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Technical Notes and Correspondence 

On Stable Solutions of the One- and Two-sided Model 
Matching Problems 

ZHIQIANG GAO AND PANOS J. ANTSAKLIS 

Abstract-An algorithm is introduced to determine proper and stable 
solutions to the model matching problem. It utilizes the theory of inverses 
and state-space algorithms, and it guarantees a proper and stable solution 
to the problem when one exists. This approach is also used to determine 
proper and stable solutions of the two-sided matching problem. Examples 
are included. 

I. INTRODUCTION 

The model matching problem (MMP) is defined as follows. Given 
proper rational matrices P(  p x m )  and T( p X q),  find a proper rational 
matrix M such that the equation 

PM= T (1) 

holds. This problem is also being referred to as the exact model matching 
problem. 

The model matching problem has drawn the attention of many 
researchers both because of its importance in control and its attractive 
mathematical formulation. Note that (1) has also been studied in the 
literature over polynomials, rationals, and rings using different mathemat- 
ical tools and methods. 

The MMP was formulated and proposed by Wolovich [ l ]  in the early 
1970's. Its significance in control problems is well known. Here the main 
interest is in the case where P is proper and T i s  proper and stable, and a 
proper and stable M is to be determined. We call this problem stable 
MMP (SMMP). Although the conditions for existence of proper and 
stable solutions are known [ I O ] ,  [15], [16], it appears that there is no 
satisfactory approach to determine the solution when one exists. It should 
be mentioned that the algorithms which have been reported in the 
literature [6], [7] exhibit unsatisfactory performance. Early attempts used 
linear state feedback realizations of M to solve a restricted version of the 
problem. In particular, it was recognized early that a state feedback 
controller can be presented as a mathematically equivalent open-loop 
control law M of the form PM = T. This led to attempts to solve a 
restricted form of the SMMP ( T  constrained) solvable via some state 
feedback "equivalent" M [ I ] ,  [2]; M in this case was proper and stable 
and it corresponded to a stabilizing stable feedback control law. The 
MMP was later formulated as a kernel problem [ 3 ] ,  [4], [I21 in which the 
stability of solutions was ignored; in [5] the properness of solutions was 
not considered. In this note an algorithm is presented to determine proper 
and stable solutions of the SMMP. 

Assume that a proper and stable solution M to (1) does exist. The 
interest here is common in control cases where rank [PI = p 5 m. In 
this case there exists a right inverse Pr; of P ,  so that PP,, = I p x p .  Clearly 

M =  P ,  T (2) 

satisfies (l), and it is shown below that M can always be chosen to be 
proper and stable. The advantage of this approach is that the extensive 
results on inverses, which include algorithms in state space, can be used 
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here with few modifications; furthermore, after P,; has been found, 
solutions M for different T's can be easily calculated. Note that in many 
problems Tis  not really fixed but it can vary within certain limits [ l o ] .  In 
many cases the specifications of the problem allow us to choose T so that a 
proper and stable solution M to (1) does exist. A method for choosing 
such T is given in [IO]; see also Section C in the Appendix. Here it is 
assumed that P and T are such that a proper and stable solution M to 
SMMP does exist, and this is the starting point in our approach. 

The approach to solve SMMP is subsequently used to determine proper 
and stable solutions to the two-sided matching problem (TSMP). The two- 
sided matching problem (TSMP) [SI, [9] arises in the multivariable 
control synthesis problem of designing a controller which makes the 
outputs of a physical system respond in a desirable manner to reference 
inputs and disturbances. In particular, consider the closed-loop system of 
Fig. 1 where S is the system to be controlled. 

Let 

where U, is the vector of reference and disturbance inputs, U, is the vector 
of control inputs, ym is the available measurement output vector, y ,  is the 
vector of outputs to be controlled, and G, H, M ,  and N are rational 
matrices. Let the controller be 

4 = FYm 

so that the closed-loop system of Fig. 1 is stable and a desired transfer 
function Hd is obtained between U, and y c .  Through a simple calculation 

Yc= { GF[I-MF]- 'N+H}U,=HdU, .  

