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Fig 1 Optimal Hankel MDA, 10-state MlMO example 

H ( s )  determined by (lo), or equivalently by (46), differs slightly from 
the H ( s )  in Glover’s Theorem 8.7, including in effect an extra feedback 
around K which, as shown in (33)-(39), implicitly replaces K by a K 
which satisfies the Glover constraint C2 + K(s)B: = 0. Consequently, 
the descriptor representation of Theorem 1 takes the same simple form 
in both optimal (p = u k + , )  and suboptimal (uk > p > Q + , )  cases. The 
price one pays for this increased simplicity is that, in the optimal case 
p = u k f l ,  there is a certain amount of redundancy in the matrix K ( s )  
of Theorem 1, the effective dimension of the matrix K ( s )  being reduced 
by the multiplicity of U ~ + I  ~ Of course, in most practical situations, one 
simply wishes io find-the G or G corresponding to K ( s )  = 0, and the 
fact that those G and G could also be obtained from other values of K ( s )  
is not an issue. 

The numerical superiority of our formulation of the optimal Hankel 
model reduction results over that of Glover [5] is made transparent by 
our example. The nonminimal (ug, ul0  = 0) and nearly nonminimal 
(u8 = 6.7051 x lop9)  modes of the example make it numerically infea- 
sible to apply the balancing approach of [5].  Attempting to do so leads 
inevitably to a computer program crash or very substantial numerical er- 
rors. By bypassing the numerically difficult step of balancing, our results 
make it practical to apply the optimal Hankel model reduction to those 
systems which stand to benefit the most from model order reduction, 
namely nonminimal and nearly nonminimal systems. 
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Hidden Modes of Two Degrees of Freedom Systems in 
Control Design 

0. R. GONZALEZ A N D  P. J. ANTSAKLIS 

Abstmct-A complete treatment of the hidden modes of two degrees 
of freedom control systems is presented. The uncontrollable and/or un- 
observable hidden modes are characterized in terms of transfer matrices 
of the interconnected system and in terms of design parameters. This 
characterization leads directly to design conditions, which can be used to 
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adequately control the hidden modes, thus avoiding unnecessarily high 
order controllers and undesirable behavior. Internal stability is guaran- 
teed via a stability theorem which adds significant insight to the problem. 

I. INTRODUCTION 

The hidden modes of a compensated system correspond to the com- 
pensated system’s eigenvalues which are uncontrollable and/or unobserv- 
able from a given input or output, respectively. The hidden modes for 
single degree of freedom and for particular two degrees of freedom con- 
trolled systems have been studied in the literature [I]-[16]. In this note 
we characterize the hidden modes for the general linear two degrees of 
freedom controlled system in terms of the frequency domain control de- 
sign tools: transfer matrices and design parameters. The hidden modes 
can, of course, be characterized using internal descriptions [4], [6]-[9], 
and this is useful mainly in the analysis of control systems. In frequency 
domain control design methods, where transfer matrices and design pa- 
rameters are used, an internal description characterization of the hidden 
modes is not as helpful. A characterization of the hidden modes in terms 
of the design tools, however, leads directly to design conditions, which 
can be used to adequately control the hidden modes in control design, 
thus avoiding unnecessarily high order controllers and undesirable be- 
havior. It is recognized that if the interconnected system is internally 
stable, then the hidden modes, if any, will be stable. An example of 
undesirable behavior is the transient response introduced by a pair of 
lightly damped eigenvalues that correspond to unobservable modes from 
the output. From the results in this note, the modes that are unobservable 
from the output will be observable at the plant input where they could 
result in saturation problems. In digital systems this is seen as the ring- 
ing phenomena reported by Astrom in [18]. Another problem with stable 
hidden modes is reported by Fossard in [26], where an uncontrollable 
mode with slower dynamics than the controllable and observable modes 
results in “disappointing behavior in the transient dynamic response. ’’ 

In this note, a complete treatment of the hidden modes of two de- 
grees of freedom control systems is presented, which extends and unifies 
several results which have appeared in the literature for particular con- 
figurations. The methods used are based on polynomial matrix internal 
descriptions, however, all results are expressed so that they can be di- 
rectly used in control design. Internal stability is guaranteed via a stabil- 
ity theorem which adds significant insight to the problem. The method is 
also used to characterize the hidden modes of a particular two degrees of 
freedom configuration and could be applied to a class of interconnected 
systems; for this we use an aggregate system representation [4]. 

