
NEURAL COMPUTING AND PRODUCTION SYSTEMS*

Michael A. Sartori and Panos J. Antsnklis
Department of Elecmcal and Computer Engineering

University of Notre Dame
Notre Dame, IN 46556

ABSTRACT
The application of neural computing to the problem of

matching in production systems is addressed. The computation time
required by this problem can be significantly reduced by using the
massive parallelism and pattern recognition capabilities available
through neural computing. A new neural computing model, called
here the ProNet, is introduced and explained in detail. The ProNet is
applied to the match phase of the production system interpreter in an
attempt to yield a reduction in time and space requirements by
matching a!: of the productions to all of the working memory elements
simultaneously.

1.0 INTRODUCTION
The production system, a special type of expert system, will

probably continue to be used to assist both humans and computers in
specific tasks for future applications of artificial intelligence to
Intelligent Control. If this type of system is to be used efficiently in
real-time applications, the speed at which the production system
operates must be considered. Present production system schemes are
becoming faster, but still can be improved. A new alternative
approach to present production system schemes uses neural
computing to increase the speed of the production system. This is
accomplished by performing the match phase of the developed
production system using special hardware.

Production systems are expert systems which use rules, called
productions (rules, production rules), to represent knowledge and
which use a particular interpreter to perform the actions of the
production system. The form for the production addressed in this
paper is

IF a1 and a2 and ... and aj THEN bl and b2 and ... and bk

where the ai are the antecedents and the bi are the consequences of the
particular production. Customarily, the conjunction of the antecedents
is referred to as the left-hand side (LHS), and the conjunction of the
consequences is referred to as the right-hand side (RHS). The
working memory (WM) contains the data which is compared to the
productions. The individual elements of the WM are referred to as the
working memory elements (WMEs). The production interpreter
performs the comparison of the WM to the productions. It is
commonly assumed that the interpreter should have a three phase
cycle:

(i) Match. Compare the LHS of all of the productions to the
WMEs. If the LHS is satisfied, include the production in the
conffict set, the set of satisfied productions for the present
WM state.

(ii) Select. Choose one production from the conflict set to
execute.

(iii) Act. Execute the production in accordance with the
RHS of the chosen production.

Of the three phases, the match phase traditionally consumes
the most time of the production interpreter. Using conventional
approaches, a production interpreter can spend more thsn 90% of its
time in the match phase of the production cycle [I]. The Rete Match
Algorithm, introduced in [1,2], avoids the brute force approach
ofsequentially matching productions against WMEs by manipulating
the productions and the WMEs to form a software tree structure to
increase the speed of the production interpreter. Since its
introduction, other Rete based algorithms which attempt to increase
the speed of the production interpreter have been introduced [3-IO].
To further reduce the amount of time consumed by the interpreter in
the match phase, special hardwares have been developed using
*This work was partially supported by the Jet Propulsion Laboratory, Pasadena,
California under contract 957856.

parallelism and multiprocessor architectures [6,11-181. Almost all of
these attempts are based, at least in part, on the Rete Match Algorithm,
which is assumed to vield the most efficient match phase of the
production system interpreter. These architectures smve to decrease
the time required in the match phase by attempting to match as many
rules as possible in parallel and by attempting to fire as many rules as
possible in parallel. In addition, because these proposed architectures
intend to use a multiprocessor implementation, they will consume a
significant amount of physical space when realized. A new method is
proposed here which simultaneously matches all of the productions to
all of the WMEs in parallel via neural computing.

In this paper, the potential for using neural computing for the
match process of the production system interpreter is investigated.
The use of neural computing to aid expert systems was addressed in
[I91 which proposed to increase the speed of expert systems by using
neural computing for the select phase. The use of neural computing in
this paper attempts to achieve increased speeds and reduced space
requirements by using neural computing for the match phase. Using a
new neural computing model, the ProNet, which resembles the single
layer perceptron of [23] , to perform the computations in the match
phase of the production interpreter, the amount of time required in the
match phase can be reduced. Compared to the Rete Match Algorithm,
the proposed method achieves a significant increase in speed. In
addition, with the recent advances in the realization of very large scale
integration and electro-optical techniques for analog and parallel
computation, the possibility exists to reduce the physical space
required by the production system.

In Section 2, a new model for neural computing, the ProNet,
is introduced, examined in detail, and, in Section 3, used to perform
the match phase for the interpreter of a developed production system.
Next, in Section 4, a simulation of a small production system using
the ProNet is presented. Finally, in Section 5 , some concluding
remarks are made.