Now the problem can be formulated as follows. 
Given G, H ,  M ,  N ,  and H d ,  find a proper controller F so that: 

i) the closed-loop system is stable; and ii) G F [ I - M F ] - ' N + H = H d .  (4) 

This is the so-called general servomechanism problem (GSP) [ S I .  Define 

X := F [ I - M F ] - '  

so that 

F =  [ I +  X M ] - ' X .  

X must be stable for internal stability. Substitute F i n  (4) to obtain 

GXN+H=Hd 

or 

GXN=Hd-H.  ( 5 )  

We call this type of problem the two-sided matching problem (TSMP). In 
general, the TSMP is defined as follows. 

Given the rational matrices A ,  B, and C, find X such that 

AXB = C.  (6) 

We are interested in proper and stable solutions X where A ,  B are proper 
and C is proper and stable. The approach used for the SMMP can be 
directly applied to determine proper and stable solutions of the TSMP. 
Based on the method presented below, a solution X i s  found of the form 

X = A,, CB,, (7) 
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w Fig. I .  

where A,! and Bo are the corresponding right and left inverses of A and B. 
In Section 11, the existence of a proper and stable solution of the SMMP 

is discussed. In Section 111, an algorithm to determine such solutions and 
an example are given. In Section IV, it is explained how to apply the 
algorithm to solve the TSMP. An example in [8] is used to compare our 
results to the previous ones. Finally, in Section V, some concluding 
remarks are included. 

11. PRELIMINARIES 

Consider (1) and the SMMP problem. For a proper and stable solution 
M to exist, P and T have to satisfy certain conditions. We give the 
following existence theorem without proof. 

Theorem I [IO]: Given P proper, Tproper and stable with rank [PI = 
rank [ T ]  = p, there exist proper and stable solutions M if and only if T 
has as its zeros all the RHP finite zeros and all the zeros at infinity of P 
together with their associated structure (described below). 

Note that similar results have appeared elsewhere in the literature, e.g., 
[15], [16]. The theorem and its significance is discussed below. 

Let P = ND- I and T = NTDD, I be right coprime polynomial fraction 
descriptions of P and T ,  and write 

N=NbN (8) 

where the p x p matrix Nb contains all the RHP zeros of P in the sense 
that the roots of 1 Nb I ( # 0) are exactly the RHP zeros of P. This can 
always be achieved by using, for example, the Smith form of N.  Note that 
since P has full row rank, Nb is a left divisor of a greatest left divisor (gld) 
of the rows of N ,  the determinant of which has roots the finite 
(transmission) zeros of P. According to Theorem 1, for a stable solution 
to exist, NT has to have the form 

NT=NbNT. (9) 

That is, the RHP zeros of P together with their structure (zero directions), 
which appear in Nb , appear unchanged in T.  To illustrate, let z be a RHP 
zero of P,  in Nb, and let the vector a satisfy UNb(,) = 0; that is, a gives 
the direction associated with z .  Then in view of (9), a N ~ ( z )  = 0; that is, 
z together with its direction (I [ ( z ,  a )  imposes certain restrictions on the 
structure of N T ,  via aNT(z)  = 01 will appear in T.  For the zeros at 
infinity, the same argument is true. This can be proved in the same way by 
substituting s = l / w  f o r s  and studying the zeros at w = 0. 

Note that Theorem 1 is also valid when rank [TI  < p with slight 
modifications. In this case the solvability condition is also relation (9), 
which, however, does not necessarily imply that the RHP zeros of P in Nb 
are also zeros of T.  

III. MAIN RESULTS 

The solutions derived here are of the form M = P,,T (2).  It is first 
shown that solutions M can always be chosen to be proper and stable when 
such solutions exist. Then an algorithm is given to derive such M .  

Lemma I :  Let P P ,  = Z p x p ;  then P ,  can always be written as 

where N, and (NbD,)  are right coprime polynomial matrices with Nb 
defined in ( 8 )  andll ,  a polynomial matrix. 

