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Abstract
An Amﬁcla] Imellxgence pllnmng systems mun components consist of a planner
and a p The is the env that the planner
reasons about and takes actions on. W this papes, a special type of Extended
Input/Output Petri net is defined and then used as the problem reptesenmmn for a wide
class of problem domains. A planning strategy is developed using results from the
theory of heuristic search. In particular, using the developed Petri net fra k and

is chosen and studied in detail. The results here are domain independent. The
results of this paper are now summarized.

The class of problem dofmairis considered hiere are those which can be modelled
by the "Extended Input/Output (I/0) Petri Net" defined in Section 2. Based on dus
Petri net framework, a planner which uses heuristic search techniques, the A*
algorithm, is developed in Section 3. Although for certain special applications the
heunsuc function is easy to choose so that it is issible and ¢ in

metric spaces, aclm ofhcunsncfunchtmsuspecxﬁed that are botlt admissible and
consistent for the A* algorithm. The pl system archi is di d and as
an illustration of the results two sxmp]e lanning probl delled and solved.

1.0 Introduction

According to the viewpoint presented in [13], Artificial Intelligence (AI)
planning systems consist of a planner and a problem domain, their
interconnections, and exogenous inputs. The problem domain cutputs are fed back
to the planner and the planner outputs are the control inputs to the problem
domain. There are disturbance inputs to the problem domain and the exogenous
inputs to the planner are the goals. The planning system functional architecture
considered here is depicted in Figure 1.1. The problem domain is the domain
(environment) that the planner reasons about and takes actions on. One develops a
model of the real problem domain, called the problem representation, to study
planning systems. It is'the task of the planner to examine the problem domain
outputs, compare them to the current goal, and determine what control inputs to
apply to the problem domain so that the goal is met. Al planners employ
intelligent problem solving techniques that are fundamental to many intelligent
control systems, for instance, in the intelligent control of robots.

Disturbences

Control

Inputs Outputs

Problem
Domain

Figure 1.1 Al Planning System Architecture

General information on the theory of Al planning is given in {1-2], and [17].
A very brief overview is given here to establish the terminology. The functional
components and details of the planner architecture vary widely depending on the
class of problem domains under consideration. The functional components of a
typical Al planner are as follows [1]: Plan generation is the process of
synthesizing a set of candidate plans to achieve the current goal. This can be done
for the initial plan or for replanning if there is a plan failure. In plan generation,
the system projects (simulates, using the problem representation) into the future,
to determine if a developed plan will succeed. The system then uses heuristic plan
decision rules based on resource utilization, probability of success, etc., to choose
which plan to execute. The plan executor translates the chosen plan into physical
actions to be taken on the problem domain. More advanced planners may use
execution monitoring to determine if the currently executing plan is progressing as
expected. Situation assessment can be used to generate an estimate of the state of
the problem domain. The estimate of the state can be used in execution
monitoring or 1o update the state of the model used for projection.

From a system and control theoretic viewpoint there are concepts analogous to
controllability, observability, stability, etc., for AI planning systems. There also
exists Al planner functional architectures that are analogous to certain control
system configurations. A detailed discussion of this analogy (exemplified by the
planning system of Figure 1.1) between control systems and planning systems is
given in [13]. Planner architectures such as the one in Figure 1.1 are discussed at
length, and system and control theoretic concepts are introduced into Al planning
theory. In that paper it is argued that although many of the basic issues in Al
planning systems are well understood empirically, they have not been adequately
quantified in a mathematical framework. It was proposed that the development of a
foundation of basic concepts for Al planning systems from their control theoretic
counterparts is fundamental to the formation of a mathematical theory for
modelling, analysis, and design of AI planning systems for real time
environments.

In this paper, a planner which uses projection and plan decisions to determine
what plans 1o execute is considered. The complete plan is generated before it is
executed and there is only one goal to be achieved. Also, as in most planning
theory research, no disturbances are allowed in the problem domain. The work here
is problem representation independent, but a particular representation (the Petri net)
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the Jet Propulsion Laboratory, Pasadena California under contract 957856.
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8 1, practitioners often find it difficult to obtain. To make the planner domain
independent, a class of admissible and consistent heuristics for the A* algorithm is
specified for Al planning problems that can be modelled by the Petri net. This is
done by defining metric spaces associated with the Petri net and using the metri: in
the A* algorithm. To illustrate the theory, two simple Al planning problems are
given in Section 4.0, modelled with Petri nets, metrics are specified, and the A*
algorithm is used to generate solutions. Next, relevant research is summarized and
compared to the results of this paper.

The Petri net definition here is similar to the definition given in {15] but it
also allows for control inputs to the Petri net and outputs. In [7] a "Controlled
Petri Net” was defined in a somewhat different manner. The definition in Section 2
includes the so called "inhibitor arc”, generalized input and output arcs, and a
generalized transition to obtain a Petri net with a relatively high expressive power.
The Petri net defined here also allows for the specification of a cost to fire a
transition via the specification of the transition cost function. Such costs could,
for example, represent a measure of the resources consumed in performing the
actions associated with firing a transition.

The results from the theory of heuristic search using the A® algorithm outlined
in Section 3.1 mainly come from (5, 6, 3, 16]). Other information can be found in
(10, 11, 14]. Under certain conditions the A* algorithm can, from an initial node
of a graph, find a least cost path to some goal node. When applied to planning
problems the algorithm can be used for projection and the plan decisions discussed
above, to determine which plan will achieve some goal with least cost in terms of,
for instance, resource consumption. Once the appropriate plan is found A* gives it
to the plan executor $o that the actions can be taken on the problem domain.