2.0 T H E PRONET
The ProNet is a new neural computing model based on another

neural computing model, the Hamming net (HN). A derivation and
explanation of the HN can be found in [20,21]. The HN is a
combination of a feedforward net and a feedback net and is used to
classify patterns for speech recognition. The HN is given an input
vector and specifies which stored exemplar pattern it most closely
matches as a function of the Hamming distance. The exemplar
patterns are previously stored patterns which exemplify all of the
possible patterns to be passed through the system. Due to the fact that
only one exemplar patten can be identified with the HN, the "ProNet"
is created here and used to identify more than one exemplar pattem.
The ProNet uses the HN's feedforward perceptron-like net with slight
alterations to the weights and replaces the HN's feedback maxnet by
changing the biases of the feedforward net. The ProNet's purpose is
for pattern identification in production systems.

The ProNet, shown in Figure 2.1, is a feedforward net closely
resembling and mimicking the operation of the single layer perceptron.
An input vector is presented to the ProNet through the input vector U =
[ul U;! ... UN]. The ProNet is expected to identify which exemplar
patterns x E X appropriately match it, where X is the set of all
exemplar patterns. In the ProNet, the exemplar patterns are stored via
the weights wij, where the subscript i denotes which input element
and the subscriptj denotes which exemplar pattem. The output vector
y = L y l y2 ... y ~] identifies which exemplar patterns have been
matched. Basically, the ProNet simultaneously compares in parallel
an input vector U to every exemplar pattern x E X .

One advantage in using the ProNet is the ease with which the
weights and the biases are found, compared to the single layer
perceptron which requires multiple passes of the input data to train the
weights. The weights wi, and the biases c, are determined based on
the exemplar pattems. Assume all of the input vectors to the ProNet

0-8186-2012-9/89/0000/0665$01 .OO 0 1989 IEEE 665

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on August 27, 2009 at 14:51 from IEEE Xplore. Restrictions apply.

M. A. Sartori and P. J. Antsaklis, "Neural Computing and Production Systems,” P roc. o f t he 3 rd I EEE
I nternational S ymposium o n I ntelligent C ontro l , pp. 665-670, Arlington, VA, Aug. 24-26, 1988.

Figure 2.1 The ProNet.

are binary signals with a fixed length N having elements valued either
one (HI) or zero (LO). Assume also there are M exemplar patterns,
which are to be "stored" in the M nodes of the net. Then, the weights
and biases are chosen according to equations (1) and (2).

r

N

i= 1
c j = A - c x i j

I S i S N , l S j l M (1)

l I j l M , O < A < 1 (2)

The value wv is the weight for the ith input element to the jth node.
The valuexv is the ith element of the jth exemplar stored. The value c;
is the bias to be added to the jth node. The summation in the bias c; is
the total number of HI elements in the j* exemplar pattern. The value
A of c; is some constant between zero and one, but should be the same
for each bias ck The reason for including the value A in the bias will
be explained later in this section. Note that all of these values are
constant once they are determined; there is no need to adapt to new
ones or change them during the operation of the ProNet.

Once the weights w" and the biases C j are determined, the
ProNet is prepared for operation. A binary pattern is presented to the
ProNet as the input vector U with N elements. The output of the
ProNet is shown in equation (3).

'2

l < j < M (3)

The value y; is the jth element of the output vector y. For each output
element yj, the N elements ui of the input vector U are multiplied by
the weights wi;, summed with the bias c;, and passed through the
threshold logic nonlinearity f(a) illustrated in Figure 2.2. Note that the
sum in equation (3) totals the number of HI elements of the input
vector U which coincide with the HI elements of the jth exemplar
pattern. f(a,

t
a

Figure 2.2. Threshold logic nonlinearity.

~

666

Substituting in the value for c;, equation (3) becomes equation (4).

CfW if V xii = 1 , 3 ui = 1
N N

i= 1 i= 1
f (y + A) e lse , where y = c Wij Ui - c Xij 5 -

1
0 e l s e

if V x" = 1 , 3 U , = 1 '1 (4)

When all of the HI elements of the input vector U coincide with the HI
elements of the exemplar pattern, the summation of the weighted
inputs and bias will be positive, i.e. A, and after passing through the
nonlinearity, the output y j will be HI. Otherwise, the summation will
be negative, and after passing through the nonlinearity, the output y,
will be LO. If the value A is less than or equal to zero, the sum will
never be positive. If the value A is greater than or equal to one, the
sum could be positive or zero when all of the HI elements do not
coincide. Thus, the value A is a constant between zero and one.

