K. M. Passino and P. J. Antsaklis, "Branching Time Temporal Logic for Discrete Event

System Analysis,”Proc. of the 26th Allerton Conference on Communication, Control and Presented at the Twenty-Sixth Annual
Computing, pp. 1160-1169, Monticelo, IL Sept. 28-30, 1988. Allerton Conference on Communication,
BRANCHING TIME TEMPORAL LOGIC FOR Control, and Computing
DISCRETE EVENT SYSTEM ANALYSIS University of Illinois at Urbana-Champaign
28-30 September 1988
K.M. PASSINO and P.J. ANTSAKLIS PP Li6o -~ LS

Dept. of Electrical and Computer Engineering
University of Notre Dame, Notre Dame IN 46556

Abstract

Given a linear-time temporal logic description of discrete event system behavior, it
has been shown that a proof system can be used to prove that certain properties stated in
the linear-time temporal language are satisfied. Although such proofs offer an analysis
method for discrete event systems, they are often quite difficult to construct, requiring
special insights and clever tricks. As an alternative, design specifications can be stated in
a branching-time temporal language and a verification algorithm, which replaces the hand-
constructed proofs, can be used to test whether the specifications are true or not. In this
paper, a certain Petri net is used to model finite state discrete event systems. It is shown
that the Petri net model can be used to gemerate the structure over which the verification
algorithm operates. Hence, the algorithm can be used w verify discrete event system
properties that can be stated in a branching-time temporal language. The approach to
analysis presented in this paper is illustrated by giving three new examples where the Petri
nets are specified and the algorithm is used to verify a variety of design specifications.

1.0 Introduction

This paper contains some initial results on the use of a branching-time temporal logic called
Computation Tree Logic (CTL) [4,3] for discrete event system analysis in the field of control theory. CTL
formulas are used here to state the desired properties or the design specifications that we would like the
System to satisfy. A certain Petri net is used to modei the underlying discrete event system and to generate
a CTL structure which is used by a design specification verification algorithm. Three new examples are
given to illustrate the approach to discrete event system analysis. The first example involves a surge tank
where the design specifications describe how a liquid level should be regulated. A manufacturing system is
used for the second example and a mutual exclusion and priority specification are verified. The third
example involves the study of a "self stabilizing distributed system". It is shown that a certain system
which was originally thought to be self stabilizing will actually deadlock.

An discrete event system from chemical process control is the "surge tank” [9]. It will be used below
as an illustrative example in the explanation of the analysis process for discrete event system studied here.
The surge tank has a sensor which can distinguish between five liquid levels (empty, low, normal, high,
and full) and a controller which simply opens and closes a fill valve. Unpredictable users operate an empty
valve 1o take liquid from the tank. One design specification for the surge tank system is that the tank never
become empty or full if it is initially at a normal liquid level,

First, the discrete event system is modelled with a certain Petri net. The Petri net model defined here
allows for contro! inputs, outputs, and disturbances. There are both control inputs that can cause an
immediate change in the plant, and inputs that act to enable and disable certain events. Although the
modelling methodology used here is quite flexible, it is limited by a finite state restriction. The Petri net
model for the surge tank has one input, the fill valve, one output, the liquid level, and one disturbance, the
empty valve. Once the discrete event system has been modelled one must provide the design specifications,
i.e., how one would like the system to behave. In this paper the design specifications are stated with CTL
formulas. CTL formulas are comprised of (i) atomic propositions such as "the liquid level is low" or "the
fill valve is open”, (ii) the Boolean connectives (¢.g., A and, v or, — not), and the temporal operators (iii)
Vs @ (f1) 3s © (1)), intuitively meaning for all (for some) next structure state(s) the formula fy is true,
and (iv) Vpify Uf2] (@p[f1Uf2)), inwitively meaning for alt (for some) path(s) f} is true until f> becomes
true. Suppose that the initial liquid level of the surge tank is normal and the fill valve is open. An
example design specification for the surge tank is —3s[TrueU(emptyvfull)]. This intuitively means "it is
not the case that therz exists a path such that the liquid level will become empty or full". The Petri net
model of the discrete event system is used to generate a CTL structure. The design specification verification
algorithm from [4] is used here to determine whether a CTL formula is true or not for the CTL structure.

Hence, discrete event system analysis here involves (i) modelling the discrete event system with a
certain Petri net, (ii) using the Petri net to generate a CTL structure, (iii) stating the design specifications in
the branching time temporal language, and (iv) using a verification algorithm to mechanically test whether
the design specifications are true or not. Next, the relationships to relevant research in temporal logic and
the theory of Petri nets are given.

