of this paper atlow for the
construction of known heuristics but the results are especially useful if a new
problem domain a p w and it is not clear how to pick a heuristic function. This
is illustrated next.

and J- The second example is a "Think-and-Jump" game
involving a Oiangular board with ten holes in it, and 9 pegs which fit into the
holes. The 9 pegs arc put in the holes. Pegs are removed if they are "jumped" by
other pegs. A peg can jump anothm peg only if there is an empty hole dinctly on
the other side of the peg. See Figure 4.4.

state of the system. et xpi@+wp@1i,k) Xp@ziJr)I' be the 2dime11~i0d column

E ~ (X ~) ~ ~ (t l p l ~ ~ l i J r) - X p @ 1 o u I + a[p@2i,k)-X&OJr)bl). The "Plete

Xc(k)=[Pd(X@(k)ApgO) Pd(Xpl(k)Aal) ... Pd(Xp3(k).Xpg8)It indicates with a 1 at its

r"r\ 7 0 9 0

r x
Figure 4.4 Think and Jump Game

For the initial configuration of pegs on the board shown above the peg in hole 2
can jump the peg in hole 5 which leaves no peg in holes 2 and 5 and one peg in
hole 9. From this configuration the peg in hole 9 can be used to jump the peg in
hole 8 to leave a peg in hole 7. and none in holes h and 9. From the initial
configuration, the peg in hole 10 cannot be used to jump the peg in hole 5. and the
peg in hole 1 cannot be used to jump the peg in hole 5. The object of the game is
toremove as many pegs from theboard as possible. The best you can do is to end
up with only one peg.

First the Petri net model is constructed. Let rhe places &(pi). k1.2. ... ,lo.
correspond to the holes in the board and let the tokens correspond to the pegs. It is
relatively easy to see how the Petri net depicted in Figure 4.5 was developed.

Figure 4.3 Extended VO Petri Net of the 8-puZZle

354

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on August 27, 2009 at 14:40 from IEEE Xplore. Restrictions apply.

K. M. Passino and P. J. Antsaklis, "Planning via Heuristic Search in a Petri Net Framework,” P roc. o f t he
3 rd I EEE I nternational S ymposium o n I ntelligent C ontrol , pp. 350-355, Arlington, VA, Aug. 24-26, 1988.

Figure 4.5 P m Net Model of ihe ?hiolr aod lump Game

The transitions T=(t,), j=1,2, ... ,18 represent the eighteen possible moves from
various peg configurations. The inputs and outputs are not depicted on the graph,
but follow directly from the definition of the Petri net in Section 2. The enable
rule is given by E r , the next state function by Wr, and the cost function Z assigns
a cost of 1 to every transition. The state equations were used to represent the
game. The initial state is xp(0)=[l 1 0 1 1 1 1 1 1 IIt (Xpo=(xp(O)]), and the goal
states are xg=[[O 1 0 0 0 0 0 0 0 olt, [l o 0 0 0 0 0 0 1 01'. [O 1 0 0 0 0 0 0 1
01'). The set of goals describes three ways to "win" the game. These are to end up
with: (i) one peg left in position 2, (i) pegs in positions 9 and 1, and (ii) pegs in
positions 9 and 2. Since one peg is removed from the board for every move, to
reach goal (i) it will take 8 steps, whereas it will only take 7 steps to reach goal
(ii) o r (iii). The planner is to fiid the solution path to the goal state that takes the
least number of steps, hence it should seek goals (ii) or (iii).

The heuristic function is chosen to be fi(xi.~'g)=inf((l/~)p2(xi,~g) I xgeXg]
where W is a diagonal matrix with diagonal elements wii>O. Choose W to be an
10x10 identity matrix then the heuristic function is in the form of a Hamming
distance. The metric p2 for this example is bounded since X is finite. The bound
y is given by F[&T
Using Theorem 2 and Corollary 1 the chosen metric is both admissible and
consistent. The A* algorithm was implemented and used to find a solution to the
Think and Jump problem using the chosen metric. It expanded 58 nodes. The
solution generated was for the planner to fire transitions: t2, tl6, t17, t14, t7. U, t13,
the optimal length solution. If only goal (i) is placed in the goal set then the
solution length, found in [12]. is 8.

5.0 References
[l] Chamiak E., McDermott D.,Intrnduction to Artificial Intclliccncc. Addison Werlcy.

[2] Cohen P.R., Feigenbaum E.A..& Handbook of Artificial Jntellieence. Volume 2,

[3] Gelperin D., "On the Optimality of A*". Artificial lntelliecnce, Vol. 8. pp. 69-76, 1977.
[4] Giordana A., Saitta L., "Modelling Production Rulcs by Mcans of Predicate Transition

Networks", InfSciences, Vol. 35. No. 1, pp. 141. 1985.
[SI Hart P.E.. Nilsson N.J.. Raphael B.."A Formal Basis for the Heuristic Determination of

Minimum Cost Paths", IEEE Trans. on Svstems Science and Cvbemetics. Vol. SSC-4,
No. 2, pp. 100-107, July 1968.

(61 Hart P.E.. Nilsson N.J., Raphael B.."Correction to: A Formal Basis for the Heuristic
Determination of Minimum Cost Paths", SIGART Ncwslettcr Vol. 37, pp. 28-29. 1972.

[71 Krogh B. "Controlled Petri Nets and Maximally Permissive Feedback Logic". Proc.
Allerton Conf.. pp. 317-326, Urbana, IL. Sept. 1987.

[SI Michel A.N.. Herget C.J.. Mathematical Foundations in Eneineering and Science: Algebra
- and Analvsis. Prentice Hall, NJ. 1981.

[9] Murata T., Zhang D., "A High-Level Petri Net Model for Parallel Interpretation of Logic
Programs". IEEE Conf. on Computer Languages, pp. 123-132, Florida. Oct. 1986.

[lo] Nilsson N.J., - v' & h ~ & i n ~ ~ t e l l i e e n c ~ , McGraw-Hill. NY.

1111 Nilsson N.J., Princiules of Artificial Intellieence, Tioga, NY. 1980.
[121 Passim K.M., Antsakl is P.J.. "Artificial Intelligence Planning Problems in a Petri Net

[13] Passino K.M.. Antsaklis P.J.. "A System and Control Theoretic Perspective on

Reading Mass, 1985.

Kaufmann Pub., California. 1982.

1971.

Framework", Proc. of the American Control Conf.. pp. 626-631, Atlanta, June 1988.

Artificial Intelligence Planning Systems". Control Systems Technical Report #63,
Dept. of Electrical and Computer Engineering, University of Notre Dame, July 1988.

[14] Pearl J.. Heuristics, Addison-Wesley, Reading, Mass., 1984.
I151 Peterson J.. Petri Net Theow and the Modeling of Svstems. Prentice Hall, NJ. 1981.
[161 Vanderbrug G.J.. "Problem Representations and Formal Properties of Heuristic Search,

Cl71 Wilensky R.. Planninz and Understanding, Addison Wesley. Reading, Mass.. 1983.
InformatiQnSri, Vol. 11, pp. 279.307. 1976.

355

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on August 27, 2009 at 14:40 from IEEE Xplore. Restrictions apply.

K. M. Passino and P. J. Antsaklis, "Planning via Heuristic Search in a Petri Net Framework,” P roc. o f t he
3 rd I EEE I nternational S ymposium o n I ntelligent C ontrol , pp. 350-355, Arlington, VA, Aug. 24-26, 1988.