Note that after passing through the function f, all values of a
less than zero will become zero and all values of a greater than or
equal to zero will become one. Each output y j o f the ProNet
corresponds to the jth exemplar patten. If the HI elements of the jth
exemplar pattern coincide with the same HI elements of the input
vector U , i.e. if V Xi; = 1, 3 ui = 1, the output y; will be HI;
otherwise, the output y; will be LO. Since the ProNet compares the
input vector U and exemplar patterns x E X in this manner, more than
one output y; of the ProNet can become HI for a given input vector U.

3 . 0 THE PRONET AND THE PRODUCTION SYSTEM'S
MATCH PHASE

Because of the massive parallelism and the pattern recognition
capabilities available, the ProNet becomes an excellent tool to reduce
the amount of time required in the match phase of the production
interpreter. To accomplish this, the match problem needs to be
properly handled to use the ProNet and its properties. To implement
the match process of the production interpreter using the ProNet, the
LHSs of the productions are used as the exemplar patterns, and the
WMEs are used as the input elements. A parallel simultaneous match
of all of the LHSs to all of the WMEs is performed.

The performance of the match process is degraded by neither
the number of productions nor the number of WMEs. The ProNet can
also easily cope with large changes to the WM; it is not dependent
upon temporal redundancy as the Rete Match Algorithm is. However,
note that the proposed use of the ProNet in the match phase is for
developed production systems and not for the development of
production systems. It is a tool to be used in the implementation of
production systems to perform the match more efficiently.

First, the exemplar patterns for the ProNet need to be found.
Productions of the form

IF a1 and a2 and ... and aj THEN bl and b2 and ... and bk

are considered. An assumption is made that all of the productions can
be placed in the above form, where ai and bi are, respectively,
symbolic antecedents and symbolic consequences (time-varying
numeric data is not considered here). Once all of the productions of
the production system have been found, their LHSs are compared,
and the set A of all possible antecedents is established. Note that the
set A is also the set of all possible WMEs. Assume there are N
possible antecedents and M productions. Each possible antecedent,
element of A , is assigned an element of the input vector U of the
ProNet. The M exemplar patterns are formed by comparing the LHSs
of the productions to the set A of possible antecedents. Thus, the set
A has N elements and the set X has M elements. A one (HI) is
assigned to the element of the exemplar pattern which coincides with

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on August 27, 2009 at 14:51 from IEEE Xplore. Restrictions apply.

M. A. Sartori and P. J. Antsaklis, "Neural Computing and Production Systems,” P roc. o f t he 3 rd I EEE
I nternational S ymposium o n I ntelligent C ontro l , pp. 665-670, Arlington, VA, Aug. 24-26, 1988.

the appropriate antecedent of the production; a zero (LO) is assigned to
the element otherwise. For example, if the set of all possible
antecedents is A = (a i , a2, a3, a4) , let a1 be assigned to the first
element u1 of the input vector U, a2 assigned to the second element
u2, a3 assigned to the third element u3, and a4 assigned to the fourth
element 4. If the first production given is

IF a1 and a3 THEN a2

the exemplar pattem X I associated with the first production is [l 0 1
01, wherexi1 is l ,x21 is 0, x31 is 1, andx41 is 0. The weights wi;
and the biases c; are chosen according to equations (1) and (2) using
the newly formed exemplar patterns. For the above example, the
weight w11 is 1, w21 is 0, w31 is 1, and w41 is 0. The bias c1 is A -
2. Thus, the input vector corresponds to the set A of all possible
antecedents with each of the N input elements corresponding to one of
the N predetermined antecedents. Each of the M exemplar patterns
corresponds to one of the M productions.

Once the weights and biases of the ProNet are set, the net is
ready for operation. A WM state of the production system is found,
and an appropriate input vector U for the ProNet is determined. The
WMEs of the WM state correspond to specific members of the set A
of possible antecedents and also correspond to particular elements of
the input vector U of the ProNet. An input vector U is determined by
assigning a HI to the elements of the input vector which correspond to
the WMEs of the WM state, and a LO to the elements of the input
vector which do not correspond to the WMEs of the WM state. For
the above example, if the present WM state contains the WMEs a1 and
u4, the input vector U is 11 0 0 11. The newly determined input vector
U is then passed through the ProNet. The output vector y immediately
identifies which production's LHSs match the WM state. A HI on the
output element y, signifies that the jth production is fiiable from the
present WM state, and a LO on the output element y, signifies that the
jth production is not fiiable from the present WM state. Finally, the
conflict set is formed by gathering all of the productions identified by
the HI elements of the ProNet's output vector y. This completes the
match phase of the production interpreter.

