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ABSTRACT 
The application of neural computing to the problem of 

matching in production systems is addressed. The computation time 
required by this problem can be significantly reduced by using the 
massive parallelism and pattern recognition capabilities available 
through neural computing. A new neural computing model, called 
here the ProNet, is introduced and explained in detail. The ProNet is 
applied to the match phase of the production system interpreter in an 
attempt to yield a reduction in time and space requirements by 
matching a!: of the productions to all of the working memory elements 
simultaneously. 

1.0 INTRODUCTION 
The production system, a special type of expert system, will 

probably continue to be used to assist both humans and computers in 
specific tasks for future applications of artificial intelligence to 
Intelligent Control. If this type of system is to be used efficiently in 
real-time applications, the speed at which the production system 
operates must be considered. Present production system schemes are 
becoming faster, but still can be improved. A new alternative 
approach to present production system schemes uses neural 
computing to increase the speed of the production system. This is 
accomplished by performing the match phase of the developed 
production system using special hardware. 

Production systems are expert systems which use rules, called 
productions (rules, production rules), to represent knowledge and 
which use a particular interpreter to perform the actions of the 
production system. The form for the production addressed in this 
paper is 

IF a1 and a2 and ... and aj THEN bl  and b2 and ... and bk 

where the ai are the antecedents and the bi are the consequences of the 
particular production. Customarily, the conjunction of the antecedents 
is referred to as the left-hand side (LHS), and the conjunction of the 
consequences is referred to as the right-hand side (RHS). The 
working memory (WM) contains the data which is compared to the 
productions. The individual elements of the WM are referred to as the 
working memory elements (WMEs). The production interpreter 
performs the comparison of the WM to the productions. It is 
commonly assumed that the interpreter should have a three phase 
cycle: 

(i) Match. Compare the LHS of all of the productions to the 
WMEs. If the LHS is satisfied, include the production in the 
conffict set, the set of satisfied productions for the present 
WM state. 

(ii) Select. Choose one production from the conflict set to 
execute. 

(iii) Act. Execute the production in accordance with the 
RHS of the chosen production. 

Of the three phases, the match phase traditionally consumes 
the most time of the production interpreter. Using conventional 
approaches, a production interpreter can spend more thsn 90% of its 
time in the match phase of the production cycle [I]. The Rete Match 
Algorithm, introduced in [1,2], avoids the brute force approach 
ofsequentially matching productions against WMEs by manipulating 
the productions and the WMEs to form a software tree structure to 
increase the speed of the production interpreter. Since its 
introduction, other Rete based algorithms which attempt to increase 
the speed of the production interpreter have been introduced [3-IO]. 
To further reduce the amount of time consumed by the interpreter in 
the match phase, special hardwares have been developed using 
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parallelism and multiprocessor architectures [6,11-181. Almost all of 
these attempts are based, at least in part, on the Rete Match Algorithm, 
which is assumed to vield the most efficient match phase of the 
production system interpreter. These architectures smve to decrease 
the time required in the match phase by attempting to match as many 
rules as possible in parallel and by attempting to fire as many rules as 
possible in parallel. In addition, because these proposed architectures 
intend to use a multiprocessor implementation, they will consume a 
significant amount of physical space when realized. A new method is 
proposed here which simultaneously matches all of the productions to 
all of the WMEs in parallel via neural computing. 

In this paper, the potential for using neural computing for the 
match process of the production system interpreter is investigated. 
The use of neural computing to aid expert systems was addressed in 
[I91 which proposed to increase the speed of expert systems by using 
neural computing for the select phase. The use of neural computing in 
this paper attempts to achieve increased speeds and reduced space 
requirements by using neural computing for the match phase. Using a 
new neural computing model, the ProNet, which resembles the single 
layer perceptron of [23 ] ,  to perform the computations in the match 
phase of the production interpreter, the amount of time required in the 
match phase can be reduced. Compared to the Rete Match Algorithm, 
the proposed method achieves a significant increase in speed. In 
addition, with the recent advances in the realization of very large scale 
integration and electro-optical techniques for analog and parallel 
computation, the possibility exists to reduce the physical space 
required by the production system. 

In Section 2, a new model for neural computing, the ProNet, 
is introduced, examined in detail, and, in Section 3, used to perform 
the match phase for the interpreter of a developed production system. 
Next, in Section 4, a simulation of a small production system using 
the ProNet is presented. Finally, in Section 5 ,  some concluding 
remarks are made. 