Assuming that the plant and controller are controllable and observable, 
then the hidden modes of the controlled system are introduced exclusively 
by the interconnections. Under this assumption, the hidden modes are 
completely characterized in terms of the transfer matrices and design 
parameters. The implementation of the controller, C, is usually done 
by interconnecting available subcontrollers, where each subcontroller is 
designed to handle a particular task such as stability and regulation. 
Therefore, the resulting controller is not necessarily controllable and 
observable, and it introduces additional hidden modes; these are also 
characterized. Proofs of the theorems and lemmas can be found in [I91 
and [20]. 

11. PRELIMINARIES 

The study of hidden modes is done starting with internal descriptions 
of each system. In particular, consider the following polynomial matrix 
description of the controlled system: 

@(s)z(s) = Q(s)~(s), Y ( S )  = @(s)z(s) + Ws)u(s), (2.1) 

where @(s), Q(s), @(s), W(s) are polynomial matrices. For the system 
described in (2. l) ,  it is well known that the uncontrollable (unobservable) 
modes from u ( y )  correspond to the roots of the determinant of a g.c.1.d. 
of (a@), Q(s)) [g.c.r.d. of (@(s), 6(s ) ) ]  [6], 171, where g.c.l.(r.)d. 
denotes greatest common left (right) divisor. These uncontrollable and 
unobservable modes are the hidden modes of the system. In this note we 
consider the interconnection of systems where each system is completely 
described by its transfer matrix. The interconnected system is said to 
be completely characterized by its proper rational transfer matrix if and 

only if an internal description of the overall system is controllable from 
the input and observable from the output, that is, if (2.1) is the polyno- 
mial matrix description of the overall system, then ( 6 ( s ) ,  Q(s)) is left 
coprime and (@(s), @(s)) is right coprime. Notice that if the transfer 
matrix does not completely characterize the interconnected system, then 
the hidden modes are due exclusively to the interconnections since every 
interconnected system is assumed to be completely characterized by its 
transfer matrix. 

In classical control design of scalar systems, it is straightforward to 
characterize the hidden modes in terms of pole-zero cancellations in 
the products of the transfer functions. In the frequency domain control 
design of multivariable systems, the hidden modes can also be character- 
ized by considering “pole-zero cancellations” in the products of transfer 
matrices.I In this case, however, the characterization is not as direct 
mainly due to the fact that “pole-zero cancellations” are not as well 
defined in the multivariable case, and also because of the difficulty in 
associating hidden modes with specific cancellations. Results that refer 
to particular control configurations have been reported in the literature 
[1]-[3]. In [20], these results have been formalized and extended; they 
are the basis of the results presented here. 

Cancellations in products of transfer matrices are not simple exten- 
sions of pole-zero cancellations in products of transfer functions. For 
example, it is possible to have a cancellation where a pole of one trans- 
fer matrix does not cancel with a zero of another transfer matrix as 
in 

- 2 s c 3  

L S s 2 - I  
In (2.2),  T I @ )  has no zeros and the pole of T2 at -2  cancels in 
Tl(s)T2(s). Let 6Ti(s) denote the McMillan degree of T,(s ) ,  i = 1 ,  2 .  
Notice that 6Tl (s) = 0 and 6T,(s) = 2, while 6TITz(s) = 1. This reduc- 
tion in the McMillan degree confirms the fact that a pole was cancelled 
in T ,  (s)Tz(s);  the pole of TZ at -2.  This pole corresponds to a hidden 
mode from the input and/or output, for example, when TI (s)T2 (s) de- 
notes the transfer matrix of the cascade connection of T2 (s) followed by 
TI (s). 

It is now clear that cancellations in products of transfer matrices should 
be taken as pole cancellations rather than pole-zero cancellations. It is 
also important to notice that not every cancelled pole needs to correspond 
to a hidden mode. A cancelled pole in a product of transfer matrices 
corresponds to a hidden mode from the input and/or the output if and 
only if it is a root of the characteristic polynomial of the interconnected 
system. Additional observations on “multivariable cancellations” can be 
found in [20], [81-[12], and [17]. 