Note that, given a linear-time temporal logic description of discrete event system behavior, it has been
shown that a proof system can be used to prove that certain properties stated in the linear-time temporal
language are satisfied [12,13,18,14]. Although such proofs offer an analysis method for discrete event

systems, they are often quite difficult to construct, requiring special insights and clever tricks. In this paper
we study the use of a branching-time temporal logic called Computation Tree Logic (CTL) [4,3]. This
logic system is similar to the ones found in {1,6]. Design specifications are stated in the CTL language and
an algorithm which replaces the hand-constructed proofs is used to test whether the specifications are true or
not. A branching-time temporal language is used here since there is a design specification verification
algorithm that has complexity linear in both the size of the structure and the length of the specification. In
(14] similar efficient decision procedures for simple (low length) formulas in his linear-time temporal
language are developed. The verification algorithm for lirear-temporal fogic in general, however, must have
high complexity [4]. The two types of logic must also be compared based on their expressiveness, i.e.,
what sort of properties can be stated in the temporal language. It is interesting to note that neither linear
nor branching-time temporal logics are more expressive than the other; each can express things that the
other cannot [11]. For example, linear-time temporal logic cannot express the existence of paths and
branching-time cannot express certain "faimess properties”. For a complete, up to date discussion of the
advantages and disadvantages of linear and branching-time temporal logics see [14,6].

Petri nets appropriate for a discrete event control theoretic setting were first defined in [10]. Analysis
results for discrete event systems represented with a sort of Petri net were also developed by Ichikawa and
Hiraishi in [7]. The Petri net definition here follows and extends those given in [17,15,16]. It is more
expressive than those in [7] and [10] in that it allows for the use of an "inhibitor arc”. The expressiveness
of the Petri net is, however, limited here by a finite state restriction. The "state equations” described in {17]
for Petri nets are used here. These equations are analogous to the state equations used in conventional
control theory. Such recursive state equations for discrete event system description have also been given in
[8]. The Petri net is used here to generate the CTL structare for a discrete event system. It can be used as
an alternative to the "State Machine Language” (SML) described in [2,4] for producing the structure,

The branching-time temporal logic CTL is defined in the next section. The design specification
language and verification algorithms are described. In Section 3, the definition of the Petri net used here is
given and it is explained how to produce the CTL structure. In Section 4, three examples are described in
detail and certain results of this paper are applied to these examples.

2.0 Branching Time Temporal Logic

In this section the design specification language, i.e., the language used to state discrete event system
properties is given. The semantics of the language are defined refative to a structure which is generated here
with the Petri net defined in the next section. The verification algorithm which operates over the structure
is described. The results of this section follow those of [4] with some notational differences.

2.1 The Design Specification Language

The specification language is a propositional branching-time temporal logic called "Computation Tree
Logic" (CTL) reported in [4,3]. The language syntax is given first. Let N denote the set of natural
numbers. Let Ap denote the underlying finite set of atomic propositions. The formulas of the CTL are
defined inductively.

(i) Every atomic proposition pe Ap is a CTL formula.

(ii) If £ and f are CTL formulas, then so are —fy, fiafy, Vs @ (f1), Is @ (fy), VpIfyUf,], and

Jplf;Ufs].

(iif) Nothing else is a CTL formula unless it is obtained by finitely many applications of (i) and {ii)

above.

The symbols A and — mean "and” and "not" respectively. The parentheses "(" and *)" are used as needed
for forming formulas. The next time operator is ®. The formula Vs @ (f1) @s @ (f})) inwitively
means that f1 holds in every (in some) immediate successor structure state of the current structure state.
The until operator is U. The formula Vp[f; Ufy] 3pl[f;Uf,)) intuitively means that for every path of
structure states (for some path of structure states), there exists an initial prefix of the path such that f holds
at the last structure state of the prefix and f) holds at all other structure states along the prefix.

The semantics of CTL formulas are defined relative to a labeled state-transition graph {or Kripke
structure). A CTL structurc is a triple M=(S,R,P,) where

(i) S is a nonempty finite set of structure states.

(ii) R is a binary relation on S (SxS2R) which gives the possible transitions between states and must

be total, i.e. Vse§ 3s'e § such that (s,s"eR.

(iii) P.:S—2AP assigns to each structure state the set of atomic propositions true in that structure

state.

