K. M. Passino, M. A. Sartori and P. J. Antsaklis, "Neural Computing for Information Extraction in & 4=aS1ieu al WS 1 wellLy=ILAUL ALkl
Control Systems,” Proc. of the 26th Allerton Conference on Communication, Control and Computingllerton Conference on Communication,
pp. 1172-1180, Allerton, IL Sept. 28-30,1988. Control, and Computing

NEURAL COMPUTING University of Illinois at Urbana-Champaign

FOR INFORMATION EXTRACTION IN 28-30 September 1988
CONTROL SYSTEMS

K.M. PASSINO, M.A. SARTORI, and P.J, ANTSAKLIS
Department of Electrical and Computer Engineering
University of Notre Dame

Notre Dame, IN 46556

Abstract

Neural computing offers massively parallel computational facilities for the classification of
patterns. In this paper we use a certain type of neural network called the "multi-layer perceptron” to
classify numeric data and appropriately assign symbols to the various classes, It is shown that there
are several control applications where a numeric to symbolic conversion process can be performed
by the perceptron. The conversion process results in a type of "information extraction” which is
similer to what is called "data reduction” in pattern recognition. After introducing the idea of using
the neural network as a numeric to symbolic converter, several applications are studied. First, the
relevance of the results to autonomous control is discussed. The perceptron is used as a numeric to
symbolic converter for a discrete event system controller supervising a continuous variable dynamic
system, Also, it is shown how the perceptron can be used to implement a fault tree which provides
useful information for failure diagnosis and control purposes.

1.0 Introduction

Neural computing involves the use of neural networks to perform computations in a massively parallel
fashion. A neural network is a model of the interconnected network of neurons in, for instance, a human
being. Researchers hope to emulate the highly efficient "computing” that humans perform with ease.
Here, we use a certain neural network called the "multi-layer perceptron” to classify numeric data and
appropriately assign symbols to the various classes. This classification is a form of information extraction
from the given data. The classification is performed with massively parallel computing; hence, it is
inherently faster than conventional sequential processing. Several applications to control systems are
discussed including discrete event systems, autonomous control systems, and fault trees. Specific examples
include the use of the perceptron to convert sensor data from a surge tank (the liquid level) to symbols that
are used by a discrete event controller. Also, it is shown how the perceptron can be used to implement a
fault tree for an aircraft,

It must be made clear that the goal of this paper is to introduce the idea of using the multi-layer
perceptron as a numeric to symbolic converter to provide measurement information for specific control
purposes. There is no contribution to the theory of neural networks or pattern recognition. The work
involves the application of a particular neural network 1o problems often encounteraed in some of the more
recent developments in control theory. In short, the results of this paper show one alternative for
implementing the interface between numeric and symbolic information, a problem of significant
importance.

Generally speaking, information extraction is the transformation of detailed information into abstract,
generalized information; there is always a certain loss of information in the extraction process. Here, the
detailed information is an n-dimensional vector of real numbers, the numeric data. The abstract information
is a set of symbols representing regions in the n-dimensional space of real numbers. The information
extraction process is performed here using the multi-layer perceptron. The type of information obtained
from the extraction process studied here is of the form "signal 1 is greater than 0 and less than 5, and signal
2 is greater that -3 and less than 10". The information lost in our extraction process is the exact value of
the real numbers. It is understood that there are other types of information extraction. For example, the
type of information extraction studied here is limited in that it does not involve characterizing the behavior
of the system generating the data. For instance, the results will not directly perform information extraction
of the form "signal 1 is the derivative of signal 2", Consequently, the results obtained in this paper are not
applicable to general information extraction problems. They only apply to a special class of information
extraction problems that have been encountered in recent studies in control theory that are outlined below.

The process of information extraction via the neural network studied here is closely related to what has
been called "pattern recognition”. In fact, the multi-layer perceptron solves what are called "deterministic
classification problems” [6]. The pattern recognition process is viewed as a three step "data reduction”
process [6,5]:

(i) Sensors make measurements of certain variables in the environment,

(ii) Feature extraction is then used to obtain a more global, high level description of the measured data,

(iii} Classification algorithms are used to name the pattern.