Another way to express the controllability and observability conditions 
of a polynomial matrix description is given in Lemma 2.1; this lemma 
is used to characterize the hidden modes in terms of pole cancellations 
in the products of transfer matrices of the interconnected systems. 

Lemma 2.1: The system described by (2.1) is controllable from U 
(observable from y )  if and only if the McMillan degree of the transfer 
matrix from U to z (Q(s)u(s) toy)  is the same as the degree of I6(s)l. 

Lemma 2.1 specifies the products of transfer matrices in which 
a cancellation may result in a hidden mode; the uncontrollable 
(unobservable) modes are associated with pole cancellations in 
@(s)-’ Q(s)(@(s)@(s)-’ ). To characterize the hidden modes in terms of 
the transfer matrices of the interconnected systems, appropriate transfor- 
mations are used to map these products into products of transfer matrices. 
Transformations which yield equivalent polynomial matrix descriptions 
are used. In particular, we apply transformations that maintain system 
equivalence in the Rosenbrock sense 161. 

111. STABILITY THEOREM-PARAMETERIZATIONS 

The two degrees of freedom linear controller S,  implements the con- 
trol law U = Ck‘,  y‘]‘ = -C,y + C r r ,  where C = [ - C y ,  C,]  as seen 
in Fig. 1 .  

’ For a controllable and observable system, if (2.1) is the polynomial matrix descrip- 
tion of the system, then the poles of the system’s transfer matrix correspond to the roots 
of l@(s)l, the characteristic polynomial of the system. The zeros of the transfer matrix 
are the finite transmission zeros of  the system, 
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Fig. 1 .  The controlled system 

S p  is the linear plant described by y = Pu with P its proper transfer 
matrix. It is assumed that II +PCyI = II +CyPI # O ,  and that every 
input-output map is proper. Under these assumptions, the controlled 
system is said to be internally stable if the inverse of the denominator 
matrix in a polynomial matrix description is stable. If the controlled 
system is internally stable, we say that Sc is an internally stabilizing 
controller for S p  . 

A significant step toward better understanding the role of C in plant 
compensation was recently accomplished by parametrically characteriz- 
ing all internally stabilizing two degrees of freedom controllers C,  thus 
extending the results on parametric characterization of all feedback con- 
trollers Cy [21]-[25], [ I ] ,  [2], [20] which have greatly contributed to 
control design methods. All internally stabilizing controllers C can be 
parametrically characterized using two independent stable parameters K 
and X as 

C = ( X I  - K N ) - ' [ - ( x z  + K B ) ,  XI, (3.1) 

where N, D ,  X I ,  x2 are polynomial matrices, and they are derived from 
coprime fractional representations of the plant P = ND-' = 0-I N and 
the associated Bezout-Diophantine equation x I  D +x2 N = I .  In (3.;), 
K must be such that Ix! - KNI # 0 ,  and for C proper need D(x2 + K D )  
proper and D(xl - K N )  biproper ( D ( x l  - K N )  and its inverse proper). 

It is evident that if exogenous signals (such as disturbances and noise) 
are assumed to be injected at various points in Fig. 1, all possible transfer 
matrices from all inputs can be derived in terms of K and X by direct 
substitutions of (3.1); in this way, all "admissible" responses, under 
internal stability, can be characterized. 

It is advantageous to study internal stability of the system in Fig. 1 
using Theorem 3.1 [ I O ] .  

Theorem 3.1: The compensated system is internally stable if and only 
if 

i) U = -Cy y internally stabilizes the system y = Pu, and 
ii) C, is such that M :=(I  + C,P)-'C, satisfies D - ' M  = X ,  a 

stable rational, where Cy satisfies i) and P = ND-'  is a right coprime 
polynomial factorization. 

Theorem 3.1 separates the role of C y ,  the feedback part of C,  and 
C ,  in achieving internal stability. Clearly, if only feedback action is 
considered, only i) is of interest; and if open lqop control is desired, 
Cy = 0, i) implies that P must be stable, and C, = M must satisfy ii). 
In ii), the parameter M ( = D X )  appears rather naturally, and in i) the 
way is open to use any desired feedback parameterization. 