The cycle of the production interpreter using the ProNet in the
match phase can be viewed as a loop of function blocks, as illustrated
in Figure 3.1.

Match Phase

+

I I

change form
-b inputs to -b ProNet -0 conflict set

ProNet

t
-U

uu
Act Phase Select Phase

Figure 3.1 Function block diagram for the production interpreter
cycle using the ProNet.

For the function block denoting the changes to the inputs of
the ProNet, conventional processing needs to be used. Each time the
WM is changed, the input vector U of the ProNet needs to be changed.
Instead of changing the entire input vector U each time, the changes to
the WM performed in the act phase can be saved, and these changes
can be used to change the appropriate elements ui of the input vector U
in the first function block of the match phase. For the above example,
if the previous WM state is a1 and a4 and if the new WM state is a1
and a3, the WME a4 is deleted from the WM and the WME a3 is
added to the WM. These two changes are saved from the act phase.
For the match phase, these changes are processed by setting the
ProNet input element u4 LO and the input element u3 HI. Thus, the
previous input vector U is [1 0 0 11 and the new input vector U is [1 0
1 01.

For the function block denoting the PioNei the actual
computations involved in the match phase are performed using
ProNet. The computation time here is dependent on neither the
number of productions, M, nor the number of WMEs, N. All of the
productions represented as exemplar patterns in the ProNet are
compared in parallel. So, the number of productions does not affect
the computation time. All of the WMEs represented as elements uL of
the input vector U of the ProNet are compared to the productions in
parallel. So, the number of WMEs does not affect the computation
time.

For the function block denoting the formation of the conflict
set, conventional processing needs to be used. The output vector y of
the ProNet represents the conflict set. The elements of the vector
which are HI represent productions which are firable, and elements
which are LO represent productions which are not firable.
Conventional processing is used to transform this vector into a form
usable for the conflict resolution of the act phase.

In addition to considering production systems with
productions having symbolic antecedents and symbolic consequences,
production systems which allow productions to contain negated
symbolic antecedents and variable symbols as antecedents and
consequences can also be considered. If a production contains a
negated symbolic antecedent in its LHS, the production can not be
fired if that particular antecedent is contained in the WM. The ProNet
models the negation antecedent by not allowing the production to
become part of the conflict set if the particular antecedent becomes part
of the WM. This is accomplished by modifying the weights wg in the
ProNet. Equation (1) now becomes equation (5) .

1 if x" = 1

- 1 if negation of xi,

'1
I l i l N , l < j < M (5)

The weight wu is assigned a value of -1 when the jth exemplar patten
requires the negation antecedent property for the ith antecedent of the
set A of possible antecedents. For the above example with A = (a i ,
a2.03, a 4) , if the first production given is

IF a1 and a3 and NOT a4 THEN a2

the exemplar pattem x i is [l 0 1 01 where x i 1 is 1, x21 is 0, x31 is 1,
and x41 is 0. The weight w11 is 1, w21 is 0, w31 is 1, and w41 is
-1. When the ith antecedent is absent from the WM, the ith input to
the ProNet is LO and the operation of the ProNet is the same as
before. When the i* antecedent is present in the WM, the ith input to
the ProNet becomes HI and the summation of equation (3) for the jth
production with the negation antecedent property can no longer be
greater than zero. The output y j becomes zero and the jth production
with the negation antecedent is not included in the conflict set.
Continuing the above example, if the input vector U is [l 0 1 01, the
output vector y~ is 1. If the input vector U is [l 0 1 11, the output
vector y1 is 0.

Using the ProNet, production systems which contain
productions with variable symbols can also be considered. If a
production contains a variable symbolic antecedent in its LHS, the
production's LHS can match a number of different antecedents and the
production is firable from several WM states. Assume that the
productions with variable antecedents can match only a finite number
of definable antecedents. Thus, new productions are made from the
original production through the instantiation of the variable. The new
productions' LHSs contain the LHS of the original production with
the variable replaced by one of the possible antecedents, and the new
productions' RHSs are the same as the RHSs of the original
production. If the RHS of the production contains the variable as
well, the variable on the RHS is replaced by the same antecedent
which replaced the variable on the LHS. Thus, productions which
contain variables in the antecedents are instantiated for all possible
cases, and a set of new productions is formed without any variables.
Exemplar patterns can now be determined from the newly formed
productions, and the ProNet's initialization and operation can continue
as previously described. For the above example with A = [U] , a2, a3,
a 4) , if the first production given is

667

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on August 27, 2009 at 14:51 from IEEE Xplore. Restrictions apply.