2.0 T H E  PRONET 
The ProNet is a new neural computing model based on another 

neural computing model, the Hamming net (HN). A derivation and 
explanation of the HN can be found in [20,21]. The HN is a 
combination of a feedforward net and a feedback net and is used to 
classify patterns for speech recognition. The HN is given an input 
vector and specifies which stored exemplar pattern it most closely 
matches as a function of the Hamming distance. The exemplar 
patterns are previously stored patterns which exemplify all of the 
possible patterns to be passed through the system. Due to the fact that 
only one exemplar patten can be identified with the HN, the "ProNet" 
is created here and used to identify more than one exemplar pattem. 
The ProNet uses the HN's feedforward perceptron-like net with slight 
alterations to the weights and replaces the HN's feedback maxnet by 
changing the biases of the feedforward net. The ProNet's purpose is 
for pattern identification in production systems. 

The ProNet, shown in Figure 2.1, is a feedforward net closely 
resembling and mimicking the operation of the single layer perceptron. 
An input vector is presented to the ProNet through the input vector U = 
[ul U;! ... UN].  The ProNet is expected to identify which exemplar 
patterns x E X appropriately match it, where X is the set of all 
exemplar patterns. In the ProNet, the exemplar patterns are stored via 
the weights wij, where the subscript i denotes which input element 
and the subscriptj denotes which exemplar pattem. The output vector 
y = L y l  y2 ... y ~ ]  identifies which exemplar patterns have been 
matched. Basically, the ProNet simultaneously compares in parallel 
an input vector U to every exemplar pattern x E X .  

One advantage in using the ProNet is the ease with which the 
weights and the biases are found, compared to the single layer 
perceptron which requires multiple passes of the input data to train the 
weights. The weights wi, and the biases c, are determined based on 
the exemplar pattems. Assume all of the input vectors to the ProNet 
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Figure 2.1 The ProNet. 

are binary signals with a fixed length N having elements valued either 
one (HI) or zero (LO). Assume also there are M exemplar patterns, 
which are to be "stored" in the M nodes of the net. Then, the weights 
and biases are chosen according to equations (1) and (2). 

r 

N 

i= 1 
c j = A -  c x i j  

I S i S N ,  l S j l M  (1) 

l I j l M ,  O < A < 1  (2) 

The value wv is the weight for the ith input element to the jth node. 
The valuexv is the ith element of the jth exemplar stored. The value c; 
is the bias to be added to the jth node. The summation in the bias c; is 
the total number of HI elements in the j* exemplar pattern. The value 
A of c; is some constant between zero and one, but should be the same 
for each bias ck The reason for including the value A in the bias will 
be explained later in this section. Note that all of these values are 
constant once they are determined; there is no need to adapt to new 
ones or change them during the operation of the ProNet. 

Once the weights w" and the biases C j  are determined, the 
ProNet is prepared for operation. A binary pattern is presented to the 
ProNet as the input vector U with N elements. The output of the 
ProNet is shown in equation (3). 

'2 

l < j < M  (3) 

The value y; is the jth element of the output vector y. For each output 
element yj, the N elements ui of the input vector U are multiplied by 
the weights wi;, summed with the bias c;, and passed through the 
threshold logic nonlinearity f(a) illustrated in Figure 2.2. Note that the 
sum in equation (3) totals the number of HI elements of the input 
vector U which coincide with the HI elements of the jth exemplar 
pattern. f(a,  

t 
a 

Figure 2.2. Threshold logic nonlinearity. 

~ 
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Substituting in the value for c;, equation (3) becomes equation (4). 

CfW if V xii  = 1 ,  3 ui = 1 
N N 

i= 1 i= 1 
f (y  + A) e lse ,  where  y = c Wij Ui - c Xij 5 - 

1 
0 e l s e  

if V x" = 1 ,  3 U ,  = 1 '1 (4) 

When all of the HI elements of the input vector U coincide with the HI 
elements of the exemplar pattern, the summation of the weighted 
inputs and bias will be positive, i.e. A, and after passing through the 
nonlinearity, the output y j  will be HI. Otherwise, the summation will 
be negative, and after passing through the nonlinearity, the output y, 
will be LO. If the value A is less than or equal to zero, the sum will 
never be positive. If the value A is greater than or equal to one, the 
sum could be positive or zero when all of the HI elements do not 
coincide. Thus, the value A is a constant between zero and one. 