The viewpoint can be taken that this complete process is performed by the multi-layer perceptron. The
patterns sensed are points in the n-dimensional space of real numbers. Feature extraction entails

determining which region each element of the n-dimensional vector lies in. Classification involves taking
logical combinations of these regions and attaching labels to them.

Rather than viewing the numeric to symbolic conversion process as a traditional pattern recognition
problem, we prefer to view the multi-layer perceptron as the device which performs only step (i) (in the
above process) of a more abstract recognition process in which the goal is to take some action based on the
pattern detected. For step (i) of the more abstract process, the perceptron senses data in the environment and
provides symbols as its measurements. These symbols are then used by a controller to make decisions on
what to input into the plant. Clearly, the controller may need abstract, "symbolic” feature extraction and
classification to complete the high level pattern recognition so it can make its decisions, but these
problems are not smdied here. A similar view of pattern recognition is taken in [23]. Note that the method
used here does not employ the more complex pattern recognition techniques (e.g., statistical or syntactical)
1o recognize wider classes of pattemns. For example, as indicated above it will not characterize the
dynamical behavior of the environment over a period of time. For an overview of pattern recognition
technigques see, for instance, [19].

Information extraction can be used in several different ways in control systems. The three applications
studied here are described in more detail in Section 2. The first applications considered are certain discrete
event systems. A sampling of references for this topic include [9,12,14,16,17,22,24]). Many others exist.
Wonham and his student's work is particularly notable. In this paper we note that there are times when
discrete event controllers can be used for the control of continuous variable systems. In these cases there is
a need for a numeric to symbolic converter to provide the symbols to the coniroller. Next, for the case of
autonomous control, there is a "symbolic/numeric interface” where high level, possibly intelligent
controllers are used to controi continuous systems [1]. The multi-layer perceptron can be used here to
convert numeric information into more abstract symbolic information for the use in, for instance, an
artificially intelligent planning system. Finally, the information can be extracted by the perceptron so that
it is useful in higher level control decisions. For instance, the information provided by a faglt free on what
the failure status of a plant is can be used to generate appropriate control actions so that the effects of the
failures can be eliminated. It is shown here that the multi-layer perceptron can be used to implement a fault
tree.

The theory of the multi-layer perceptron is outlined in Section 3. In Section 4, two examples are
presented. First, an example of the use of the perceptron as a numeric to symbolic converter for a surge
tank is given. Next, it is shown how the perceptron can be used for the implementation of a fault tree for
an aircraft. Section 5 contains the references.

2.0 Information Extraction in Control Systems

In this section we discuss several ways in which information extraction is used in control theory. In
practice, information is always extracted, in the modelling of processes for example. The extraction that we
discuss here is the transformation of numeric data to symbolic information that is done dynamically in an
on-line control system. There are three main applications to control theory which are discussed here.

The first is discrete event systems. Sometimes a plant is described by very complicated
differential/difference equations. For some of these plants current control analysis and design techniques
may be either very complicated, awkward, or simply inadequate. An alternative approach to analysis and
design is to begin with a different model. In [14] the authors give an example of how to use a symbolic
formalism, the nondeterministic finite state automaton, to describe a plant (a surge tank) that is normally
described with a nonlinear differential equation. Using this description, a finite state controller was given
and certain closed loop properties were verified. In these cases, for controller implementation, a numeric to
symbolic converter is needed to convert the sensor data 1o symbols for use in the discrete event controller.
The perceptron developed here is used to implement this converter.

The discrete event controllers considered in this paper will be referred to as "symbolic controllers” since
they are developed using a symbolic formalism and have as inputs and outputs, symbols rather than
numeric data. The situation where we have a symbolic controller controlling a continuous variable dynamic
system is depicted in Figure 2.1. The symbolic controller uses Yj (symbols) as inputs and a reference
input, say Rj (symbols), and generatzs the control inputs to the plant Uj (symbols). The numeric/symbolic
converter transforms the measurement data y(t) into symbols Y;. The symbolic/numeric converter
transforms the symbols Uj into numeric plant inputs u(t).