M. A. Sartori and P. J. Antsaklis, "Neural Computing and Production Systems,” P roc. o f t he 3 rd I EEE
I nternational S ymposium o n I ntelligent C ontro l , pp. 665-670, Arlington, VA, Aug. 24-26, 1988.

IF a1 andv THEN a2

the variable symbol is v which can assume three different symbolic
values: a2, "3, and a.q. So, the first production is instantiated and
three new productions are formed from the first one.

IF a1 and a2 THEN a2
IF a1 and a3 THEN a2
IF a1 anda4 THENa2

These newly formed productions are used to determine the exemplar
patterns for the ProNet as described previously. It should be noted
that the instantiation of all of the variables for the developed
production system and the forming of the new set of productions are
performed before the ProNet's dimensions, weights, and biases are
set. This pre-processing of the developed production system can be
accomplished using conventional processing and could possibly
require a large amount of time depending on the number of variables
and the number of instantiations per variable in the developed
production system.

4 . 0 A SIMULATION OF A PRODUCTION SYSTEM
USING THE THE PRONET
The ProNet is applied to the match phase of a simple

production system. The list of productions used is shown in Figure
4.1.

Figure 4.1 Productions used for the simulation.

This simple production system is of the particular form considered in
this paper. For example, the second production can be written as

IF NOT (A B) and (A C) and (n B) and (n D)
THEN (A D) and (C E) and (D rr)

The format for the productions is similar to the examples used in [23].
There are ten productions with the LHS and the RHS separated by the
implication symbol +. The antecedents and consequences are pairs
comprised of the first five letters of the English alphabet and
designated by two letters enclosed in a set of parentheses. The LHSs
and RHSs are conjunctions of the antecedents and conjunctions of the
consequences, respectively. The only rule is that no pair may have
repeated letters, e.g. the pair (B B) is not allowed. Besides the letter
symbols, the production system also consists of negations and
variables. The negation antecedents are denoted by the pairs with the
not symbol 1 in front. The antecedents and consequences with
symbolic variables are denoted by the pairs with the Greek symbols n
and r.

Before the ProNet's weights and biases can be found, the
variables must be addressed. As stated in Section 3, the variables are
assumed to only represent a finite number of definable antecedents.
Thus, each variable is instantiated for all possible instances and a new
set of productions results. For example, the fifth production of Figure
4.1 is expanded into the nine new productions shown in Figure 4.2.
The variable n of the fifth production can assume the symbols A, B,
and C, and the variable of the fifth production can assume the
symbols A, B, C, and E. When this is done to each production with a
vdriable, the new production system has twenty-seven productions
instead of ten.

The LHSs of the twenty-seven newly formed productions are
now used to form the exemplar patterns for the ProNet. First, the
total number N of possible antecedents needs to be found. By
counting the different possible pairs, there are twenty possible

Figure 4.2 The fifth production with its variable instantiated for all

antecedents; the set A has these twenty elements. Next, each possible
antecedent needs to be assigned to an input element of the ProNet.
Here, the possible antecedents are assigned to the elements in an
ordered fashion as shown in Figure 4.3.

possible instances.

Antecedent Jnuut Element
(A B) 1
(A C) 2
(A D) 3

(E C) 19
(E D) 20

Figure 4.3 Assigning of the antecedents to the ProNet input elements.

The exemplar pattems of each production are formed by assigning a
one (HI) to elements which coincide to the antecedents of the LHSs
and assigning a zero (LO) to elements otherwise. For example, from
Figure 4.2, the first production's exemplar pattern x i is

[l o l l 0 0 0 0 0 0 0 0 0 1 0 0 00001

If this is done for each production, there would be twenty-seven
exemplar pattems with twenty elements each.

The weights and biases of the ProNet are now computed using
equations (5) and (2). As described previously, the weights
corresponding to the elements of exemplar patterns with negation
antecedents are assigned a value of - 1. For example, from Figure 4.1,
the seventh production's LHS produces the following weights

[O O - 1 1 0 0 0 0 1 0 - 1 0 0 0 0 1 O O O O]

For the biases, a value of .5 was chosen for the constant A. Once the
weights and biases are found, the ProNet is ready for operation.

For the operation of the production system, the match phase
was performed using the ProNet. For the select phase, the conflict
resolution was performed by prioritizing the productions and choosing
the production in the conflict set with the highest priority. The
productions were prioritized by assigning the first production of
Figure 4.1 the highest priority and the rest of the productions lower
priorities in a descending fashion. Note that to use the ProNet for the
match phase, this type of conflict resolution does not need to be used.
For example, other strategies for conflict resolution can be found in
[23]. The act phase was performed by deleting the chosen
production's antecedents from the WM and adding the chosen
production's consequences to the WM. This results in switching
elements of the ProNet's input vector, as described previously.