In Section 3 the problem of specifying the heuristic function for a wide class
of problem domains is addressed. Results from the theory of metric spaces ate
outlined and used to prove that for any 5-Graph there exists an admissible and
consistent heuristic function for the A algorithm. It is shown that if a bounded
metric is used then there is a whole class of admissible and consistent heuristics.
Also, 1t1sshownmanfthecos!sareplckedmacertamwayv.henanymetmcan
be used in the heuristic function. Heuristic search via the A* algorithm in a Petri
net framework is introduced. It is proven that the Extended 1/O Petri net defined in
Section 2 generates a certain class of 3-Graphs for which there are known metrics
that can be used to specify admissible and consistent heuristic functions.

Work most closely related to ours on how to find admissible and consistent
heuristics is called "the generation of heuristics”, and "auxiliary models” are often
used. These methods are outlined in [14]. They involve searching for a value of
the heuristic at each step in the heuristic search; consequently, they are
computationally intensive [14). The results developed here allow for the
specification of the heuristic function a priori and thus avoid the search for the
value of the heuristic at each step. Details about how the results of this paper
extend those originally mpomd in (12] are provided.

Other relevant research is given in [4]. There the authors use a high level
Petri net to represent both the knowledge and inference strategy in expert systems.
Some analysis results are obtained. Some planning systems are implemented in
the computer programming language named PROLOG. An analysis of
concurrency in PROLOG via Petri nets is reported in [9].

2.0 The Extended Input/Outpnt Petri Net for Problem
Representation

In this section, the Extended Input/Output (I/O) Petri net model used for the.
problem domain represemation is defined. The definition allows for the control
inputs from the planner via a control input arc and alow the planner to sense the
state of the problem domain via the measurement places. Also, associated with
each transition of the Extended 1/O Petri net is its cost to fire. Generalized I/O arcs
and transitions are added for modelling flexibility.

A Petri net with a high expréssive power (language complexity) has the
ability to represent a wide class of dynamic systems whereas one with poor
expressive power is limited in the sort of dynamic system that can be represented.
For a detailed discussion on tlis topic see [15]. The net to be defined below
contains "inhibitor arcs”, hence it has the expressive power of the "Extended Petri
Nets" discussed in [15, pp. 189-203). Peterson provides a proof that "an extended
petri net is equivalent to a Turing machine”, and hence can model any computable
system, i.e., one that can be simulated on a computer. Consequently, the Extended
1/O Petri net defined below has a relatively high expressive power. The definition
below refines and extends the definition originally given in [12] by adding the
generalized 1/O arcs and transitions.
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Let R denote the set of reals and R* the strictly positive reals. Let N denote
the set of nonnegative integers. A multiset (bag) is a collection of objects over
some domain X, but unlike standard definitions of a set, multisets atlow multiple
occurrences of elements [15]. Let B be a multiset, then #(x,B) represents the
number of occurrences of element x in multiset B. The set X*° is the set of all
multisets over a domain X. If x,ye N®, x=(x1,X2, ... Xnl%, and y=[y1,y2, - ¥nl
(t indicates transpose) then the statement x2y is true iff x;2y; 1<i<n. Similarly
for >,<, and <. Let @ denote the null set.

The Extended I/O Petri Net structure
Ps=(P,T.Tg,ID.IN.OD.IGy, OG,, UTLY.¥) where:

(i) P={p1,p2, -.- .Pn} is a non-empty finite set of n=IPI (state) places represented
graphically with circles ( O ).

(ii) T=(t1,12, ... ,tm} is 2 non-empty finite set of m=IT| transitions represented
graphically by line segments ( | ).

(iii) Tg={181,tgz, .tgmg] is a finite set of mg=ITyl generalized transitions

is described by

represented graphically by rectangles (U). In the development below, when it is
clear, 1 will also be used to denote any transition, either normal or generalized.
The notation tgk will be used for emphasis.

Note that PNTNTg=@ and PUTUTg#0.
(iv) ID:TuTg—>P°° is a mapping from transitions or generalized transitions to the
set of all multisets over P. It is represented graphically by directed arcs (—®)
pointing from each input place of tj, pi€ IDp(t)), 10 4. If for some pie P,
#(piIp(t)=k>1, then the mapping can be represented graphically by a directed arc
with multiplicity k (—ib ). Note that k is finite. If tje T then for all p;eP,
#(piIpG)<1.
(v) In:T—>P® is a mapping from transitions to the set of all multisets over P. It
is represented graphically by not arcs (inhibitor arcs) ( —Q ) pointing from each
input place of tj, pje IN(lj), to tj. If for some pie P, #(pi,IN(tj))=k>1, then the
mapping can be represented by a not arc with multiplicity k ( -io ). Note that k
is finite.
(vi) Op:TUT g——)P“’ is a mapping from transitions or generalized transitions to the
set of all multisets over P. It is represented graphically by directed arcs pointing
from the transition tje TUTg to each output place of 1), pi€ Op(t)). A directed arc
with multiplicity k can be used in a2 manner similar to (iv), except k=#(p;,Op(t;)).
If tje T then for all pieP, #(p;,Op(1))=k<1.
(vii) I(;k:T—>2P is a mapping from transitions to the set of all subsets of P. It is

represented graphically by generalized directed input arcs of type k ( =®)
pointing from each input place of tj, pieIg (1)), to y;.
(viii) OGk:T—->2P is a mapping from transitions to the set of all subsets of P. It
is represented graphically by generalized directed output arcs of type k (similar to
(vii)) pointing from the transition tje T 10 each output place of 4;, pie OG,(t).
For convenience, a two-way directed arc ( <@ ) is used to indicate a self
loop, i.e. pie Op(Y)) and pie ID(Y)). A directed notarc ( <@—0) is used to indicate
the connections pje Op(t;) and pie IN(tj). Also, every arc has a transition on one
end and a place on the other, and no transition or place exists without being
connected to an arc.
(ix) U={u1,02, ..., un.) is the nonempty finite set of n=IU! control places which
are represented graphically with circles as in (i).
x) I‘:TuTg—-)ZU is a mapping from transitions or generalized transitions to the
set of all subsets of U. It is represented graphically by control arcs (.—a)
pointing from each uje I'(tj) to tj. It is required that for all tje TUTy there exist
uie I'(y), ie., all transitions have control arcs connected to them.
(xi) Y={y1,y2, .. ,yny) is the finite set of ny=|Y| measurement places, represented
graphically with circles as in (i).
(xii) W:P—Y is a mapping from places to measurement places. It is represented
graphically with a connection arc ([>——]) from pie P to yje ¥(pj). In this
paper we require that for all pje P there exist a unique yje ‘¥(pj).