Proof: Let P = ND-l and P ,  = N,D,-' be tight coprime 
polynomial matrix fraction descriptions of P and P,; then 

ND-'N,D,-l=I 

which implies that 

ND - IN, = D8.  (1 1) 

Clearly, the left-hand side is a polynomial matrix and all the poles of P in 
D cancel with NI since Nand D are right coprime. Substitute (8) for (1 1) 

Nb(ND- N,) = D,. 

Therefore, D, can be written as 

D, = NbD, (12) 

where 0, = ND- IN; is a polynomial matrix. Q.E.D. 
Remark: Lemma 1 shows that all the RHP zeros of P,  in Nb, will 

appear as poles of any right inverse of P. This is, of course, a well-known 
result. The lemma, however, shows more than this. In particular, the 
contribution here is that the lemma shows that not only the RHP zero 
locations of P will be poles of P,, but also the associated RHP zero 
structure (zero directions) of P will appear in the pole structure of P, . 

Theorem 2: If the conditions of Theorem 1 are satisfied and P, does 
not introduce any new RHP poles other than RHP zeros of P,  then M in 
( 2 )  is proper and stable. 

Proof: In view of Theorem 1 and (9), P = NbP and T = Nb T. 
Since Nb is nonsingular, Pstill have full row rank. From (2) and Lemma 
1, 

M = Prt T= ( p , N ,  I)(Nb T )  = er, _T. 

Since Tis stable and e, contains only the stable poles of P ,  , M is stable. 
The properness of Mcan be proven by substituting s = i /w.  The zeros of 
P( w) and T( w) at w = 0 are the zeros of infinity of P ( s )  and T ( s )  and 
by using a similar approach, it is shown that M has no poles at w = 
0. Q.E.D. 

The algorithm introduced below to derive such proper and stable M 
utilizes results from the literature on inverses. See [ l  I ]  for a survey. Here 
we are only interested in those algorithms which can arbitrarily assign the 
nonfixed poles of the inverse system. Antsaklis [13] gives a simple stable 
inverse algorithm but it works only for plants P where 1ims-- P is of full 
rank. Patel [I41 extended the results to also apply to strictly proper plants. 
In the algorithm introduced below, we combine the merits of both inverse 
algorithms to solve SMMP (see Sections A and B in the Appendix). 

Given P with rank [ P ]  = p ,  a right inverse P, is first determined. The 
only RHP poles of P ,  are the RHP zeros of P. In Step 5 a solution M of 
SMMP is determined as M = P,,T. It is proper and stable, in view of 
the above result. 

The SMMP Algorithm: 
Step I :  Find an irreducible state-space realization of P as { A ,  B, C, 
E } , w h e r e A , B , C , a n d E a r e n  x n , n  x m , p  x n , a n d p  x m 
real matrices, respectively. 
Step2:Ifrank[E] = p , s e t A '  = A , B '  = B , C '  = C,E;  = E ,  
and @(s) = Z, and go to Step 4. 
If rank [ E ]  < p .  find C,, E,, and @(s) such that rank [E,] = p and 
P = @-'(s) [C,(sZ - A ) - ' B  + E,] where @(s) is a p x p 
nonsingular polynomial matrix. 
Step 3: Find { A  I ,  B' , C; , E;  } , an irreducible representation of 
{ A ,  B,  C,, E q } .  
Step 4: Find a proper right inverse of the system {A ' , B'  , C; , Ed } 
as { A , ,  B,, CJ ,  E,}. Calculate the transfer matrix P, = C,(sZ - 

Step 5: Calculate M = P ,  T = P,@(s) T which is a solution of the 
SMMP. 

Remark I :  For Step 1, many algorithms are available, e.g., the Hankel 
method [12], or the coprime fraction method [3], [12]. 

Remark 2: In Step 2 ,  a method in [ 141 can be used to find C,, , E,, and 
'@(s). It is also outlined in the Appendix. 