The numeric/symbolic converter can be thought of as analogous to analog to digital (A/D) converter in
digital systems. In the one-dimensional case, the real number line (numeric data) is partitioned into regions
associated with, say, binary numbers (symbols) and the values of the input are converted into the
appropriate binary numbers. Indeed, there have been neural network implementations of a 4-bit A/D
converter [21,7]. The work here generalizes that application. Besides performing a more general conversion

(Symbols) (Numbers) (Numbers) (Symbols)

Symbolic/ Numeric/ |
Numeric § Symbolic f=—T—>
Converter | Converter |

Symbolic
Contoller

Figure 2.1 Symbolic/Numeric Conversion

process than A/D conversion, the perceptron can operate in an asynchronous mode in addition to a
synchronous one. Note that the perceptron can be expected to perform numeric to symbolic conversion
quickly. This is very important if it is t0 be placed in the control loop since delays tend to cause
instability. The symbolic controller's control actions on the continuous plant can be translated to numeric
inputs by a generalized method analogous to digital to analog (D/A) conversion. It may convert a symbol
to a simple numeric value or to a sine wave, square wave, or some other more complex signal. This
problem is not addressed here.

Antonomous controller architectures can be viewed as hierarchical with three main levels (see e.g., [1]).
These are the management and organization level, the coordination level, and the execution level. The
execution level contains the hardware and conventional control algorithms performing low level feedback
control. The management and organization level has the interface to the operator and the intelligent
learning and planning systems for supervising the actions taken at the lower levels. The coordination level
provides a link between the management and organization level and the execution level, Autonomous
controllers are used in the control of very complex systems that are normally hybrid. A "hybrid” system is
one that contains dynamics that can be described by, for instance, differential or difference equations, and
dynamics that are convenient to describe with some symbolic formalism. The controllers developed for
such systems are also hybrid, with various numeric and symbolic components at each of the three levels.
The numeric type algorithms are normally used at the lower levels of the architecture, the execution level,
while the symbolic type algorithms are operating at the highest level, the management and organization
level, There is then a symbolic/numeric interface in the autonomous controller much like the one in
discrete event system theory discussed above. Consequently, the perceptron developed here will be useful in
intelligent autonomous control applications.

The results here can also be used in the field of intelligent autonomous control called Expert Control.
The "safety nets” in [2] use information extraction of ranges of variables for making high level control
decisions in adaptive control. The results of this paper provide a method to produce the information for
such control decisions. In [2] the authors propose to use an "expert controller”, one that uses an expert
system 0 emulate the actions that a human operator would perform to maintain an adaptive controller's
operation. The human in the control loop is being emulated. It is then natural to use a perceptron to
emulate the human's pattern classification abilities,

in general the multi-layer perceptron can be used to classify data so that control decisions can be made,
The symbols attached to various regions of the n-dimensional space of real numbers may have a particular
physical interpretation, The perceptron can provide failure information such as "signal 1 is in range 4 AND
signal 3 is in range 5 OR signal 7 is in range 11". This information may be quite useful in making control
decisions. For instance, the values of signals 1, 3, and 7 may indicate that a certain failure condition is
occurring and that a specific control action ought to be taken so that the failure will not degrade system
performance. Failure information of the type described above is typically generated by Fault Trees [4.3].
The low level failures in fault trees are characterized by regions of certain variables and fault tree high level
Jfailures by logical combinations of the low level failures. Here, the multi-layer perceptron determines
which regions certain variables occur in and performs the appropriate ANDing and ORing to indicate what
high level failure has cccurred. In the following section, an outline of the theory of the multi-layer
percepiron is given,

3.0 The Multi-Layer Perceptron for Information Extraction

The multi-layer perceptron is a feedforward neural network used for neural computing. The multi-layer
perceptron considered here contains a hidden layer between the input and the output layers as illustrated in
Figure 3.1. The input to the perceptron is the vector u=[u; vy ... upq]* (where t denotes transpose), and it
contains M continuous real valued elements. The vector x'=[x"; x5 ... x'\1 %, which contains M binary
elements, is the output of the input layer and the input to the hidden layer. The vector x"=[x"; x5 ...
x"M2lt, which contains M5 binary elements, is the output of the hidden layer and the input to the output