A complete description, which also includes the execution characteristics of
the Extended 1/O Petri Net, is given by PN=(Ps,Ts,Xp.Xpo.Up,Yp.Er,®r,Z) where:
(i) Ps is described above.

(ii) Tg=N is the time index set. The initial time is O, and each successive natural
number represents an arbitrary length time step.

(iii) Xp:PxTs—N is the marking function, a mapping from (state) places and time
steps into nonnegative integers representing the marking of the place. The n-
dimensional column vector xp(k)=[Xp(p1.k).Xp(P2.K), -.- ,Xp(pn,k)]t is used to
denote the state of the Petri net. The state is represented graphically by tokens

(@) that are put inside places (e.g. Xp(pj,k)=2 is represented as P, @). The
complete set of "reachable states" [15] will be denoted by Xp.

(iv) Xpo is a non-empty finite set of initial conditions xp(0) for the state of the
Petri Net; NU2X . For this paper Xpol=1.

(v) Up:UxTs—>N is a mapping from control places and time steps into
nonncgative integers representing the marking of the control place. The n-

351

dimensional column vector up(k)=[Up(uy k), Up(uz,ky, ... ,Up(unc.k)]L 15 used to
depole the control input 1o the Petri net. It is represented graphically with tokens
as in (iii). It is required that Up(u3,k)=0 or 1 for all uje U and ke Ts, and only one
clement of up(k) is equal to 1 for any k.

(vi) Yp:YxTs—N is a mapping from measurement places and time steps 10 a
nonnegative integer representing the marking of the mcasurement place. Here we
let Yp(y;k)=Xp(p;,k) for all ke Ts where yje ¥ (pi). The ny(n)-dimensional column
vector yp(K)=[Yp(y1 k), Yp(y2.,k), -.. ,Yp(Yny.k)]L is used to denote the output of
the Petri net.

(vii) E,:N“xT,—>2TUT8 is the Petri net enable rule, a mapping from an n-

dimensional column vector of nonnegative integers representing xp(k) and time

steps into subsets of transitions that are said to be enabled at step k. The notation

tje Er(K) is used to indicate that tje TUTyis enabled at step k.

The enable rule is chosen based on the specific modelling task. The
generalized arc defined by Igy is used to specify certain portions of the enable rule
E; that will be denoted Ei. For instance, a type 1 arc connected to place p; may
indicate that for tj, where pie 1G;(t;), to be enabled at step k it must be the case that
Xp(pi.K)=#(p1.1G, (). New types of generalized input arcs can be invented as

required, but all must be represent functions Erx of the form

Eg:NMxT—2TVT8 where ni<n.
The form for the generalized transition tgy is

lgk

The function Eg is the enable function for the generalized transition tgxe Tg and it
is defined by Egk:N“gksz—a[O,ll. It is also used to specify portions of Er. It
uses the value of the state of the Petri net to determine if tgx is enabled at some
time. Note that

Pt
ngk=i=zl#(Pi»ID(tgk))

and "1" indicates that tg is enabled while "0" indicates that it is not enabled. A
full specification of the enable rule E; involves saying how each transition
tje TUTg is enabled.

As an example, assume that Tg=0 and that there are no generalized arcs. A

candidate for the enable rule is given by Ex(xp(K).k)= {4 Xp(pi.K)2#(:.ID(y)), for all
pie P, and if pje IN(Y), Xp(@i k)<#(pi.IN(t)))). A transition tj can fire whenever it
is enabled. Tokens are redistributed in the Petri net when a transition fires
according to the next state function described below.
(viii) @ TUTgxNOXxT—N™ is the Petri net next state function (firing rule), a
mapping from a transition t;, an n-dimensional column vector of nonnegative
integers representing xp(k), and time steps into an n-dimensional column vector of
nonnegative integers representing the next state xP(k+1). The next state function
is defined iff [_,'EE,-.

The firing rule is also chosen according to the specific modelling task at hand.
For instance, the generalized output arc defined by Og, is used to specify certain
portions of the next state function @, which will be denoted ®rx. As an example,
a type 1 arc connected from transition t; to place p; may indicate that if t; is enabled
and it fires then no matter how many tokens are in place p;, 3 tokens should be
placed there. New types of generalized output arcs can be invented as required but
all must represent functions ®rx where (D,k:TuTng"‘les—)N“z, where nl1<n and
n2<n.

The general form for the generalized transition tg is

t

gk
1L
,\\\. By (i —
_:,/" d)gk(x‘i) 2

The function @ is the next state function for the generalized transition tex€ Ty
and it is defined by ®g:N"EKxT(—N" k. It is only defined if tgke Egk. It uses
values of the state of the Petri net to say how tokens are redistributed if tek is fired
at some time. The function Egy is defined above. The value of ngk is given above
in (vii) and ngx, the dimension of the portion of the next state that is affected by
firing tgy is given by

P
“fk—"zl#(PiaOD(tgk))-

The full specification of the firing rule ®; involves saying how the tokens are
redistributed if any transition t;e TUTy is fired.