From Theorem 3 .  I ,  we can directly characterize the input-output maps 
attainable from r with internal stability. In particular, consider the com- 
mand/output and command control response maps described by y = T r  
and U = M r ,  respectively. 

Theorem 3.2: A pair ( T ,  M) is realizable with internal stability via a 
two degrees of freedom configuration if and only if ( T ,  M) = 
( N X ,  D X )  with X stable. 

There are many choices in parametrically characterizing all feedback 
stabilizing controllers Cy , and these are extensively discussed by Antsak- 
lis and Sain in [2]. The stabilizing controllers C can therefore be ex- 
pressed, in addition to (3.1), as, for example, 

C = ( I  - QP)-'[-Q, D X ]  = ( ( I  - L N ) D - ' ) - ' [ - L ,  XI,  (3.2) 

where Q = DL,  D X  = M with L,  X stable, and D - ' ( I  - Q P )  = 
( I  - LN)D-'  stable (II - QPl # 0 or [I  - LNI # 0) .  Parametric char- 
acterizations of all internally stabilizing controllers C,  proper and non- 
proper, are given in (3.2). For C proper, M and Q are chosen proper 
and such that ( I  - QP) is biproper; note that if P is strictly proper, 
Q proper always implies that ( I  - QP)-I is proper. Notice that L or 
Q in (3.2) must satisfy certain conditions, in addition to being stable, 
in contrast to K in (3.1); however, alternative to K parameterizations, 
such as in (3.2), are very useful, since they do have certain additional 
desirable properties (see [2]). 

r 
V Y 

I 0" '12 
Fig. 2 .  A two degrees of freedom control qystem 

The relations between the parameters are 

L = X ~ + K D = D - I Q  

Q = DL = C y ( I  + PCy)- '  = ( I  +CyP)-'Cy 

X =(X i  - KN)C,  = D-IM M = D X  = ( I  +CyP) -  IC,. (3.3) 

These relations will be useful in Section IV-B where the hidden modes 
of two degrees of freedom systems are characterized in terms of these 
parameters. 

IV. HIDDEN MODES IN  Two DEGREES OF FREEDOM CONTROLLED SYSTEMS 

In this section, the hidden modes of two degrees of freedom controlled 
systems, as depicted in Fig. 2, will be studied. In Section IV-A, the 
hidden modes from given inputs and outputs will be characterized in 
terms of transfer matrices. This characterization is done when Sp and 
SC are completely described by their transfer matrices, and when S p  is 
completely described by its transfer matrix, but SC is not. In Section IV- 
B, the hidden modes are characterized in terms of the design parameters: 
K ,  X ,  and L when S p  and Sc are completely described by their transfer 
matrices. Using these characterizations, we then give conditions in terms 
of the parameters of interest to avoid the introduction of hidden modes. 
These conditions can be incorporated in the control system design. 

A .  Hidden Modes in Terms of 1/0 Maps 
Consider Fig. 2 where the vector of fictitious inputs Q is introduced 

to help with the interpretation of the uncontrollable hidden modes; the 
other variables were described in Section 111. 

First, consider SC to be completely described by its transfer matrix, 
that is, Sc is controllable from [U', r']' and observable from U. Apoly- 
nomial matrix description for SC is D,z, = -Ny y + N r r  - N y m ,  
U = z c ,  where C = D F 1 [ - N Y ,  N,] is left coprime and U = v2 + y .  
A polynomial matrix description for S p  is D z  = U ,  y = N z ,  where 
( N ,  D )  is right coprime. Combining these descriptions gives a polyno- 
mial matrix description for the two degrees of freedom controlled system 

D,z = N,r  - N y v 2 ,  [:] = [ z] z (4.1.1) 

where Do = D c D  + N y N .  Since S p  and SC are assumed to be com- 
pletely characterized by their transfer matrices, the hidden modes are 
due exclusively to the interconnection. 