Figure 3.1 The Multi-Layer Perceptron

layer. The vector y={y; y2 ... YNI', which contains N binary elements, is the output of the perceptron. In
Figure 3.1, the nodes are denoted with circles and the biases with arrows that point downward. The weights
are denoted by all of the other arrows that are between u and the input nodal layer, x' and the hidden nodal
layer, and x" and the output layer. Each node produces at its output a summation of its weighted inputs and
its bias which is passed through a threshold nonlinearity. The result is a binary output for each layer. Two
typical threshold nenlinearities are illustrated in Figure 3.2.

f(x) gx)
_t= =
(@)

Figure 3.2 Threshold Nenlinearities for the Mult-Layer Percepiron

The multi-layer perceptron is commonly used for "pattem classification”. In the classification problem
one desires to identify certain "decision” regions that the input vector u lies in. Examples of dividing a two
dimensional input space into decision regions are illustrated in Figure 3.3.

©

@
Figure 3.3 Examples of Two Dimensional Decision Regions

An input pattern u is presented to the perceptron. After processing, the output vector y represents certain
decision regions. In particular, if u is a member of one of the decision regions, an appropriate element of
the output vector y becomes a one (HI). If the input pattern u is not a member of a particular decision
region, an appropriate element of the output vector y becomes a zero (LO).

The weights and biases of the multi-layer perceptron depend on the decision regions to be identified.
The technique used to determine the weights and biases for the multi-layer percepiron here will be referred to
as the "Harvey Method". It is based on the results presented in [8) and is outlined here. The Harvey
Method can be used most efiectively if the input space can be divided into decision regions composed of
hypercubes, as in Figure 3.3(a), or hyperplanes, as in Figure 3.3(b). Using the Harvey Method, not only
are the weights and biases determined but also the actual interconnections between the nodal layers. As
with the weights and biases, the interconnections also depend on the decision regions to be identified. The
three layers of the multi-perceptron, as shown in Figure 3.1, are named (from left to right) the input/plane
layer, the AND layer, and the OR/output layer. The input/plane layer consists of nodes representing the
hyperplanes dividing the input space. For example, in Figure 3.3(a) region A needs eight one-input
input/plane nodes since the region is constrained by eight different lines. The AND layer consists of one
AND node for each decision region defined by more than one hyperplane. For exampie, in Figure 3.3(a)
region A needs two four-input AND nodes, each to denote that u is below one line, to the left of another
line, above one line, and to the right of still another line. In other words, each four input AND node will

indicate that u lies in one of the two boxes that define region A. The OR/output layer consists of nodes
used to associate disjoint decision regions. For example, in Figure 3.3(a) region A needs one two-input
OR/output node to indicate that u lies in one of the two boxes. Using the Harvey Method, the weights
depend on which side of the plane the decision region lies, and the biases depend on the locations of the
decision regions. As an alternative, the weights and biases could be determined by passing sample decision
region data through the multi-layer perceptron and updating the weights and biases based on a training
algorithm explained in [8].

There are numerous other methods used to determine the weights and biases. For instance, the Back-
Propagation Training Algorithm which is presented in (18,15] can be used for perceptrons similar to the
one shown in Figure 3.1, but with fully interconnected nodal layers. This algorithm may be particularly
useful if the input space must to be divided into decision regions which are separated by curved borders, as
in Figure 3.3(c). In [10) three other training procedures are introduced and compared to the Back-
Propagation Training Algorithm. In {11], an alternative to the Back-Propagation Training Algorithm,
called the "Selective Update Back-Propagation Algorithm”, is introduced and shown to work in cases where
the Back-Propagation Training Algorithm will not. Through the presentation of input data, the multi-layer
perceptron’s output, and the desired output, these algorithms train the weights and the biases until they
stabilize. Although the Back-Propagation Training Algorithm seems to work for most cases, convergence
of the algorithm has not yet been proven for the fully interconnected multi-layer perceptron [15,18].
Convergence for the lightly interconnected multi-layer perceptron is considered in [20].

4.0 Examples of Information Extraction In Control Systems

In this section two examples of how information extraction can be performed via the multi-layer
perceptron are given. The first example, from chemical process control, involves a liquid holding "surge
tank" similar to the one studied in {14). The tank is depicted in Figure 4.1 below.