Consider the following example of a next state function. Let ®'=[¢1,47, ..
nl". Let A™=[ajj], where 5= #(pi In(t)) and A*:[a,-*ﬂ, where afi=#(p;,0p(t)). Let
A=AY-AT Let B={bjj] where bjj=#(p;,IN(t)). Let a’j, and bj refer to the jth
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columns of A” and B respectively. Assume Tyg=( and that there are no generalized

arcs. Then the example enable rule Er above can be restated as E;:[Lj 1 xp(k)Za'j.
xp(k)<bj]. Letup(k)=[00..1 ... 0 0]* where the 1 is in the jth position 1<j<m.
Let C=[c;;) with cij=1 if yi€ ¥ (p;) and c;j=0 if yj¢ ‘¥(p;). Using Ey as the enable
rule, the next state function ¢i(Xp(@;.k).tj k) = Xp(pi,k+1)=Xp(pi.k) - #(piIp(y)) +
#(pi,OD(Lj)) for all i, 1<i<n. Hence, for t;e Ey(k) firing the next state function
&'t xp) K=xp(k+1) or,

xp(k+1)=xP(k) + Aup(k)

ypK)=Cxp(k)

which are similar to the state equations described in [15]. For this next state
function tokens are not removed from any control input place if  fires, but they
must be present to fire tj. Likewise, tokens are not removed from places connected
to transitions via a not arc. The connection arcs between any place p; and a
measurement place Y; indicate that any tokens added or subtracted from p; are also
added and subtracted from yj, i.e. with the connection arc they are essentially
duplicate places.
(ix) Z:TuTng“xN“—)R*’u {0} is the transition cost function, a mapping from a
transition or generalized transistion tje Er, xP(k), and xp(k+1) into 2 nonnegative
real number that represents the cost of firing tj. Since the firing of a transition
often represents some computation or action performed, Z is a measure of the cost
to process the state xP(k) into xp(k+1) by firing tj. The transition cost function is
defined iff the transition ; is enabled at siep k.

3.0 Metric Spaces and Admissible and Consistent Heuristic

Functions in a Petri Net Framework

In this section some of the main results of the theory of heuristic search
involving the A* algorithm are briefly outlined. Results from the theory of metric
spaces are outlined and used to prove that for anz 8-Graph there exists an
admissible and consistent heuristic function for the A" algorithm. It is shown that
if a bounded metric is used then there is a whole class of admissible and consistent
heuristics. Also, it is shown that if the costs are picked in a certain way then any
metric can be used in the heuristic function. Heuristic search via the A* algorithm
in a Petri net framework is introduced. It is proven that the Extended /O Petri net
defined in Section 2 generates a certain class of 3-Graphs for which there are known
metrics that can be used to specify an admissible and consistent heuristic function.

3.1 Heuristic Search: The A* Algorithm

Some results from the theory of a heuristic search involving the A* algorithm
are outlined below. The main results of the A* algorithm studied here were
obtained in [5, 6, 3]. Probably the most complete reference on heuristic search is
[15].

The problem space is represented explicitly by a 8-Graph G=(XE,C) where:
(i) X={x1,%2,X3, ... } is the non-empty possibly infinite set of nodes.

(ii) E={eij]=[(xi,xj)l Xj,Xj€ X} is the non-empty possibly infinite set of directed
arcs pointing from xj to xj.

(iii) C={cjj}={cijleije E} is the non-empty possibly infinite set of costs associated
with each arc. Also, for all cjje C, ¢;j258>0.

An implicit representation of the 8-Graph G is given by a set of source nodes and
a successor operator :X—2%xC, When T is applied to a node x it is expanded.
It is required that for all x;, I'(x;)l is finite. The explicit 5-Graph is generated by
repeated application of the successor operator I to nodes that are generated in
expanding nodes.

The subgraph Gy from any xe X is the graph defined implicitly by a single
source node x and some I" defined on X. Each node in Gy is accessible from x.
A path from x] to xk is an ordered set of nodes <xj,x2, ... ,xk> such that
xj+1€ I'(xj) for all 1<i<k-1. There exists a path from xj to xj iff x is accessible
from xi. Every path has a cost which is obtained by adding the costs of each arc
¢i,i+1€ C. Anoptimal path from xj to xj is a path having the smallest cost over
the set of all paths from x; to xj, call this cost h(xi.xj). Denote an estimate of this
cost by ﬁ(xi,xj). The concern is with the subgraph Gy from a single specified
start node xpeX. Define the non-empty set Xg, X2Xg of nodes in GXO as goal
nodes. For any node x in Gx, an element xg€ Xg is a preferred goal node of x iff
the cost of the optimal path from x to xg does not exceed the cost of any other
path from x to any other member x'e Xg. The symbols x; and x"g will be used to
denote preferred goal nodes below.

The objective is to find the optimal path from the start node to a preferred goal
node. To help guide the search an evaluation function v:X—»R*'u{O} is used to
rank how promising it is that a node is on an optimal path. The evaluation
function is defined so that the node with the smallest value of v(x) is chosen for
expansion. One algorithm that performs heuristic search is the A* algorithm[S].
The details of the algorithm are given there. The evaluation function v(x) must be
chosen. Let f(x) be the actual cost of an optimal path constrained to go through x
from the start node x to a preferred goal node xge Xg. Let f(x)=g(x)+h(x) where
g(x) is the actual cost of an optimal path from x( to x and h(x) is the cost of an
optimal path from x to a preferred goal node of x called x"g, i.e., h(x,x"g)=

min

xge X g(h(x,xg)). Since f(x), g(x), and h(x) are not known a priori, the estimates

feo, é\(x), and fA(x) are used. Therefore, choose v(x)=f(x)=£(x)+ﬁ(x). The
function A(x), called the heuristic component of the evaluation function, is used to
capture information from the problem domain to guide the search. If ﬂ(x) satisfies
certain propertics then the A* algorithm performs well.