For the simulation. the initial WM state considered is

(AB) (A C) (A D) (B C) (B D) (B E) (C B) (C E) (DB) (D C) (DE) (ED)

which results in the following initial input vector U for the ProNet

[O l l l 0 1 1 1 0 1 0 1 0 1 1 1 c o o :]

Figure 4.4(a) illustrates the input to the ProNet for the first WM state.
Figure 4.4(b) illustrates the output of the ProNet for the first WM
state. There are eight productions in the conflict set, and the
production interpreter selects the one with the highest priority,
production eight. The WM is changed by deleting and adding the
appropriate antecedents; the second WM state is formed. Figure 4.5
illustrates the input and output for the ProNet for the second WM
state. There are ten productions in the conflict set. If this were
continued, the production interpreter would select the one with the

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on August 27, 2009 at 14:51 from IEEE Xplore. Restrictions apply.

M. A. Sartori and P. J. Antsaklis, "Neural Computing and Production Systems,” P roc. o f t he 3 rd I EEE
I nternational S ymposium o n I ntelligent C ontro l , pp. 665-670, Arlington, VA, Aug. 24-26, 1988.

highest priority, production four. The WM would be changed by
deleting and adding the appropriate antecedents, and the third WM
state would be formed.

5.0 CONCLUDING REMARKS
Using neural computing via the ProNet, the time required by

the match phase can be considerably reduced and thus, the overall time
required by the production interpreter can be decreased. The cycle of
the production interpreter employing the ProNet in the match phase
can be viewed as a loop of function blocks, as illustrated in Figure
3.1. Examining each of the blocks for the match phase, the time
required for the match phase can be quantified.

For the function block denoting the changes to the inputs of
the ProNet, additions and deletions to the WM need to be considered.
Assume that the changes made to the WM in the act phase are saved
and are used to change the ProNet's input elements in the match
phase. If WMEs are added according to the RHS of the fired
production and if WMEs are deleted according to the LHS of the fired
production, the changes made to the inputs of the ProNet by
conventional processing are a function of the number of antecedents
and the number of consequences in the fired production. Thus, the
time required to change the inputs to the ProNet is on the order of the
number of antecedents in the LHS and the number of consequences in
the RHS of the production. In [12], a number of different production
systems were examined, and it was found that the typical production
contains three to six antecedents and two to four consequences. So,
the time required to update the inputs to the ProNet is "relatively"
small. Note that if a multiprocessor architecture was used, the
changes to the inputs of the ProNet could be performed in parallel,
and a further increase in speed could be achieved along with a further
increase in physical space used.

For the function block denoting the ProNet, the time required
to achieve an output of the ProNet is dependent on the speed of the
summation and the nonlinearity of equation (3), which is dependent
on neither the number of productions in the system nor the number of
WMEs in the current WM state. Given the current state of
technology, the time for this block is probably much smaller than the
time for the other two blocks of the match phase.

For the function block denoting the formation of the conflict
set, the time required is dependent on the manner in which the match
phase and the select phase are interfaced. The output vector y of the
ProNet is the conflict set with the HI elements representing firable
productions. This vector needs to be transformed into a representation
useful to the select phase. One possibility for the transformation is to
have the output elements y,, when they are HI, point to the addresses
where the productions are stored in a conflict resolution usable form.
Whatever method is used for the transformation, a minimal amount of
conventional processing will probably be needed because of the form
of the ProNet's output vector.

Thus, given a single processor architecture and given that each
of the three function blocks of the match phase requires a "relatively"
small amount of time, the overall time to conduct the match phase will
be "relatively" small. Using the asymptotic complexity theory of [24],
Table 5.2 compares results for the ProNet and some of the results for
the Rete Match Algorithm in [2].

Rete
ProNet Match Algorithm

ComDlexitv Measure Best Worst Best Worst
Effect of Wh4 size on time for one O(I) O(1) O(1) O(W2A-1)

Effect of number of productions O(I) O(1) O(log2P) O(P)
tiring

on time for one firing

A is the number of antecedents per production
P is the number of productions
W is the number in WMEs

Table 5.2 Time complexity of the match phase using the ProNet.

A cost of O(g(x)) denotes that the cost is dominated by the function
g(x) for large x. A cost of O(1) denotes that the cost is unaffected by
the factor. Comparing the ProNet and the Rete Match Algorithm for
the above two criterions, the cost of the match phase using the ProNet
is much smaller than the cost of the match phase using the Rete Match
Algorithm. Even for the worst case, the ProNet's time for one firing
is still unaffected by the WM size and the number of productions.