Fill Valve
W=
High Liquid
Ay~ Level
Normal ¢
Empty Valve
Low N
Empty

Figure 4.1 Surge Tank

The empty valve is unpredictably opened by some user and the controller turns the fill valve on and off so
as to keep the tank from becoming empty or full. The surge tank can be described with the first order

nonlinear differential equation [13):
dh(® _ Fi(t) ke(®Vh()
& pA pA
where p=99.8, the fluid density of the liquid, A=1, the cross sectional area of the tank, h(t) is the height of
the liquid in the tank, and k=1000, a physical constant. The value of c(t) represents the variabie outflow
pipe cross sectional area. The unpredictable user is modelled as c(f)=.1co(t), where cy(t) is a random

variable uniformly distributed on 0 to 1. The value of Fi(t)= IOONEF(t), where F(t} is either 1 (indicating
that the fill valve is on), or 0 (indicating that the fill valve is off). Notice that with this choice if the input
valve is open the liquid level will stay the same or rise.

The height of the liquid in the tank is discretized into 5 regions which are represented with the symbols
Yi» 1=1,2,3,4,5. The case when F(t)=1 will be represented with the symbol uj and F1)=0 with the symbol
up. The symbolic/numeric converter is simply a device that outputs 1 when it has as an input uj and 0
when its input is ug. The controller which is the same as in [14] is given by:

Controller I
Controller Input | y 1 12 ¥3 b Ys I

Controller Qutput| u, u u, Ug ug I
————————

Next, the numeric/symbolic converter must be specified. Let hi=0 (empty)} and hy represent the case when
the tank is completely full. Also let hy and h3 represent two particular levels in the tank which
distinguish, respectively, a low liquid level from a normal one and a normal level from a high one. The
table below gives the necessary information to specify the classification problem.

Numeric/Symbolic Converter l

Numeric/Symboliq
Converter Output | Y1 Y2 Y3 Y4 ¥s

Plant Outpnl
Re.a;litonstpt Ih(t)=hl hy<h(ty<hy | h<h(t)<hg | hach(t)<h ,

h()

S A .

Figure 42 The Multi-Layer Perceptron for the Surge Tank

The arrows indicate amplifiers, The shaded and unshaded circles indicate a summing of the inputs to the
circle (arrows pointing towards the circle) and that the sum is passed through one of the two nonlinearities
shown in Figure 3.2, The shaded circles refer to Figure 3.2(a) and the unshaded circles refer to Figure
3.2(b).

The object of the controller studied in [14] was to stabilize the height of the liquid in the surge tank
around a particular level. In particular, it was desired that the steady state behavior of the plant entail only a
sequence of y3 and y,4 alternating. When the plant, the numeric/symbolic converter, the controller, and the
symbolic/numeric converter are connected together as in Figure 2.1 and simulated, the output of the plant
behaved as desired. The plant was given two initial conditions, completely empty, and at level y3. Each
time, the controller opened the fill valve and then closed the filf valve when the level rose to y4. The input
valve was opened again when the lower level fell to y3 and closed again when the level rose to y4. The
system continued in this fashion with the controller attempting to keep the level just above ys.
Consequently, the multi-layer perceptron successfully implemented the numeric/symbolic converter for the
surge tank and its symbolic controller.

The second example involves the implementation of a fault tree for an aircraft. The multi-layer

perceptron is used to indicate the failure modes which depend on the aircraft's inputs and outputs. The
aircraft's input vector u and the output vector y are:

© | pitch angie (deg)
1,1 load factor (g)

Four failure modes are considered here. To do so, each input and output is discretized into five regions with
four boundaries associated with the real number line. For example, the elevator 8, is discretized as follows:
Ry Y G Y Ry
<>l i P P>
] 1 1 : ’ _ &

5, @ i t 1 i
5r1 i 0 8y2 Sr2

where the G (for Green) region denotes an area of safe operation, the Y, and Y5 (for Yellow) regions denote
areas of warning, and the Ry and R, (for Red) regions denote areas of unsafe operation. The table below

defines the five regions for the elevator §,.