I some goal nodc is accessible from the start node and 0<A(x,x'g)<h(xx"g) for
all xe X, then A* is admissible i.e., it is guaranteed to find an optimal path from
the start node 1o a preferred goal node for any 8-Graph [S). The heuristic ﬂ(x) is
said to be consistent il h(xj,x j)+ﬁ(xj,x"g)2£(xi,x'g) for all Xj,Xj€ X. The heuristic
ﬁ(x) is said to satis{y a monotone restriction (or is said to be monotone) if for all
xje T(xi), xi€ X, h(xi.xj) + A(xjx"g)2fi(xi,x’g). If A(x) is consistent then it
automatically satisfies the monotone restriction. If ﬁ(x) satisfies the monotone
restriction then if A* selects x for expansion §(x)=g(x), and the value of f(x') for x’
on the path from x( to x is nondecreasing; consequently step (iii) in the A*
algorithm is vacuous and can be removed (5, 11]. Suppose that there are two
versions of the A* algorithm called A1 and A which use evaluation functions
Ai=Rix)+Ri(x) where 0<hi(x)<h(x) for all x X, i=1,2. The algorithm A2 is .aid
to be more informed than Aj if for all nongoal nodes x, ﬁg(x)>f|\1 (x). The
following optimality result was obtained. If A2(x)>h1(x) then at the termination
of their A* searches every node expanded by A2 was also expanded by Aj. It
follows that A] expands at least as many nodes as does. A2. See [14] for a more
complete discussion.

3.2 Metric Spaces and Admissible and Consistent Heuristics

In the literature on heuristic search the heuristic function ﬁ(x,x'g) is used to
estimate the distance from the current node x to a preferred goal node x'g. The
theory developed to date makes the notion of this distance intuitively clear. In this
section the notion of distance is quantified in a formal mathematical framework
then used in finding heuristic functions. First, some of the results from the theory
of metric spaces taken from [8] are outlined.

Let X be an arbitrary non-empty set and let p:XxX—R where p has the
following properties:

(@) p(x.y)20 for all x,ye X and p(x,y)=0 iff x=y,

(i) p(x.y)=p(y.x) for all x,ye X,

(iii) p(x,y)Sp(x.2)+p(z.y) for all x,y,ze X (Triangle inequality).

The function p is called a metric on X and the mathematical system consisting of
p and X, denoted {X;p}, is called a meiric space. The elements of X are often
called points, and p(x,y) is frequently called the distance from a point xe X, to a
point ye X. Equivalently, p is a metric iff, (i) p(x,y)=0 iff x=y, and (ii)
p(y.2)Spx.y)+p(x.2) forall x,y,ze X. Let Ap(X) denote the class of functions that
are metrics over the set X.

If p is a metric over the set X then so is ap where a>0. There is a
distinction between bounded and unbounded metric spaces. Let {X;p} be a metric
space. If there exists a positive number y where p(x,y)<y for all x,ye X, {X;p} is
said to be a bounded metric space. If {X;p} is not bounded, {X;p} is said to be an
unbounded metric space. The class of all bounded metrics over X will be denoted
Ap(X). Define the function p;:XxX—R by

] ﬂ x.! !
Pl(x,y 1 +P(X,y)'

The metric space {X;p1) is a bounded metric space even though {X:p) may not be
bounded. In fact, 0spj(x,y)<! for all x,ye X. The notion of distance between sets
is also defined. Let {X;p) be a metric space, and let Y and Z be two non-empty

subsets of X. The distance between sets Y and Z is defined to be
(Y. Z)=inf{p(y.2) | ye Y, 2ze Z}.
Let pe X and define
d(pZ)=inf(p(y.z) | z€ Z}. )

The value of d(p,Z) is called the distance between point p and set Z. If |1Z| is finite
then d(p,Z)=0 implies that pe Z. The standard notation "inf" is used to denote the
infimum. A number ue R is an infimum of some set S, RQS (denoted u=inf{S})
if it satisfies the two conditions:

(i) uss for all se $

(ii) if ve R and v<s for all s S, then v<u.
If ipf{S]e § then min(S) is equivalent to inf{S}, hence if IS| is finite inf is
equivalent to min.

Theorem 1: Given any 3-Graph G=(X,E,C) there exists a heuristic function

ﬁ(xi,x’g) that can be constructed from functions in the class AP(X) that is both
admissible and consistent.
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Proof: The proof proceeds by constructing a particular heuristic function that is
both admissible and consistent for any 3-Graph. Let p be an arbitrary metric from
Ap(X). Let

p(x.y)
pl(x'Y)_1+p(x,y) o
so that {X;p1} is a bounded metric space. Recall that for all ¢jje C, it is given that
cij25>0. It follows that {X;p,} is a metric space where pa(X,y)=8p1(x,y) for all

x,ye X. Define functions mj:Fl*'\.)(O)—ﬂ"l+ and njj(r)2r for all re R¥U {0}
associated with each edge ejje E. The functions mjj are chosen so that
cij=Mij(pa(xi.xj)) with xje I'(x;). For instance, a simple choice for 7jj is
Mij(Palxixj))=cij=pa(xi,xj}+b';j, where b';20. The c;j and pa(x;.x;) are given, hence
the values of the b'jj can be found.
Let <xg,Xt, ... ,Xxk> be any path generated by A*. From the triangle

inequality, Pa(Xi,XK)<Pa(Xi.Xi+1)+pPa(xi+1,xk) for all i, 0<i<k-1. Therefore,

k-1

Paxi X< T palXiXit1)-
=0

Selecting mj; as stated above, it follows that
k-1 k-1
Pa(XiXI< Y Niir1 (PalXiXi+ 1))= X, Ci,i1=h'(XiXK)-
= i=0

Where h'(xj,xk) is the actual cost of some path between x; and xi, but not
necessarily the optimal one. The A* algorithm is known to be complete, i.e., it
will terminate with a solution if one exists [5, 14]. By assumption, the node Xg is
accessible, therefore for some path generated by A%, xk=xg, hence
pa(xi.xg)sh'(xi,xg). Since this is true for any path it will be true for the optimal
path, hence for all xje X and xge Xg, pa(xi.xg)<h(xi.xg). If there were just one
goal node x, the proof would be finished by choosing ﬁ(xi,xg)=pa(xi,xg). In
general, IXglzl so it must be shown that ﬁ(xi,x'g)sh(xi,x"g) where x'g is the
preferred goal node for R from node xj and x"; is the preferred goal node for h from
xj. It is not necessarily the case that x'g=x"g. The preferred goal node changes
depending on what the current node x; is.