Remark 3: In Step 4, we can use the algorithm in (see the 
Appendix). Assume P is of order n and it has k zeros, ther, !per nth- 
order right inverse can always be found with k zeros of P a: Joles and 
remaining ( n  - k )  poles arbitrarily assignable. 

Remurk 4: Note that this algorithm can be directly used LI the more 
general case of Q-stabilization, considered in [15], although here we 

A/)-'B, + Er. 
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concentrate only on the standard stabilization problems (no poles in the 
RHP). To do so the location of the zeros included in Nb must be changed 
from the RHP to W, the complement of Q ,  which is a (good) region of the 
complex plane symmetric with respect to the real axis. 

Example I :  Let 
1 I- 1 

be a right coprime fraction. 
Step I :  An irreducible realization of P is 

Step 2: Since rank [ E ]  = 0 < p ,  we apply the method in [14] and find 

Cq=[- l  0 -21 E q = [ l  11 and +(s)=s. 

Step 3: An irreducible representation of the system {A, B, C,, E,} is 

A ' =  [ - I  0 - 2  '1 B ' =  [b  y ]  C i = [ - 2  -31 Eg'=[I I]. 

Step 4: Using the algorithm in [ 1 3 ] ,  we find 

A I =  [ y ]  Bl= [i] Cl= [ -3 :] El= [ k ]  
and 

P,;= PI+(S) = 

Step 5: If Tis chosen as 

1 (s- 1)  (s- 1) 
T =  [ (s+I)(s+3) (s+I)(s+4) 

then a proper and stable M to PM = T is 

s(s- 1) s(s- 1) 
( s+2) ( s+3)  ( s+2) ( s+4)  

(s + l)(s + 3) (s + l)(s + 4) 

M=Pr8T= [ 3s . 3s ] . 
Notice that P, is not proper. 

IV. APPLICATION TO THE TWO-SIDED MATCHING PROBLEM 

The basic idea is to use the stable inverse algorithm, that was used for 
SMMP, to solve the two-sided matching problem (TSMP). We believe 
that this approach has certain advantages over the earlier results by Ohm 
et al. [8]  and by Ozguler et al. [9]. First, it not only gives the conditions 
on the existence of solution but also gives a computational method to find 
the solution. Second, it provides some insight into the problem in that the 
existence of proper and stable solution X depends on the locations and 
directions of the RHP and infinite zeros of the transfer matrices A ,  B, and 
C. This leads to a practical approach to pick C which is related to the 
closed-loop transfer matrix in view of (5). To illustrate the approach, 
consider (5), and suppose that t is a zero of G (or N ) ,  and the row vector 
a is determined from aC(z)  = 0 (or aN(z)  = 0); then according to the 
theory in [lo] (see Section C in the Appendix), the zero z together with its 
structure will appear in (Hd - H )  if and only if 

U (Hd(Z) - H( 2))  = 0 

or 

aHd(z)=(IH(z). (13) 

It appears that this method gives clearer constraints on Hd and is more 
computationally efficient than the results in [8] and [9] .  

Consider 

(6) 

Theorem 3: Suppose C is proper and stable, A and B are proper and 
have full row rank and full column rank, respectively. Then the TSMP in 
(6) has a proper and stable solution if C has all the RHP zeros and infinite 
zeros of A and B together with their associated structures (in the sense of 
Theorem 1). 

Proof: The stability of solution Xis proved below; the properness 
can be proved by using the same variable substitution, s = l /w,  as in 
SMMP. 

AXB = C.  

Consider solutions of the form 

X = A,CB/ ,  . (14) 

LetA = NblNADi' = NblAand B = D,'NBN~~ = BNb2, whereNbl 
and Nb2 are similarly defined as Nb in (8); then if c satisfies the condition 
of the theorem it can be factorized as 

with Can appropriate stable transfer matrix. By Lemma 1, a solution will 
be 

x = ( A , , N , ' ) ( N , , ~ N ~ , ) ( N , ' B l ~ ) = A , , C B , , .  (16) 

Since the inverse algorithm does not introduce any RHP zeros, Ai and B,, 
will be stable. Therefore, X will also be stable. Q.E.D. 