Note that after passing through the function f, all values of a 
less than zero will become zero and all values of a greater than or 
equal to zero will become one. Each output y j o f  the ProNet 
corresponds to the jth exemplar patten. If the HI elements of the jth 
exemplar pattern coincide with the same HI elements of the input 
vector U ,  i.e. if V Xi; = 1, 3 ui = 1, the output y; will be HI; 
otherwise, the output y; will be LO. Since the ProNet compares the 
input vector U and exemplar patterns x E X in this manner, more than 
one output y; of the ProNet can become HI for a given input vector U.  

3 . 0  THE PRONET AND THE PRODUCTION SYSTEM'S 
MATCH PHASE 

Because of the massive parallelism and the pattern recognition 
capabilities available, the ProNet becomes an excellent tool to reduce 
the amount of time required in the match phase of the production 
interpreter. To accomplish this, the match problem needs to be 
properly handled to use the ProNet and its properties. To implement 
the match process of the production interpreter using the ProNet, the 
LHSs of the productions are used as the exemplar patterns, and the 
WMEs are used as the input elements. A parallel simultaneous match 
of all of the LHSs to all of the WMEs is performed. 

The performance of the match process is degraded by neither 
the number of productions nor the number of WMEs. The ProNet can 
also easily cope with large changes to the WM; it is not dependent 
upon temporal redundancy as the Rete Match Algorithm is. However, 
note that the proposed use of the ProNet in the match phase is for 
developed production systems and not for the development of 
production systems. It is a tool to be used in the implementation of 
production systems to perform the match more efficiently. 

First, the exemplar patterns for the ProNet need to be found. 
Productions of the form 

IF a1 and a2 and ... and aj THEN bl  and b2 and ... and bk 

are considered. An assumption is made that all of the productions can 
be placed in the above form, where ai and bi are, respectively, 
symbolic antecedents and symbolic consequences (time-varying 
numeric data is not considered here). Once all of the productions of 
the production system have been found, their LHSs are compared, 
and the set A of all possible antecedents is established. Note that the 
set A is also the set of all possible WMEs. Assume there are N 
possible antecedents and M productions. Each possible antecedent, 
element of A ,  is assigned an element of the input vector U of the 
ProNet. The M exemplar patterns are formed by comparing the LHSs 
of the productions to the set A of possible antecedents. Thus, the set 
A has N elements and the set X has M elements. A one (HI) is 
assigned to the element of the exemplar pattern which coincides with 
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the appropriate antecedent of the production; a zero (LO) is assigned to 
the element otherwise. For example, if the set of all possible 
antecedents is A = ( a i ,  a2, a3, a4) ,  let a1 be assigned to the first 
element u1 of the input vector U, a2 assigned to the second element 
u2, a3 assigned to the third element u3, and a4 assigned to the fourth 
element 4. If the first production given is 

IF a1 and a3 THEN a2 

the exemplar pattem X I  associated with the first production is [l 0 1 
01, wherexi1 is l ,x21  is 0, x31 is 1, andx41 is 0. The weights wi; 
and the biases c; are chosen according to equations (1) and (2) using 
the newly formed exemplar patterns. For the above example, the 
weight w11 is 1, w21 is 0, w31 is 1, and w41 is 0. The bias c1 is A - 
2. Thus, the input vector corresponds to the set A of all possible 
antecedents with each of the N input elements corresponding to one of 
the N predetermined antecedents. Each of the M exemplar patterns 
corresponds to one of the M productions. 

Once the weights and biases of the ProNet are set, the net is 
ready for operation. A WM state of the production system is found, 
and an appropriate input vector U for the ProNet is determined. The 
WMEs of the WM state correspond to specific members of the set A 
of possible antecedents and also correspond to particular elements of 
the input vector U of the ProNet. An input vector U is determined by 
assigning a HI to the elements of the input vector which correspond to 
the WMEs of the WM state, and a LO to the elements of the input 
vector which do not correspond to the WMEs of the WM state. For 
the above example, if the present WM state contains the WMEs a1 and 
u4, the input vector U is 11 0 0 11. The newly determined input vector 
U is then passed through the ProNet. The output vector y immediately 
identifies which production's LHSs match the WM state. A HI on the 
output element y, signifies that the jth production is fiiable from the 
present WM state, and a LO on the output element y, signifies that the 
jth production is not fiiable from the present WM state. Finally, the 
conflict set is formed by gathering all of the productions identified by 
the HI elements of the ProNet's output vector y. This completes the 
match phase of the production interpreter. 