u= [Be:l elevator {deg)

Q7] pitch rate (deg/sec)
&, | thrust (deg) y=

Elevator §, Regions

Elevator Region Rl Y, G

<
Elevator Range | §,5 g1 8R<1 SB—SYI SYT 558 -

The four other aircraft parameters are discretized in a similar manner.
Using the defined regions for the parameters, four failure modes for the aircraft are identified as follows:

1) load factor is in region Ry (M, € Rp)

2) load factor is in region Y, (1, € Yy)

3) load factor is in region Y and elevator is in region Y; (Mz€ Y, and §, € Y;)

4) (pitch rate is in Yy and pitch angle is in Y} or (pitch rate is in Y, and pitch angle is in Y,)

[qe Yyand6e Yy)or(ge Yyand O € Yy))
For the four failure modes decision regions can be defined and a multi-layer perceptron can be designed

using the Harvey Method. The perceptuon's inputs are the inputs and outputs of the aircraft and the
perceptron’s outputs are the four fault modes. For the first mode, the output is HI if the load factor m, is in

region Ry. Let & denote equivalence. Notice that
M€ Ry & N, 2MNRe & Ny-Nr220

Using the last equation, the multi-layer perceptron for the first fault mode is shown at the top of Figure
4.3. For the second fault mode, the output should be HI if the load factor m, is in region Y,. Notice that

Nz2MNy2 & MNy-Nyz20
and

Mz€ Y2 © Ny SN <MRy & {
Mz<TMR2 & -TMz+Mgr2>0

Using the last equations, the multi-layer perceptron for the second fault mode is shown in the middle of
Figure 4.3. For the third fault mode, the output should be HI if the load factor 1, is in region Y, and the

elevator 8, is in region Y;. Notice that

Mz2Myz © Mz-Myz220
and

Nz€ Y2 & NS0 <Mz & {
Nz <Mpz < -Mz+Mpy >0

ad
86>8R1 = 83'8R1>0

SeE YIQSR].(BeSSYl = and
SeSBYI (=1 '8e+8Y120

Using the last equations, the multi-layer percepwron for the third fault mode is shown in Figure 4.3,

] g2
n, o g (1)
1 Ty2

@

8e
€)

.- o
Figure 4.3 The Muiti-Layer Perceptron for the First (1), Second (2), and Third (3) Fault Modes

For the fourth fault mode, either the pitch rate is in region Y and the pitch angle is in region Y; or the
pitch rate is in region Y, and the pitch angle is in region Y5. Notice that

{ ge Y; & q-qg; >0 and -q+qy; 20

and

0e Yl = 9-9R1>0 and -6+9Y120
or

qe Y2 &« q-qR2>0 and -q+qY220
and

©e Y, & 8-8p5>0 and -8 + 8y, 20

Using the last equations, the multi-layer perceptron for the fourth fault mode is shown in Figure 4.4,

! qR1
q >
IYy1 N\ 1
-1 , 35
1
O 1
e N1 .
Oy,
-1 b4 0.5
: 1 Y2 &) 4)
>
, 922N\U 1
sl 3.5
Oy2 &
1 % 1
g
-1
O

Figure 4.4 The Multi-Layer Perceptron for the Fourth (4) Fault Mode

The aircraft and the multi-layer perceptron which implemented the fault tree were simulated. The multi-
layer perceptron appropriately identified all of the fault modes,

Acknowledgements:
The authors gratefully acknowledge the partial support of the Jet Propulsion Laboratory under Contract
No. 957856 and the Army Research Office under Contract No. DAAL 03-88-K-0144,

5.0 References
[1] Antsaklis P.J., Passino K.M., Wang S.J., "Autonomous Control Systems: Architecture and
Fundamental Issues”, Proc. of the American Control Conf. pp. 602-607, Atlanta, June 1988.
[2] Astrom K.J., et al, "Expert Control”, Automatica, Vol. 22, No. 3, pp. 277-286, 1986.
[3] Barlow R.E., ¢t], Reliability and Fault Tree Analysis, SIAM, Philadelphia, 1975.
[4] Bauelle Columbus Division, Guidelines for Hazard Evaluation Procedures, American Institute of
Chemical Engineers, NY, 1985,

(5] Forsyth R., Rada R., Machine Leaming, Wiley, NY, 1986.