The above comparison does not include the conventional
processing required by the other two function blocks of ihe .-- ,* -h

phase. However, the cost to form the input vector U for the Prohet
using the changes made in the act phase will probably be on the order
of the number of changes to be made to the elements ui of the i n ~ t i f
vector U. The cost to transform the output vector of the ProNet into a
form usable by the select phase can not be analyzed presently because
it is dependent upon the implementation of the select phase. Overall,
the match phase using the ProNet is independent of both the number
of productions and the number of WMEs and uses hardware to
perform the match; the match phase using the Rete Match Algorithm is
dependent on both ::::niber of productions and the number of
WMEs and uses software to perform the match.

In addition, the above comparison does not include current
attempts at increasing the speed of the match phase using a modified
Rete Match Algorithm or similar algorithms and/or special hardware:
Previous attempts to reduce the time required by the match phase of
the production interpreter have been reported in the literature. Using
the YES/OPS production system language and advances in the Rete
Match Algorithm, a drop in CPU time was reported in [3]. Using
partitioning of the productions, a reduction in production cycles was
reported in [7,10,8]. The results from the literature of using special
hardware are summarized in Table 5.4.

WME Productions/ Use of
s eco nd Arch i tec lure C han res/S ec

MAPPS 1 0 , ~ Yes
CMU-PMS 9400 Yes
PESA-1 25,000 8m Yes
DADO 225 85 NOWEAT?
NON-VON 2000 903 Yes
OKaZer's 4500 Yes

modified Rete?
Hardware
Needed Reference
128PEs 1131
32 Ps [61
32 PES 1141
1023 PES 116.61
16032PEs [131
512 Ps [61

~~

- is not available
Ps is processors
PES is processing elemenls

Table 5.4 Summarized results of special hardware implementations.

Although actual timing of the ProNet in the match phase has not yet
been performed, the authors believe that its performance will be
superior to the ones currently available.

In addition, note that the current hardware implementations
cited in Table 5.4 use either many processors or many processing
elements. This will cause the production system to occupy a
considerable amount of physical space. Using a single processor and
the ProNet in the match phase, physical space occupied by the
production system can possibly be less than ones currently available.
With the ProNet in the match phase, neither a many processor
architecture nor a many processing element architecture needs to be
used. With the use of very large scale integration and/or electro-
optical techniques, the layout of the ProNet need not consume a large
amount of space. If elements of the input vector of the ProNet are not
wired to the summation nodes when the weights between them are
zero, a further reduction in the space required can be achieved.
Although the actual implementation of the match phase using the
ProNet has not yet been perfonned, the authors believe that, compared
to the current ones available, a reduction in the physical space
occupied by the production system can be achieved.

ACKNOWLEDGEMENTS
The authors wish to thank Zhiqiang Gao for his comments on

the earlier versions of this paper and to especially thank Kevin M.
Passino for his valuable discussions, comments, and careful reading
of the earlier versions of this paper.

6.0 REFERENCES

[I] Forgy C.L., On the Efficient ImDlementation of Production
Svstems, Ph.D. Thesis, Department of Computer Science,
Carnegie-M;llon University, February 1979.
Forgy C.L., Rete: A Fast Algorithm for the Many Pattern /
Many Object Pattem Problem", Artificial Intelligence, Vol. 19,

Schor M.I., Daly T.P., Ho S.L., Tibbitts B.R., "Advances in
Rete Pattem Matching", Proceedings of the 1986 National
Conference on Artificial Intelligence, pp. 226-232, 1986.
Stolfo S.J., "Five Parallel Algorithms for Production System
Execution on the DADO Machine", Proceedings of the
National Conference on Artificial Intellizence, pp. 300-307,
1984.

[21

pp. 17-37, 1982.
[31

[4]

669

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on August 27, 2009 at 14:51 from IEEE Xplore. Restrictions apply.

M. A. Sartori and P. J. Antsaklis, "Neural Computing and Production Systems,” P roc. o f t he 3 rd I EEE
I nternational S ymposium o n I ntelligent C ontro l , pp. 665-670, Arlington, VA, Aug. 24-26, 1988.