Choose

xi X gy=d(xi, Xg)=inf(pa(xi xg) | xge Xo)

as the heuristic function. The value at which the inf is achieved is called x'g and is
the preferred goal node at x;. For this heuristic function it is assumed that for any
set S inf{S}e S hence if xje Xg then d(x;,X g)=0. For all xj€ X and xge Xg,
ﬁ\(xi,x'g)Spa(xi,xg), and in particular ﬁ(xi,x'g)Sp a(x;,X"g). From above, for all
x;e X, p,(xi,x“g)sh(xi,x"g). This gives ﬁ(xi,x‘g)sh(xi,x"g) for all xje X. For
admissibility it must be shown that Osﬂ(xi,x'g)sh(xi,x"g) for all xje X. Since
d(x;,Xg)>0 the proof for admissibility is done.

To prove consistency, which is equivalent to monotonicity, it must be shown
that ﬂ(xi,x'g)sh(xi,xj)+€(xj,x"g) for all xj,xje X such that xje ['(x;) where x'g and
x"g are the (not necessarily equal) preferred goal nodes for i from x; and x;
respectively. By the triangle inequality Pa(XiX"g)<Pa(xix+pa(xjX"g). Also due to
the way that preferred goal nodes are chosen Pa(xiX'g)<pa(xj,x"g). It follows that
Pa(Xix'g)<pa(xi,xj)+pa(xj,x"g) for all xje X, so it is the case that
d(x;,Xg)<d(x;,xj)+d(x;,Xg). Given the choice for ﬁ(xi,x'g) above the proof for
consistency is done. Q.E.D.

Theorem 1 does not give the actual heuristic function to be used in A*. It
only says that for any problem space that can be represented by a 8-Graph one can
always construct a heuristic function that is both admissible and consistent no
matter how difficult it may seem. The often rather difficult job of finding the
heuristic function remains. Also the theorem does not say how good the heuristic
is. Theorem 1 quantifies in a mathematical framework the statements in the theory
of heuristic search about "distance”. It also makes it clear how the A* algorithm
operates in evaluating distance to preferred goal nodes and how it switches preferred
goal nodes.

Often it is the case that a bounded metric can be found for the underlying set
X. In this case the following corollary is useful.

Corollary 1: For any 8-Graph G=(X,E,C), ﬁ(xi,x'g)=d(xi.xg)=inf {p(xixg)lxge Xgl,
where pe Ap(X), is an admissible and consistent heuristic function.

Proof: Suppose that p is bounded by y>0. Replace pa above with Pa(Xixj) =

(S/V)p(xi,xj). The heuristic function ﬁ(xi,x‘g) is the one constructed in the proof of
Theorem 1, hence it is admissible and consistent. Q.E.D.

Sometimes it is the case that the costs are not specified for a problem domain,
and the objective is to just find a solution, i.e., any path from the start node to any
goal node. Also, sometimes it is possible to load heuristic information from the
problem domain into the costs. For instance, if a heuristic says “if you are at
some set of nodes it is in general better to have some other set of nodes as
successors". The costs associated with the arcs that connect these sets of nodes can
be made small, hence A* may be more likely to make the proper expansion. In
either case the following corollary 1o Theorem 1 is useful.

Define functions 1'jj:R*u (0} >R * and n'jj(r)>r tor all re RT U {0}
associated with each edge ¢jje E.
Corollary 2: Assume that the costs cjje C associated with the edges E that connect
nodes from X are not specified. If the costs are obtained by choosing 'jj so that
cij=n‘ij(p(x;,x_i)) with xje T'(x;), where pe Ap(X), then d(x;, Xg)=inf{p(x;,xg)lx ge X¢}
is an admissible and consistent heuristic.

Proof: From the definition of 1’jj it is clear that G=(X,E,C) is indeed a §-Graph.
Let pa(xi,xj)=p(xi,Xj). Using the proof of Theorem 1 and replacing Mj with 11'jj the
corollary is proven. Q.E.D.

Hence if the costs for the 8-Graph can be chosen, and they are chosen in a
certain manner described above, then the metric used in the heuristic function can
be chosen arbitrarily from Ap(X). This corollary was originally proven in (12} for
the case of IXgl=1. Note that if there are no self loops on the 8-Graph, i.e., it is
not the case that xe I'(x) for some x€ X, then the functions N'jj can be chosen as
1';j(r)2r and Corollary 2 will still be valid. This is important since 0;j(r)=r is
simpler to implement. The problem of specifying the exact value of the metric for
the heuristic function remains and will now be addressed.

3.3 Admissible and Consistent Heuristics in a Petri Net
Framework
First, a certain class of 8-Graphs is defined. Let Qg denote the class of 8-
Graphs that have nodes that are 8-dimensional vectors of real numbers, ie.,
Qg={(X,E,C) | for all x;e X, x;c R®, 621}.

Theorem 2: Suppose that an Extended 1/O Petri net Py is used for a problem
representation and that its initial state Xy, is specified. Then the Petri net
generates a 5-Graph of class Qg. Also, if the metric for the heuristic function
(defined in the proof of Theorem 1) is of class Ap(R®) then there are known metrics
that can be used to form an admissible and consistent heuristic function.