[6] Fu K.S., Sequential Methods in Pattern Recognition and Machine Learnjug, Academic Press, NY
1968.

(7] Gray D.L., Synthesis Procedures for Neural Networks, Master's Thesis, Dept. of Electrical and
Computer Eng., University of Notre Dame, Notre Dame, IN, July 1988,

[3) Harvey R.L., "Multi-fayer Perceptron Theory", Dept. of Electrical and Computer Engineering Seminar,
University of Notre Dame, March 21, 1988

[9] Ho Y.C., Li S., "Extensions of Infinitesimal Perturbation Analysis”, Trans, on Automatic Control,
Vol. 33, No. 5, pp. 427-438, May 1988.

{10] Hoang W.Y., Lippmann R.P., "Neural Net and Traditional Classifiers”, Presented at the IEEE
Conference on Neural Information Processing Systems - Natural and Synthetic, Denver, CO,
November 1987.

{11} Huang S.C., Supervised Learning with a Selective Update Strategy for Antificial Neural Networks,
Master's Thesis, Dept. of Electrical and Computer Engineering, University of Notre Dame, Notre
Dame, IN, Aug. 1988.

{12] Inan K., Varaiya P., "Finitely Recursive Process Models for Discrete Event Systems”, IEEE
Transactions on Automatic Control, Vol. 33, No. 7, pp. 626-639, July 1988,

{13] Johnson A., Process Dynamics Estimation and Control, Peregrinus Pub., London, 1985.

[14] Knight J.F., Passino K.M., "Decidability for Temporal Logic in Control Theory”, Proceedings of the
Twenty-Fifth Annual Allerton Conference on Communication, Control, and Computing, Vol. I, pp.
335-344, 1L, 1987.

{15] Lippmann R.P., "An Introduction to Computing with Neural Networks", IEEE ASSP Magazine, pp.
4-22, April 1987.

f16] Ostoff J. S., Real-Time Computer Control of Discrete Systems Modelled by Extended State
Machines: A Temporal Logic Approach, PhD Dissertation, Report No. 8618, Dept. of Elect. Eng.,
Univ, of Toronto, Jan. 1987.

[17] Passino K.M., Antsaklis P.J., "Branching Time Temporal Logic for Discrete Event System Analysis”,
Proceedings of the Twenty-S:xm Annual Conference on Communication, Control, and Computing,
Sept. 1988.

[18] Rumelhart D.E,, Hinton G.E., Williams R J., "Learning Internal Representations by Error
Propagation”, in Rumethart D.E., McClelland J L. (Eds.), Parallel Distributed Processing:
Explorations in the MicroSiructrure of Cognition, Vol, 1: Foundations, MIT Press (1986).

(19) Shapiro S.C., ¢d., Encyclopedia of Artificial Intefligence, Volume 2, Wiley, NYY, 1987.

[20] Shrivatava Y., Dasgupta S., "Convergence Issues in Perceptron Based Adaptive Neural Network
Models", Proceedings of the Twenty-Fifth Annual Allerton Conference on Communication, Control,
and Compating, Vol. II, pp. 1133-1141, IL, 1987.

[21] Tank D.T., Hopfield JJ., "Simple "Neural" Optimization Networks: An A/D Converter, Signal
Decision Circuit, and a Linear Programming Circuit”, [EEE Transactions on Circuits and Systems,
Vol. CAS-33, No. 5, pp. 533-541, May 1986.

[22] Thistle J. G., Wonham W. M., "Control Problems in a Temporal Logic Framework", International
Journal Control, Vol. 44, No. 4, pp. 943-976, 1986.

{23] Wilson R., "Is Vision a Pattern Recognition Problem?", in Kittler J. (Ed.), Pattern Recognition,
Lecture Notes in Computer Science 301, Springer-Verlag, 1988,

[24] Wonham W.M., Ramadge P.J., "Modular Supervisory Control of Discrete-Event Systems”,
Mathematics of Control, Signals, and Systems, Vol. 1, pp. 13-30, 1988.