Miranker D.P., "Performance Estimates for the DADO
Machine: A Comparison of TREAT and RETE", Proceedings
of the International Conference on Fifth Generation Computer
Svstems, pp. 449-457, 1984.
Gupta A., Forgy C.L., Newell A., Wedig R., "Parallel
Algorithms and Architectures for Rule-Based Systems",
Proceedings of the 13th Intemational Symposium on
Computer Architecture, pp. 28-37, 1986.
Ishida T., Stolfo S., "Towards the Parallel Execution of Rules
in Production System Programs", Proceedings of the 1985
International Conference on Parallel Processing, pp. 568-575,
1985.
Oflazer K., "Partitioning in Parallel Processing of Production
Systems", Proceedings of the 1984 International Conference
on Parallel Processing, pp. 92-100, 1984.
Moldovan D.I., "A Model for Parallel Processing of
Production Systems", Proceedings of the IEEE Tntemational
Conference on Svstems, Man. and Cybernetics, pp. 568-573,
1986.
Tenorio M.F.M., Moldovan D.I., "Mapping Production
Systems into Multiprocessors", Proceedings of the 1985
International Conference on Parallel Processing, pp. 56-62,
1985.
Won H., "On Parallel Processing of Universal Rule Based
Expert System", Proceedings of The 1987 Westem Conference
on Expert Systems, pp. 136-143, 1987.
Form C., Gupta A., Newell A., Wedig R., "Initial Assesment
of Xkhitectuies for Production.Systen;s", Proceedings of the
1984 National Conference on Artificial Intelligem, pp. 116-
120, 1983.
Forgy C., Gooptit A., "Preliminary Architccture of the CMU
Production System Machine", Proceedings of the Nineteenth
Annua l I Inwaii Intemntional conference on Svstem Sciences.

Oshisanwo A.O., Dnsiewicz P.P., "A Parallel Model and
Architecture for Production Systems", Proceedings of the
1987 International Conference on Parallel Processing, pp.

1986, pp. 194-200, 1986.

147-153, 1987.

Schreiner F., Zimmermann G., "PESA 1 - A Parallel
Architecture for Production Systems", Proceedings of the
1987 International Conference on Parallel Processing, pp.

Ramnarayan R., Zimmermann G., Krolikoski S., "PESA-1:
A Parallel Architecture for OPS5 Production System",
Proceedings of the Nineteenth Annual Hawaii Intemational
Conference on Svstem Sciences, pp. 201-205, 1986.
Stolfo S.J., Miranker D.P., "DADO: A Parallel Processor for
Expert Systems", Proceedings of the 1984 Intemational
Conference on Parallel Processing, pp. 74-82, 1984.
Gupta A., "Implementing OPS5 Production Systems on
DADO', Proceedings of the 1984 Intemational Conference on
Parallel Processing, pp. 83-91, 1984.
Shaw D.E., "NON-VON: A Parallel Machine Architecture for
Knowledge-Based Information Processing", Proceedings of
the Seventh lntemational Joint Conference on Artificial
Intelligence, pp. 961-963, 1981.
Castelaz P., Angus J., Mahoney J., "Application of Neural
Networks to Expert Systems and Command and Control
Systems", Proceedings of the 1987 Westem Conference on
Expert Systems, pp. 118-125, 1987.
Lippmann R.P., "An Introduction to Computing with Neural
Nets", IEEE ASSP Magazine, pp 4-22, April 1987.
Lippmann R.P., Gold B., Malpass M.L., A Comparison of
Hamming and Hopfield Neural Nets for Pattern Classification,
Lincoln Laboratory, Massachusetts Institute of Technology,
Technical Report 769, May 1987.
McDermott J., Forgy C., "Production System Conflict
Resolution Strategies", D.A. Waterman, F. Hayes-Roth
(Eds.), Pattem-Directed Inference Svstems, Academic Press,
New York, 1978.
Aho A.V., Hopcroft J.E., Ullman J.D., The Design and
Analvsis of Comouter Algorithms, Addison-Wesley, Reading,
MA, 1974.

166-169, 1987.

Or-- -

Figure 4.4 (a) The ProNet's input elements for the first WM state. (b) The ProNet's
output elements for the first WM state.

d
0 . 0

-1.0 -1.0
0. 5. 10. 15. 2 0 . 0 5 . 10. 15. 20. 25. 30.

N o d e ui N o d e y
j

(a) (b)

Figure 4.5 (a) The ProNet's input elements for the second WM state. (b) The ProNet's
output elements for the second WM state.

670

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on August 27, 2009 at 14:51 from IEEE Xplore. Restrictions apply.

M. A. Sartori and P. J. Antsaklis, "Neural Computing and Production Systems,” P roc. o f t he 3 rd I EEE
I nternational S ymposium o n I ntelligent C ontro l , pp. 665-670, Arlington, VA, Aug. 24-26, 1988.