Note that Theorem 3 is valid regardless of the row or column rank of C 
with slight modifications. When Cdoes not have full row or column rank, 
the solvability condition is also (15), where, however, the zeros contained 
in Nb, and Nb2 are not necessarily the zeros of C. 

Example 2: A simple single-input single-output example from [8] is 
used to compare our results to the known results in literature, although the 
method suggested above shows better performance on multiinput mul- 
tioutput systems. Given the system in Fig. 2, characterize all admissible 
H d .  

The system matrix is 

Let Hd be 

-(s- 1) 
s(s - 2) 

s(s+ l ) (s-2)  

the desired transfer function from We want to 
characterize d l  the f f d  such that there exist proper and stable solutions x 
of the equation 

GXN= Hd- H. 

Here A = G ,  B = N, c = Hd - H,  and Nbl = Nb2 = (S - 1). 
According to Theorem 3, for a proper and stable solution X to exist, C 
must have the form 

C=(s-l)ZC 

where C must be proper and stable with at least one infinite zero. 
Considering in this example H = 1 and Hd is a scalar transfer function, c 
= ( n ( s )  - s(s ) ) /d (s ) ,  where Hd = n ( s ) / d ( s ) ,  and it is straightforward 
to find the following constraints on ffd(s): 

1) d(s)  must be a Hurwitz polynomial; 
2) n ( s )  and d(s)  must satisfy 

n ( s ) - d ( s ) = ( s -  1)2k(s) 

for some polynomial k(s) ;  and 
3) the relative degree of ( n ( s )  - d(s ) )  and d(s)  must be greater than 

zero. 
From these constraints we can see that d(s )  is almost an arbitrary 

Hurwitz polynomial of degree higher than two, while n ( s )  can be 
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obtained from the equation 

n ( s )  =(s- 1 ) 2 k ( s ) + d ( s )  

where k ( s )  is chosen to make n(s )  close to the desired zero polynomial 
and relative degree of ( n ( s )  - d(s)) /d(s)  greater than zero. Suppose 
d(s )  is chosen to be d(s )  = (s + l)(s + 2)(s + 3), and n(s )  is only 
required to have its zeros in the left-half plane, then k ( s )  can be chosen as 
k(s )  = 1, and therefore n(s )  = s3 + 7s2 + 9s + 7, which has all its 
roots in the LHP. The solution is 

and the compensator F is 

-s(s+ l)(s-2) 

4 s )  
F = [ I + X M ] - ’ X =  

which is proper and stable. 
Comparing this example to the one in [8], we can see the method 

proposed here has several advantages. First it is more intuitive since it 
gives a direct relation between poles and zeros of G ,  N ,  Hd ,  and H and 
the existence of proper and stable solution X. Second, the constraints on 
Hd are fairly easy to apply when we try to pick an Hd that not only 
guarantees the existence of a proper and stable compensator F, but also 
meets the closed-loop performance specifications. 

V. CONCLUSIONS 

In this note, we presented a new algorithm to solve the stable model 
matching problems (SMMP). It is guaranteed that the solution will be 
stable if the condition in the existence theorem is fulfilled. This algorithm 
is made possible by formulating the SMMP as an inverse problem. It can 
be directly applied to solve the two-sided matching problem (TSMP) and 
the stability is also guaranteed. This algorithm is believed to be a practical 
systematic approach to find a solution of the SMMP. Note that a version 
of these results has appeared in [17]. 

APPENDIX 

A .  Solving Inverse Problem of Strictly Proper Plant in the State 
Space fI4] 

Assume that the plant P we are working on has the state-space form 
{ A ,  B, C, E } .  The algorithm in [I31 only works on those where E has 
full row rank. In order to use this algorithm for any plant { A ,  B, C, E } ,  
we use the following algorithm (141 to find P in the form: 

P = Q -  I (s)[ C,(SI- A ) ~ ‘E  + E,] (A-1) 

where @(s) is a p X p nonsingular polynomial matrix, E, has full row 
rank. 