Proof: Let X=N1, the state space of the Petri net PN. The start node
xo:xp(O)e Xpo and the edges and costs are generated by
T(xp®)={(xp(k+1),c)l xp(k+1)=D(tjxp(k).k) and c=Z(tj,xp(k),xp(k+1)) for all
teEy)

The function Z is chosen according tJo Tij. Note that lI‘(Xp(k))l is finite for all
xp(k) and the assigned cost c28>0. Let 8=n and the Petri net generates a 8-Graph
of class Qg. Using Corollary 1, the proof is complete if there are known metrics
that can be used in the heuristic function d(x;,Xg). Some of these are given below.

First note that for R"2X if {R™;p} is a metric space then so is {X;p} [8].
Hence any metric over R™ is also a metric over N", the nodes of the 8-Graph, i.c.,
the state space of the Petri net. Denote elements x,ye R" by x=[£1,E2, ... Eall
and y=[A1,A2, ... ,Aplt where &j,Aje R for i=1,2, ... n. A few candidate metrics
are listed below:

(i) pd(x,y)=0 if x=y and 1 if x+y is a metric on X (an arbitrary non-empty set)

called the discrete metric. If it is used in the heuristic function breadth first search
is obtained.

(i) Let X=R", pe R, 1<p<co, and 0;>0, then { R";pp} is a metric space where
n 1/p
Poxy)g X @il - AqP
i=1
(iii) In particular, let W be a positive definite matrix. Then if
12
p20)=[ )W) ]
{R™:p}is a metric space.
(iv) Let X=R" and x,ye R", 0;>0, and

Poo(X,y)=max {a11€1 - A11, 02lE2 - A2, ... .0nlEn - Anl)
then {R™po.) is a metric space.

The metrics listed are several of the more common metrics used. Any metric over
R™ will satisfy Theorem 2. Q.E.D.

The proof for Theorem 2 originally appeared in [12] for the case of IXgl=1. If
the costs cjj for the 8-Graph are not specified then Corollary 2 applies here also.
Another question left to be answered is how good the above metrics are. This is a
standard problem in the theory of the A* algorithm. For instance, if the chosen
metric is such that it gives an extremely conservative estimate of the cost from all
nodes x to the preferred goal node, then A* may expand too many nodes in finding
a solution. The computational complexity involved in computing the metric itself
must also be considered when studying the computational demands of a particular
A" algorithm.

Theorem 2 allows the planning system designer to transfer the work of
choosing the heuristic function fl\(Xi,X'g) to forming the Petri net model of the
problem domain under consideration. Since a problem domain representation of
some sort must be used, it is useful to use the Extended I/O Petri net model since
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it leads to the specification of admissible and consistent heuristic functions via the
results of this section. This can be valuable if it is not clear how to pick the
heuristic function for a particular problem domain. However, if the problem
domain cannot be modelled via the Petri net defined the result cannot be utilized.
Also, practically speaking, the Petri net model may be too complex to be utilized
in the implementation of the A* algorithm.

4.0 Examples
This section contains two simple examples that illustrate some of the results
in Section 3. These include the the 8-Puzzle and a "Think and Jump" game.

8-Puzzle: The first example is called the 8-Puzzle and is a classic example used in
the literature on heuristic search [10, 11, 14]). This example will be used to
illustrate that the heuristic functions chosen via the results in Section 3 include
those which have been previously developed in the literature. This shows that for
this example "good" heuristic functions can be developed based on the use of
metric spaces and Petri nets in this paper.

The 8-Puzzle has a board with nine cells, eight tiles that lie in the cells, and
one blank cell. The game is shown in Figure 4.1. The tiles are shaded, labeled
with numbers 1-8, and lie in the cells that are labelled with numbers 1-9. A tile
can be moved from one cell to another if any adjacent cell has no tile in it. For
instance, from the tile configuration in Figure 4.1 a) tile 1 can be placed in cell 8
leaving cell 9 empty. The game begins with a arbitrary initial state and the proper
sequence of tile moves must be chosen by the planner so that the goal state shown
in Figure 4.1 b) is reached.

2 3

a) Arbitrary Initial State b) Goal State

Figure 4.1 The 8-Puzzle
First the Petri net model of the 8-Puzzle is developed. To help visualize the
Petri net model developed below it is convenient to associate the cells of the 8-
Puzzle with points in the 2-dimensional space of real numbers. Use (i,j) to denote
a point in this space. For instance, cell 1 is associated with the point (0,2), cell 2
with (1,2), cell 9 with (1,1) and so on. The association is depicted in Figure 4.2,

Figure 4.2

We think of the game being played "on" this coordinate system, i.e. if tile S is in
cell 4 it is "at” point (2,1). Essentially, there is a copy of the coordinate system
for each tile. The marking of the Petri net will reflect the position of every tile in
this coordinate system. To do this, two places pje P are associated with each tile
and the blank cell (which will be considered to be "tile 0"), one with the x-
coordinate and one with the y-coordinate. Generalized transitions are used to
indicate the action of moving each tile to the blank cell if it is adjacent to the tile.
The Petri net is given in Figure 4.3.

The marking of these two places
. ,Z,' represents the position of tile k.
V4 T, I
4
- B
R
k=
3 2 Outputs to
€ E the Planner
L4

=

The marking of these two places ] b ! y
represents the position of tile 0. ‘\\\ 20, p.iJ

Figure 4.3 Extended 1/O Peiri Net of the 8-Puzzle
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The markings of pyi and poy represent the x and y coordinates of tile k, and hence
its cell position. There is a a copy of the portions of the net indexed with k for
each k, 1<k<8. The 8 control inputs from the planner are connected to each of the
8 generalized transitions. If Up(ujk)=1 for some step k then transition tgk is to fire
if it is enabled. There are 18 output places to allow the planner to measure the
state of the system. Let xgpiK)=[Xp(p1ik) Xp(p2i k)] be the 2-dimensional column
vector representing the marking of places p;; and p2; at step k, i.e., it represents
the cell that tile i is in. The enable rule for the 8-Puzzle is given by
Ef (xp®) )= {tgilXp@1i)-Xp(P100)! + Xp(@2ik)-Xp(p20.)i=1). The complete
enable rule, called E8, is composed of each of the eight generalized transition
enable rules Egsi. It indicates that transition tg; is enabled if the blank cellis a
distance of 1 away from tile i. The firing rules ®g; for each of the eight
generalized transtions are: if tg;€ ES, and tg; is chosen to be fired at step k, then the
values of xp;(k) and x50(k) are switched for step k+1. The complete firing rule is
called 8. The transition cost function is defined by assigning a cost of "1" for
firing each generalized transition.