The cycle of the production interpreter using the ProNet in the 
match phase can be viewed as a loop of function blocks, as illustrated 
in Figure 3.1. 

Match Phase 

+ 

I I 

change form 
-b inputs to -b ProNet -0 conflict set 

ProNet 

t 
-U 

uu 
Act Phase Select Phase 

Figure 3.1 Function block diagram for the production interpreter 
cycle using the ProNet. 

For the function block denoting the changes to the inputs of 
the ProNet, conventional processing needs to be used. Each time the 
WM is changed, the input vector U of the ProNet needs to be changed. 
Instead of changing the entire input vector U each time, the changes to 
the WM performed in the act phase can be saved, and these changes 
can be used to change the appropriate elements ui of the input vector U 
in the first function block of the match phase. For the above example, 
if the previous WM state is a1 and a4 and if the new WM state is a1 
and a3,  the WME a4 is deleted from the WM and the WME a3 is 
added to the WM. These two changes are saved from the act phase. 
For the match phase, these changes are processed by setting the 
ProNet input element u4 LO and the input element u3 HI. Thus, the 
previous input vector U is [ 1 0 0 11 and the new input vector U is [ 1 0 
1 01. 

For the function block denoting the PioNei the actual 
computations involved in the match phase are performed using 
ProNet. The computation time here is dependent on neither the 
number of productions, M, nor the number of WMEs, N. All of the 
productions represented as exemplar patterns in the ProNet are 
compared in parallel. So, the number of productions does not affect 
the computation time. All of the WMEs represented as elements uL of 
the input vector U of the ProNet are compared to the productions in 
parallel. So, the number of WMEs does not affect the computation 
time. 

For the function block denoting the formation of the conflict 
set, conventional processing needs to be used. The output vector y of 
the ProNet represents the conflict set. The elements of the vector 
which are HI represent productions which are firable, and elements 
which are LO represent productions which are not firable. 
Conventional processing is used to transform this vector into a form 
usable for the conflict resolution of the act phase. 

In addition to considering production systems with 
productions having symbolic antecedents and symbolic consequences, 
production systems which allow productions to contain negated 
symbolic antecedents and variable symbols as antecedents and 
consequences can also be considered. If a production contains a 
negated symbolic antecedent in its LHS, the production can not be 
fired if that particular antecedent is contained in the WM. The ProNet 
models the negation antecedent by not allowing the production to 
become part of the conflict set if the particular antecedent becomes part 
of the WM. This is accomplished by modifying the weights wg in the 
ProNet. Equation (1) now becomes equation (5 ) .  

1 if  x" = 1 

- 1  if negation of xi, 

'1 
I l i l N ,  l < j < M  ( 5 )  

The weight wu is assigned a value of -1 when the jth exemplar patten 
requires the negation antecedent property for the ith antecedent of the 
set A of possible antecedents. For the above example with A = ( a i ,  
a2.03, a 4 ) ,  if the first production given is 

IF a1 and a3 and NOT a4 THEN a2 

the exemplar pattem x i  is [l 0 1 01 where x i 1  is 1, x21 is 0, x31 is 1, 
and x41 is 0. The weight w11 is 1, w21 is 0, w31 is 1, and w41 is 
-1. When the ith antecedent is absent from the WM, the ith input to 
the ProNet is LO and the operation of the ProNet is the same as 
before. When the i* antecedent is present in the WM, the ith input to 
the ProNet becomes HI and the summation of equation ( 3 )  for the jth 
production with the negation antecedent property can no longer be 
greater than zero. The output y j  becomes zero and the jth production 
with the negation antecedent is not included in the conflict set. 
Continuing the above example, if the input vector U is [l  0 1 01, the 
output vector y~ is 1. If the input vector U is [l 0 1 11, the output 
vector y1 is 0. 