Algorithm: 

Step i 
Initialization: Set i = 0, y ,  = y ,  C, = C ,  and E, = E. 

I) Construct a p x p matrix U, to compress the rows of E, 

U,E,= [ :] (A-2) 

where E,‘ has full row rank and I, = rank [E,’] is defined by the 
compression. 
11) If I, = p then go to V). 

If 1, < p ,  partition Uiyl and UiCl conformably with the compression of 
Ei 

where y,‘ and C,‘ have I, rows and y,“ and C,” have (p - I,) rows. 
In) Replace the last p - I, equations of (A-3) by the following: 

(A-4) j ,” =C,’X=C,’(Ax+Eu) 

IV) Set 

Note that the new output equation is 

(A-6) y, = C,x+ E,u 

Go to step i. 
V) Set q = i. C, and E, are obtained with rank [E,] = p ,  and the 
relation between y ,  and yo( = y) can be expressed as 

yq = S -  I ( P I  uq- I S - Z ( P )  Uq-2 ‘ . . & ( p )  UnY = QP(P)Y (A-7) 

where 

and 

Q (P) = S ,  - 1 (P) U, - I S,- 2 ( P )  U, - 2 .  . Sn ( P )  Uo. 

The transfer function matrix of (A, B, C,, E,) is given by 

P q = C q ( ~ I - A ) - l  + E q = Q ( ~ ) [ C ( ~ I n - A ) - I  + E ] = Q ( s ) P .  (A-8) 

The inverse of P, can be derived using the algorithm below. 

B. Stable Inverse Algorithm fI3] 

Let E = 1ims+- P satisfying rank [ E ]  = p .  Assume that P is of order 
n and it has k zeros; then a proper nth-order right inverse can always be 
found with k zeros of P as its poles and remaining (n - k) poles are 
arbitrarily assignable. Suppose that the state-space realization of P is { A ,  
B,  C ,  E}; the following procedure is designed to determine the inverse of 
P with (n - k) nonfixed poles stable. 

i) Find an m x m nonsingular matrix M such that EM = [I,:O]. 
ii) Calculate [Bl, &] = BM and A - Bl C .  
iii) Find an lsvf matrixf2 which assigns the n - k controllable poles 

iv) The desired proper right inverse is . 
of { A  - BIC, B2}  in the LHP. 

where l3 was determined above and G2 is any ( m  - p )  x p real matrix 
(which can be taken as 0 for convenience). 

C. Selecting T in Control Design f I O ]  

In control, Tin T = PMis chosen so that the system response y = Tr 
to test input satisfies the control design specifications. The relation NT = 
N d T  which characterizes the unstable finite zeros and the zeros that 
infinity T must have for a proper and stable solution M to exist, does not 
provide a convenient way to choose an appropriate T. Note that the 
transfer function entries in Ta re  individually chosen to satisfy specifica- 
tions, and their zeros do not necessarily appear as zeros of T. Therefore, 
there is a need for simple and direct conditions which will help the 
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designer to choose Tcontaining the unavoidable unstable or infinite zeros 
together with their directions. The following theorem on unstable zeros is 
given below without proof; the results may apply to infinite zeros with 
slight modifications. 

Assume that z , ,  i = 1, . . . , 1, are distinct or if z, is a multiple zero the 
rank reduction in N(z,) equals the multiplicity of z,, where P = ND-l is 
in a coprime polynomial fraction form. 

Theorem A: The unstable zeros of P together with their structure will 
appear in T if and only if 

a, T(z,)  = 0 (A-9) 
where a, is determined from 

a,P(z,) = 0. (A-10) 

For a simple example see Example 1, where P has only one zero at Z I  = 
1. Here a, could be an arbitrary constant since P ( z l )  = [0 01, therefore, 
T has to satisfy T ( z l )  = [O 01. 
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The Stability of a Family of Polynomials Can Be 
Deduced from a Finite Number O(k3) of 