A preliminary characterization of the hidden modes follows directly 
from (4.1.1). The uncontrollable modes from r ( m )  correspond to the 
poles of 0;' that cancel in D;'Nr(D;'  Ny). The unobservable modes 
from y ( u )  correspond to the poles of 0;' that cancel in NDF1 (OD;' ). 
This characterization gives insight into the controllability and observabil- 
ity properties of two degrees of freedom systems. For example, notice 
that the controlled system is observable from Lv' , li 1 , that is, the un- 
observable modes from y are observable from U and vice versa. ' 

Notice that even though Sc is completely characterized by C,  there 
could be uncontrollable modes from r or from y .  However, the uncon- 
trollable modes from r of Sc are controllable from y and vice versa. 
Furthermore, no uncontrollable modes of SC from r will be uncontrol- 
lable from r of the two degrees of freedom controlled system. 

Before giving the main result in Theorem 4.1.1, it is useful to charac- 
terize the poles of ( I  +PCy)-' and of ( I  +CYP)-' ; the characterization 
is used to determine when a cancellation of poles of ( I  + PC, )-I and 
of ( I  +C,P)-l can correspond to a hidden mode from an input and/or 
output. Notice that only a set containment (c) condition is given for the 
poles of ( I  + CyP)-'. 

Lemma 4.1.1: The following relations are true.2 

* In Lemmas 4.1.1 and 4 .2 .  I ,  the definition of a set is extended in an obvious manner 
to include multiple eigenvalues ( e .g . ,  { - I ,  - I }  # {-l}). 
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Fig. 3. -=yp An { R ;  G ,  H }  controlled system. 

i) {poles of ( I  + P C , ) - ' }  = {{closed-loop eigenvals.} - 
{uncontrollable eigenvals. from 112 } - {unobservable eigenvals. from 
y }  + {eigenvals. that are uncontrollable from a and unobservable from 

ii) {poles of ( I  + C , P ) - ' }  c {{closed-loop eigenvals.) - 
{unobservable eigenvals. from U} - {roots of IC, I that do not correspond 
to unobservable modes from U}}. 

The hidden modes are determined by considering cancellations in the 
products of transfer matrices given in Lemma 4.1.2. 

Lemma 4.1.2: The hidden modes are characterized by considering 
cancellations in the following products of transfer matrices. 

Y > > .  

Unobservable modes from y :  

Unobservable modes from U: 

( I  + P C , ) - ' P I b ; ' ,  I ] .  

( I  + C,P)-' [D;' , I] 

( I  + c, P)-l D; ' N, . [:I Uncontrollable modes from r :  

The main result when Sp and Sc are completely characterized by their 

Theorem 4.1 . I :  The hidden modes of a two degrees of freedom con- 
trol system are characterized as follows. The unobservable modes from 
y(u)  correspond to the poles of C(P) that cancel in PC(N,  P ) .  The un- 
controllable modes from r correspond to the poles of ( I  + C, P)-' that 
cancel in ( I  + C , P ) - ' C , ,  and to the poles of P that cancel in both P M  
and C y  P .  

The next corollary specializes the conditions in Theorem 4.1.1 for a 
particular two degrees of freedom configuration. 

Corollary 4.1 . I :  In the error feedback configuration (C, = C y ) ,  the 
unobservable modes from y(u) correspond to poles of Cy ( P )  that cancel 
in PC,(C,P) .  The uncontrollable modes from r correspond to the poles 
of P that cancel in P C ,  . 

Remark 4.1 . I :  The conditions in Theorem 4.1.1 for unobservable 
modes from y can be written in terms of C, or C, in the following 
cases. If (bc, f i r )  is I.c., then the poles of Cr Lhat cancel in PC, 
correspond to unobservable modes from y .  If (Dc , N,) is l.c., then the 
poles of Cy that cancel in PC, correspond to unobservable modes from 
Y .  

Theorem 4.1.1 characterizes the hidden modes introduced by the inter- 
connection of systems in Fig. 2. It is also of interest to characterize the 
hidden modes when the controller is not completely characterized by its 
transfer matrix. The conditions for the general case of uncontrollability 
and unobservability, which requires another internal description of $c , 
are given in Theorem 4.1.2. 

Theorem 4.1.2: The uncontrollable modes of Sc from [U', r']' will 
be uncontrollable from r ,  and the unobservable modes of Sc from U will 
be unobservable from y .  