Using the ProNet, production systems which contain 
productions with variable symbols can also be considered. If a 
production contains a variable symbolic antecedent in its LHS, the 
production's LHS can match a number of different antecedents and the 
production is firable from several WM states. Assume that the 
productions with variable antecedents can match only a finite number 
of definable antecedents. Thus, new productions are made from the 
original production through the instantiation of the variable. The new 
productions' LHSs contain the LHS of the original production with 
the variable replaced by one of the possible antecedents, and the new 
productions' RHSs are the same as the RHSs of the original 
production. If the RHS of the production contains the variable as 
well, the variable on the RHS is replaced by the same antecedent 
which replaced the variable on the LHS. Thus, productions which 
contain variables in the antecedents are instantiated for all possible 
cases, and a set of new productions is formed without any variables. 
Exemplar patterns can now be determined from the newly formed 
productions, and the ProNet's initialization and operation can continue 
as previously described. For the above example with A = [ U ] ,  a2, a3, 
a 4 ) ,  if the first production given is 

667 

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on August 27, 2009 at 14:51 from IEEE Xplore.  Restrictions apply. 

M. A. Sartori and P. J. Antsaklis, "Neural Computing and Production Systems,” P roc. o f t he 3 rd I EEE 
I nternational S ymposium o n I ntelligent C ontro l , pp. 665-670, Arlington, VA, Aug. 24-26, 1988.



IF a1 andv THEN a2 

the variable symbol is v which can assume three different symbolic 
values: a2,  "3, and a.q. So, the first production is instantiated and 
three new productions are formed from the first one. 

IF a1 and a2 THEN a2 
IF a1 and a3 THEN a2 
IF a1 anda4 THENa2 

These newly formed productions are used to determine the exemplar 
patterns for the ProNet as described previously. It should be noted 
that the instantiation of all of the variables for the developed 
production system and the forming of the new set of productions are 
performed before the ProNet's dimensions, weights, and biases are 
set. This pre-processing of the developed production system can be 
accomplished using conventional processing and could possibly 
require a large amount of time depending on the number of variables 
and the number of instantiations per variable in the developed 
production system. 

4 . 0  A SIMULATION OF A PRODUCTION SYSTEM 
USING THE THE PRONET 
The ProNet is applied to the match phase of a simple 

production system. The list of productions used is shown in Figure 
4.1. 

Figure 4.1 Productions used for the simulation. 

This simple production system is of the particular form considered in 
this paper. For example, the second production can be written as 

IF NOT (A B) and (A C) and (n B) and (n D) 
THEN (A D) and (C E) and (D rr) 

The format for the productions is similar to the examples used in [23]. 
There are ten productions with the LHS and the RHS separated by the 
implication symbol +. The antecedents and consequences are pairs 
comprised of the first five letters of the English alphabet and 
designated by two letters enclosed in a set of parentheses. The LHSs 
and RHSs are conjunctions of the antecedents and conjunctions of the 
consequences, respectively. The only rule is that no pair may have 
repeated letters, e.g. the pair (B B) is not allowed. Besides the letter 
symbols, the production system also consists of negations and 
variables. The negation antecedents are denoted by the pairs with the 
not symbol 1 in front. The antecedents and consequences with 
symbolic variables are denoted by the pairs with the Greek symbols n 
and r. 

Before the ProNet's weights and biases can be found, the 
variables must be addressed. As stated in Section 3, the variables are 
assumed to only represent a finite number of definable antecedents. 
Thus, each variable is instantiated for all possible instances and a new 
set of productions results. For example, the fifth production of Figure 
4.1 is expanded into the nine new productions shown in Figure 4.2. 
The variable n of the fifth production can assume the symbols A, B, 
and C, and the variable of the fifth production can assume the 
symbols A, B, C, and E. When this is done to each production with a 
vdriable, the new production system has twenty-seven productions 
instead of ten. 

The LHSs of the twenty-seven newly formed productions are 
now used to form the exemplar patterns for the ProNet. First, the 
total number N of possible antecedents needs to be found. By 
counting the different possible pairs, there are twenty possible 

Figure 4.2 The fifth production with its variable instantiated for all 

antecedents; the set A has these twenty elements. Next, each possible 
antecedent needs to be assigned to an input element of the ProNet. 
Here, the possible antecedents are assigned to the elements in an 
ordered fashion as shown in Figure 4.3. 

possible instances. 

Antecedent Jnuut Element 
(A B) 1 
(A C) 2 
(A D) 3 

(E C) 19 
(E D) 20 

Figure 4.3 Assigning of the antecedents to the ProNet input elements. 

The exemplar pattems of each production are formed by assigning a 
one (HI) to elements which coincide to the antecedents of the LHSs 
and assigning a zero (LO) to elements otherwise. For example, from 
Figure 4.2, the first production's exemplar pattern x i  is 

[ l o l l  0 0 0 0  0 0 0 0  0 1 0 0  00001 

If this is done for each production, there would be twenty-seven 
exemplar pattems with twenty elements each. 