Frequency Checks 

T. E. DJAFERIS AND C. V. HOLLOT 

Abstract-Let &(S, U )  &(S) -k Ui&i(S)  -k az&z(S) -k ’ ‘  ’ 4- a k & k ( S )  

= qj0(s) - q(s ,  a )  be a family of real polynomials in s, with coefficients 
that depend linearly on parameters ai which are confined in a 
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k-dimensional hypercube Q,. Let &o(s) be stable of degree n and the &(s) 
polynomials (i 2 1) of degree less than n. A Nyquist argument shows that 
the family &(s) is stable if and only if the complex number + , ( jw)  lies 
outside the set of complex points -q(jw, Q,) for every real U. In a 
previous paper we have shown that - q ( j o ,  Q,), the so-called “ - q  
locus,” is a 2k convex parpolygon. The regularity of this figure simplifies 
the stability test. In this note we again exploit this shape and show that to 
test for stability only a finite number of frequency checks need to be 
done; this number is polynomial ink,  O(k3), and these critical frequencies 
correspond to the real nonnegative roots of some polynomials. 

I. INTRODUCTION 

Let $(s, a )  be a family of real polynomials denoted by 

d(s, ~)=do(s)+ald,(s)+a2d2(S)+ . ’  ’ +atd t ( s )  

= bo(s)  + q(s, a )  (1) 

where do@) is monic, stable, and of degree n and where the other $,(s) 
are nonzero polynomials of degree less than n. The vector of parameters a 
= ( a l ,  . . . , ak) are confined to a hypercube Q,, i.e., Q ,  = { a  1 a; I a, 
I a,+, 1 I i I k, a; < 0,  a,+ > O}. It follows from the Nyquist 
stability criterion that the family will be stable if at each frequency 0, the 
set - q ( J w ,  Q,) does not include the point $0 = (Re ($&a)), 
Im($o(jw))). Since - q ( j w ,  . ) is an affine map over the hypercube Q,, 
then the - q locus is a polytope. In fact, such polytopes have even more 
structure. In [ l ]  it is shown that the - q locus is a 2k-convex parpolygon 
-a convex polygon of an even number of sides (2k) in which opposite 
sides are equal and parallel. For these shapes it is easy to determine 
whether bo is contained in the - q locus; easier than the so-called H(6)- 
theory, (see [2]) which was developed to handle general, planar, and 
polytopic shapes. 

In this note we again exploit the regularity of these 2k-convex 
parpolygons and now turn our attention to the “frequency sweeping” 
task; recall that one must check if $o is outside the - q locus for all w E 
[0, 00). Due to the “finite bandwidth” of the polynomial family $ o w ,  a ) ,  
the frequency sweep may be conducted over a bounded interval of 
frequencies A, say [0, MI. This fact has been previously noted in [2], [ 5 ] .  
We will improve upon this result and show that only a finite number of 
frequencies in [0, MI, call them the “critical frequencies,” must be 
checked. Most importantly, we will prove that this set of critical 
frequencies can be determined a priori and that its cardinality is O(k3) 
where k is the number of parameters. As we will see, these critical 
frequencies correspond to the real, nonnegative roots of some special, but 
easily constructed, polynomials. Consequently, in concert with [ 11, these 
results lead to the most computationally efficient algorithm, presently 
available, for deducing whether the polynomial family in (1) is stable. 

11. THE TWO-PARAMETER CASE 

To demonstrate the nature of our methods we first consider the simple 
case of only two parameters al and a2. In the next section we address the 
general case. To this end suppose that the family of polynomials is 
described by 

d(s, a)=do(s)+a,dl(~)+a2d~(s);  a E Q,  (2) 

where and $* are not identically zero. In the sequel we let Re (.) and 
Im (.) denote the real and imaginary parts of a complex expression and 
define E, and 0, to be the so-called even and odd parts of a polynomial 
$(s). That is, 

Q ( S ) = E , ( S 2 ) + S O + ( S 2 )  

or 

d ( j w )  = E , ( -  w2)  +jwO,(- w2) ,  

For notational simplicity we write E, and 0, for E,( - w 2 )  and O,( - U’). 
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