Theorem 4.1.2 demonstrates that when Sc is not completely described 
by C,  the two degrees of freedom control system considered here main- 
tains the hidden modes of Sc only from appropriate inputs and outputs. 
Furthermore, additional hidden modes are introduced because of the in- 
terconnection. Similar results follow directly when Sp is not completely 
characterized by P and Sc is completely characterized by C. If both 
S p  and Sc  are not completely characterized by their transfer matrices, 
then the characterization of hidden modes can also be obtained using the 
method described here. 

B.  Hidden Modes in Terms of Design Parameters 
The results in the last subsection could be used to give conditions to 

avoid the introduction of hidden modes, but they would not be simple to 
implement in control design. In this subsection, the hidden modes will 

. transfer matrices is given next. 

be characterized in terms of the parameters utilized in the design of a 
control system. This characterization leads directly to design conditions 
to avoid unnecessary hidden modes. In particular, the hidden modes will 
be characterized in terms of K ,  X ,  and L ,  which were used in Section 
111 to parameterize the internally stabilizing controllers. 

In Lemma 4.2.1, the poles of the param_eters of interest are character- 
ized. First, let G, be a g.c.!.d. of ( D c ,  N y ) ,  and let GP be a g.c.1.d. 
of ( D k ,  Ne,), where K = D L ' N k  is 1.c. It is shown in [20] that the 
poles of G;' are poles of P that cancel in PC, . The poles of G;' are 
also given by the poles of P that do not cancel in ( I  - LN)D-' . 

Lemma 4.2.1: The following relations are true. 
i) {poles of K ]  = { {closed-loop eigenvals.} - {roots of jG, I}}  
ii) {poles of L }  = {{closed-loop eigenvals.} - {uncontrollable eigen- 

vals. from q 2 } }  
iii) {poles of X }  = { {closed-loop eigenvals.} - {uncontrollable eigen- 

vals. from r } } .  
The characterization of hidden modes in terms of the design parameters 

is given next. 
Theorem 4.2.1: The unobservable modes from y correspond to the 

poles of [ X ,  L ]  that cancel in NIX, L] .  The poles of [ X ,  L]  that cancel 
in D [ X ,  L]  and the poles of P (in G ; ' )  that cancel in D;' [fi, , N r ]  
correspond to unobservable modes from U. The uncontrollable modes 
from r correspond to the poles of P in G;' and to the poles of L that 
are not poles of X .  

The next corollary specializes the conditions in Theorem 4.2.1 to the 
error feedback configuration (Cy = C,); the results agree with known 
results in [2]. 

Corollary 4.2.1: When C, = C,, the unobservable modes from U 
correspond to the poles of L(L  = X )  which cancel in N L .  The uncon- 
trollable modes from r correspond to the poles of P that do not cancel 
in ( I  - LN)D- ' ,  that is, the poles of Gpl . 

The final result of this section gives the design conditions that can be 
used to avoid unnecessary hidden modes. Notice that these conditions 
could be used the other way around when it is desirable to introduce a 
cancellation that does not affect internal stability. In control design, ad- 
ditional hidden modes are usually required when specifications are given 
on the command/output ( r )  and command/control (M) response maps, 
and on the output disturbance sensitivity matrix ( S  = (I + PC, )-I ). 
These conditions follow directly from Theorem 4.2.1. 

Design Conditions for No Hidden Modes: To avoid unobservable 
modes from y do not choose poles of [ X ,  L ]  that cancel in N [ X ,  L ] .  
To avoid uncontrollable modes from r ,  make all the poles of L and the 
poles of P in G;' poles of X .  To avoid unobservable modes from U, do 
not choose poles of [ X ,  L] as poles of P .  

The characterization of hidden modes in terms of transfer matrices of 
a particular system interconnection can be done starting with the results 
in Section IV-A. However, it is usually simpler to apply Lemma 2.1 
to a polynomial matrix description of the interconnected system. For 
illustration, the following example characterizes the hidden modes of the 
{ R ;  G ,  H }  controlled system in Fig. 3. 

Example: Consider Fig. 3 where the interconnected systems are 
completely described by their transfer matrices P ,  R ,  H ,  and G .  The 
{ R ;  G ,  H }  controller is an implementation of a two degrees of freedom 
compensator, where C, = G H  and C,  = G R .  