There have been several admissible and consistent heuristics specified for this
example. Among these are (i) the number of tiles that are not in their appropriate
goal cells, and (ii) the so called "Manhattan Distance”, i.e., the sum of the nur.ser
of moves that it would take to move the tiles that are not in their goal state into
their goal state assuming that there are no other tiles in the way {14]. Case (i) will
be referred to as Ry, and case (ii) as fiz. It is now shown that both of these
heuristics can be specified via the results of Section 3.

Let xp()=[xp0o(k)* xp1 (K)* ... xp8(k)'T* and let xpgi denote the goal state for tile
i. For instance, the goal state for tile 5 is given by xpgs=[2 0% Let the entire
goal state be xg=[xpgo Xpg1 - Xpgal®- The discrete metric is pg. The vector
%e(R)=IPa(xp0) Xpg0) Palxp1(K) Xpg1) ... Pa(xpa(k).Xpge)]' indicates with a 1 at its
ith element that tile i is not in its goal state and a 0 if it is. Define x¢o to be equal
to a column vector of zeros the same size as xc(k). The heuristic function
ﬁx (xp(k),xs)=pp(xc(k),xc°) with p=1 is a sum of the elements of the x¢(k) vector,
i.e., the number of tiles that are not in their proper cells. The heuristic function
fia(xp(k)xg)=pp(xp(K).xg) with p=1. This is the case because the pp metric with
p=1 measures distance the same way that we count the number of moves it takes to
move a tile to its goal position if no other tiles are in the way. Note that both
metrics used are bounded because the state space of the Petri net is finite and the
nij(r)=r. Using Corollary 1 both heuristics are admissible and consistent. The
metrics pa(xp(k),xg) and pe(xp(k).xg) are also candidate metrics with special
interpretations. Hence, for this example the metric space formulation facilitates
the discovery of new heuristics. Notice that for the general N-Puzzle the results
indicate that the chosen metrics are still admissible and consistent.

It may be interesting to note that the results of this paper allow for the
construction of known heuristics but the results are especially useful if a new

problem domain appears and it is not clear how to pick a heuristic function, This
is illustrated next.

Think and Jump Game: The second example is a “Think-and-Jump” game
involving a triangular board with ten holes in it, and 9 pegs which fit into the
holes. The 9 pegs are put in the holes. Pegs are removed if they are "jumped" by
other pegs. A peg can jump another peg only if there is an empty hole directly on
the other side of the peg. See Figure 4.4.

Figure 4.4 Think and Jump Game

For the initial configuration of pegs on the board shown above the peg in hole 2
can jump the peg in hole 5 which leaves no peg in holes 2 and 5 and one peg in
hole 9. From this configuration the peg in hole 9 can be used to jump the peg in
hole 8 to leave a peg in hole 7, and none in holes 8 and 9. From the initial
configuration, the peg in hole 10 cannot be used to jump the peg in hole 5, and the
peg in hole 1 cannot be used to jump the peg in hole 5. The object of the game is
to remove as many pegs from the board as possible. The best you can do is to end
up with only one peg.

* First the Petri net model is constructed. Let the places P={p;}, i=1,2, ... ,10,
correspond to the holes in the board and let the tokens correspond to the pegs. It is
relatively easy to see how the Petri net depicted in Figure 4.5 was developed.
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Figure 4.5 Petri Net Model of the Think and Jump Game

The transitions T={tj}, j=1,2, ... ,18 represent the eighteen possible moves from
various peg configurations. The inputs and outputs are not depicted on the graph,
but follow directly from the definition of the Petri net in Section 2. The enable
rule is given by E'r, the next state function by @', and the cost function Z assigns
a cost of 1 to every transition. The state equations were used to represent the
game. The initial state is xp(0)=[110111111 1]t (Xpo={xp(0)}), and the goal
states are Xg=[[0100000000]‘, [1000000010)5[010000001
01'}. The set of goals describes three ways to "win" the game. These are to end up
with: (i) one peg left in position 2, (i) pegs in positions 9 and 1, and (ii) pegs in
positions 9 and 2. Since one peg is removed from the board for every move, to
reach goal (i) it will take 8 steps, whereas it will only take 7 steps to reach goal
(ii) or (iii). The planner is to find the solution path to the goal state that takes the
least number of steps, hence it should seek goals (ii) or (iii).

The heuristic function is chosen to be ﬁ(xi,x'g)=inf [(lly)pz(x,‘,xg) I xge Xg}
where W is a diagonal matrix with diagonal elements w;;>0. Choose W to be an
10x10 identity matrix then the heuristic function is in the form of a Hamming
distance. The metric p2 for this example is bounded since X is finite. The bound

Y is given by
0 N2
¥=| Zwii
=1

Using Theorem 2 and Corollary 1 the chosen metric is both admissible and
consistent. The A* algorithm was implemented and used to find a solution to the
Think and Jump problem using the chosen metric. It expanded 58 nodes. The
solution generated was for the planner to fire transitions: to, t¢, t17, t14, {7, t4, 113,
the optimal length solution. If only goal (i) is placed in the goal set then the
solution length, found in [12], is 8.
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