The weights and biases of the ProNet are now computed using 
equations (5) and (2). As described previously, the weights 
corresponding to the elements of exemplar patterns with negation 
antecedents are assigned a value of - 1. For example, from Figure 4.1, 
the seventh production's LHS produces the following weights 

[ O O - 1 1  0 0 0 0  1 0 - 1 0  0 0 0 1  O O O O ]  

For the biases, a value of .5 was chosen for the constant A. Once the 
weights and biases are found, the ProNet is ready for operation. 

For the operation of the production system, the match phase 
was performed using the ProNet. For the select phase, the conflict 
resolution was performed by prioritizing the productions and choosing 
the production in the conflict set with the highest priority. The 
productions were prioritized by assigning the first production of 
Figure 4.1 the highest priority and the rest of the productions lower 
priorities in a descending fashion. Note that to use the ProNet for the 
match phase, this type of conflict resolution does not need to be used. 
For example, other strategies for conflict resolution can be found in 
[23]. The act phase was performed by deleting the chosen 
production's antecedents from the WM and adding the chosen 
production's consequences to the WM. This results in switching 
elements of the ProNet's input vector, as described previously. 

For the simulation. the initial WM state considered is 

(AB) (A C) (A D) (B C) (B D) (B E) (C B) (C E) (DB) (D C) (DE) (ED) 

which results in the following initial input vector U for the ProNet 

[ O l l l  0 1 1 1  0 1 0 1  0 1 1 1  c o o : ]  

Figure 4.4(a) illustrates the input to the ProNet for the first WM state. 
Figure 4.4(b) illustrates the output of the ProNet for the first WM 
state. There are eight productions in the conflict set, and the 
production interpreter selects the one with the highest priority, 
production eight. The WM is changed by deleting and adding the 
appropriate antecedents; the second WM state is formed. Figure 4.5 
illustrates the input and output for the ProNet for the second WM 
state. There are ten productions in the conflict set. If this were 
continued, the production interpreter would select the one with the 
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highest priority, production four. The WM would be changed by 
deleting and adding the appropriate antecedents, and the third WM 
state would be formed. 

5.0 CONCLUDING REMARKS 
Using neural computing via the ProNet, the time required by 

the match phase can be considerably reduced and thus, the overall time 
required by the production interpreter can be decreased. The cycle of 
the production interpreter employing the ProNet in the match phase 
can be viewed as a loop of function blocks, as illustrated in Figure 
3.1. Examining each of the blocks for the match phase, the time 
required for the match phase can be quantified. 

For the function block denoting the changes to the inputs of 
the ProNet, additions and deletions to the WM need to be considered. 
Assume that the changes made to the WM in the act phase are saved 
and are used to change the ProNet's input elements in the match 
phase. If WMEs are added according to the RHS of the fired 
production and if WMEs are deleted according to the LHS of the fired 
production, the changes made to the inputs of the ProNet by 
conventional processing are a function of the number of antecedents 
and the number of consequences in the fired production. Thus, the 
time required to change the inputs to the ProNet is on the order of the 
number of antecedents in the LHS and the number of consequences in 
the RHS of the production. In [12], a number of different production 
systems were examined, and it was found that the typical production 
contains three to six antecedents and two to four consequences. So, 
the time required to update the inputs to the ProNet is "relatively" 
small. Note that if a multiprocessor architecture was used, the 
changes to the inputs of the ProNet could be performed in parallel, 
and a further increase in speed could be achieved along with a further 
increase in physical space used. 

For the function block denoting the ProNet, the time required 
to achieve an output of the ProNet is dependent on the speed of the 
summation and the nonlinearity of equation (3), which is dependent 
on neither the number of productions in the system nor the number of 
WMEs in the current WM state. Given the current state of 
technology, the time for this block is probably much smaller than the 
time for the other two blocks of the match phase. 

For the function block denoting the formation of the conflict 
set, the time required is dependent on the manner in which the match 
phase and the select phase are interfaced. The output vector y of the 
ProNet is the conflict set with the HI elements representing firable 
productions. This vector needs to be transformed into a representation 
useful to the select phase. One possibility for the transformation is to 
have the output elements y,, when they are HI, point to the addresses 
where the productions are stored in a conflict resolution usable form. 
Whatever method is used for the transformation, a minimal amount of 
conventional processing will probably be needed because of the form 
of the ProNet's output vector. 