The hidden modes are characterized as follows. The unobservable 
modes from y correspond to the poles of G, H ,  and R that cancel in 
P G ,  ( P G ) H ,  and ( I  +PGH)-'  (PG)R,  respectively. The unobservable 
modes from U correspond to the poles of H ,  P ,  and R that cancel in G H ,  
( G H ) P ,  and ( I  + G H P ) - ' G R ,  respectively. The uncontrollable modes 
from r correspond to the poles of G that cancel in G [ H P ,  RI; the poles 
of P that cancel in HPG and in P M ;  the poles of H that cancel in H P G ;  
and the poles of ( I  + GHP)- '  that cancel in ( I  + GHP)- '  G R .  These 
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characterizations extend and simplify the results originally presented in 
151. 

V. CONCLUSIONS 

The results presented here on the hidden modes of two degrees of 
freedom control systems in terms of transfer matrices and design param- 
eters extend and unify the results in the literature. The emphasis here 
was in control design. The results and the methodology presented are not 
limited to the applications shown, but they can be applied to a class of 
interconnected systems where the study of the hidden modes introduced 
by the interconnections is of interest. 
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On the Analysis of Discrete Linear Time-Invariant 
Singular Systems 

Abstract- The discrete singular equation over an interval can represent 
a two-point boundary-value problem or it can be considered as a dy- 
namical relation developing forward in time. Here, we provide a theory 
that encompasses both interpretations by giving analytic solutions and 
discussing system properties in both cases. Of fundamental importance 
in our approach is the relative fundamental matrix, which generalizes 
the notion of the state-transition matrix. 

I. INTRODUCTION 
Although some work has been done on the analysis of discrete singu- 

lar systems [1]-[3], [11]-[20], there seems to be some confusion when 
trying to interpret the results in an overall framework. This is because, 
associated with a singular system defined over an interval, there are ac- 
tually several distinct problems of interest. The discrete singular relation 
is subject to several different interpretations. 

In [I], [11]-[16], [19], [20] the two-point boundary-value problem 
was investigated. That is, given the input sequence and the initial and 
final values of the semistate it is desired to find the intermediate semistate 
values. We call this the symmetric solution. In [3], the forward solution 
was investigated. In this case it is desired to find the semistate sequence 
given the inputs and the initial semistate value. Complementary to this 
solution is the backward solution, where the inputs and the final semistate 
value are prescribed. 

In this note we attempt to provide some unification between these 
different interpretations by deriving analytic solutions for the forward, 
backward, and symmetric case. We also briefly discuss system proper- 
ties, making the point that reachability and observability are different 
depending on how the discrete singular equations are interpreted. 

For the state-space equation X = Ax an analysis may be accomplished 
in terms of A. It is well known that in the singular case EX = A x  an 
analysis in terms of E and A is not possible. Auxiliary quantities that 
have been used in the analysis of these systems have included the Drazin 
inverse of a related matrix [3], [5], the transformations to Weierstrass 
form [l], [6], [24] [equivalently, the eigenvectors of (zE - A ) ] ,  and 
deflating subspaces [ 131. Other approaches, algorithmic in nature, are 
also important [14]-[16]. 

Here, we make it clear that in the singular case a complete analysis of 
solutions and properties in the forward, backward, and symmetric cases 
is possible in terms of E, A ,  &, and with +k the fundamental 
matrix. 

One of our main goals is to show the fundamental importance in the 
analysis of discrete singular systems of the fundamental matrix sequence 
+k , which represents the n x n matrix coefficient sequence of the Laurent 
expansion about infinity of the resolvent matrix (zE- A)-’ . In [19], [20] 
an analysis of the symmetric solution was performed after a preliminary 
conversion to a system in which E and A commute. In that case the 
analysis is possible only in terms of E and A. However, we choose not 
to take this approach since it obscures the importance of the fundamental 
matrix, which does not explicitly appear in [19], [20]. 

11. FUNDAMENTAL MATRIX 

Subspaces shall be denoted by boldface and superscript “- 1” shall 
denote the inverse image of a linear operator, or the usual inverse, if it 
exists, of its matrix representation. 
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