Thus, given a single processor architecture and given that each 
of the three function blocks of the match phase requires a "relatively" 
small amount of time, the overall time to conduct the match phase will 
be "relatively" small. Using the asymptotic complexity theory of [24], 
Table 5.2 compares results for the ProNet and some of the results for 
the Rete Match Algorithm in [2]. 

Rete 
ProNet Match Algorithm 

ComDlexitv Measure Best Worst Best Worst 
Effect of Wh4 size on time for one O(I )  O(1) O(1) O(W2A-1) 

Effect of number of productions O(I )  O(1) O(log2P) O(P) 
tiring 

on time for one firing 

A is the number of antecedents per production 
P is the number of productions 
W is the number in WMEs 

Table 5.2 Time complexity of the match phase using the ProNet. 

A cost of O(g(x)) denotes that the cost is dominated by the function 
g(x) for large x. A cost of O(1) denotes that the cost is unaffected by 
the factor. Comparing the ProNet and the Rete Match Algorithm for 
the above two criterions, the cost of the match phase using the ProNet 
is much smaller than the cost of the match phase using the Rete Match 
Algorithm. Even for the worst case, the ProNet's time for one firing 
is still unaffected by the WM size and the number of productions. 

The above comparison does not include the conventional 
processing required by the other two function blocks of ihe .-- ,* -h 

phase. However, the cost to form the input vector U for the Prohet 
using the changes made in the act phase will probably be on the order 
of the number of changes to be made to the elements ui of the i n ~ t i f  
vector U.  The cost to transform the output vector of the ProNet into a 
form usable by the select phase can not be analyzed presently because 
it is dependent upon the implementation of the select phase. Overall, 
the match phase using the ProNet is independent of both the number 
of productions and the number of WMEs and uses hardware to 
perform the match; the match phase using the Rete Match Algorithm is 
dependent on both ::::niber of productions and the number of 
WMEs and uses software to perform the match. 

In addition, the above comparison does not include current 
attempts at increasing the speed of the match phase using a modified 
Rete Match Algorithm or similar algorithms and/or special hardware: 
Previous attempts to reduce the time required by the match phase of 
the production interpreter have been reported in the literature. Using 
the YES/OPS production system language and advances in the Rete 
Match Algorithm, a drop in CPU time was reported in [3]. Using 
partitioning of the productions, a reduction in production cycles was 
reported in [7,10,8]. The results from the literature of using special 
hardware are summarized in Table 5.4. 

WME Productions/ Use of 
s eco nd Arch i tec lure C han res/S ec 

MAPPS 1 0 , ~  Yes 
CMU-PMS 9400 Yes 
PESA-1 25,000 8m Yes 
DADO 225 85 NOWEAT? 
NON-VON 2000 903 Yes 
OKaZer's 4500 Yes 

modified Rete? 
Hardware 
Needed Reference 
128PEs 1131 
32 Ps [61 
32 PES 1141 
1023 PES 116.61 
16032PEs [131 
512 Ps [61 

~~ 

- is not available 
Ps is processors 
PES is processing elemenls 

Table 5.4 Summarized results of special hardware implementations. 

Although actual timing of the ProNet in the match phase has not yet 
been performed, the authors believe that its performance will be 
superior to the ones currently available. 

In addition, note that the current hardware implementations 
cited in Table 5.4 use either many processors or many processing 
elements. This will cause the production system to occupy a 
considerable amount of physical space. Using a single processor and 
the ProNet in the match phase, physical space occupied by the 
production system can possibly be less than ones currently available. 
With the ProNet in the match phase, neither a many processor 
architecture nor a many processing element architecture needs to be 
used. With the use of very large scale integration and/or electro- 
optical techniques, the layout of the ProNet need not consume a large 
amount of space. If elements of the input vector of the ProNet are not 
wired to the summation nodes when the weights between them are 
zero, a further reduction in the space required can be achieved. 
Although the actual implementation of the match phase using the 
ProNet has not yet been perfonned, the authors believe that, compared 
to the current ones available, a reduction in the physical space 
occupied by the production system can be achieved. 
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Figure 4.4 (a) The ProNet's input elements for the first WM state. (b) The ProNet's 
output elements for the first WM state. 
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Figure 4.5 (a) The ProNet's input elements for the second WM state. (b) The ProNet's 
output elements for the second WM state. 
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