A path is an infinite sequence of structure states denoted by <sg, s1, 2, ... > rooted at so such that
VieN, (si,si+1)€ R. The standard notation for indicating truth in a structure is used: M,sgl=f means that
formula f holds at structure state sg in structure M. When the structure M is understood sgl=f is used.
Assume that f, 1, and f2 are CTL formulas. The relation |= is defined inductively as follows.

(i) sol=a iff ae P¢(sg).

(ii) sgl=—f iff it is not the case that sgl=Ff.

(iii) sql=fyAfy iff spl=f] and sgi=f.

(iv) spl=V's @ (f) iff for all states s such that (sg.5)€ R, si=f.

(v} spl=3s @ (f) iff for some state s such that (sg,s)e R, sl=f.
(vi) spl=Vp[f, Ufy] iff for all paths p=<sg, s1, 52, ... >, Jie N where i20 and s;l=f3, and Vje N where
O<j«i, sil=fy.
{vii) sol=3p[1f1Uf2] iff for some path p=<sg, s, 82, ... >, Jie N where i20 and s;l=f5, and Vje N
where 0<j<i, sjl=fy.

The atomic proposition "True” is always true, i.e. for all se §, Truee P(s). The following
abbreviations are used in writing CTL formulas.

(i) £y viy = —(—f1a—f) for logical disjunction.

(ii) f1—-fy = —fyvf; for logical implication.

(iii) £1<=f2 = (f1 >f)A(f2—f)) for logical equivalence.

(iv) Vp 0, (D = Vp[TrueUf] inwmitively means that f holds in the future along every path p from s, i.e.
f is inevitable.

{v)3p ® (f) = 3p[TrueUf] intuitively means that there is some path p from sg that leads to a structure
state at which f holds, i.e., f potentially holds.

@) VpBIH=-Pp O H intuitively means that f holds at every structure state on every path p from
s0, 1.e., f holds globally.

(i) p I =-vp o (—£) intuitively means that there is some path p on which f holds at every
stucre state,
This completes the definition of the design specification language. Once a design specification is stated in
the branching-time temporal language it is tested whether it is true or not with a verification algorithm that
is described next.

2.2 The Design Specification Verification Algorithm

In this section a brief outline of the design specification verification algorithm is presented. More
details are given in [4]. The verification algorithm is an effective procedure for determining whether a CTL
formula is true or not. It is a "model checker” since it determines if the structure M is a model for the CTL
formula being tested, Assume that we wish to determine whether formula fp is true or not in the finite
structure M. Roughly speaking, the verification algorithm iteratively labels the states of the structure M
with successively longer subformulas of fg (and negations of subformulas of fp) until structure states are
labelled with the formula fg or —fg. With this, the algorithm can determine whether the formula fp is true
or not. A more detailed description follows.

Let sub(fp) denote the nonempty finite set of subformulas of CTL formula fy. Note that all formulas
fe sub(fp) are also CTL formutas. The definition of subformulas proceeds by induction on fy.

(i) If f=fp, then fe sub(fg).

(ii) If fe sub(fp) and f=—f}, f=Vs @ (f), or f=3s @ (f}), then ;€ sub(fp).

(iii) If fe sub(fp) and f=fjAfy, f=Vp[f;Uf,], or f=3p[f; Uf,], then fy,fo€ sub(fyp).

(iv) Nothing else is a subformula of fy.

The nonempty finite set of positive subformulas of fy is given by sub*(fp)={f! for all fe sub(fg), if f=—f;,
then f=f; else F=f}. Next, we define the length of a formula f, denoted by p(f). The definition procesds by
induction on f.

(1) p(f)=1 if f=p where pe Ap, the set of atomic propositions,

(i) p(B=p(—L),

(iif) p(¥'s @ (f1))=pGs @ (f1))=p(f1)+1,

() p(E1Af2)=p(Vpif1 UL])=p(3plf1 Utz])=max {p(f1),p(f2)) +1.

The notion of length of a formula is simifar to "rank” [9] in that it quantifies the complexity of the
formula.

Let label(s) denote the set of formulas that the algorithm has labeled structure state se S with.
Beginning with i=1, on pass k the verification algorithm labels each structure state s S with the set of
formulas £ in sub*(fg) (or their negations) of length p(f)=k so that fe label(s) iff M,sl=f and —~fe label(s)
iff M sl=—f. The algorithm makes n passes where n=length(fg). Hence, at termination foe label(s) iff
M,si=fp and —fge label(s) iff M,sl=—fy. The actual algorithm that was used here is given in {4]. It runs in
time O(p(foXISI+IR1)2). There is arother algorithm for solving this problem that runs m time
O(p(fo)ISI+IRD) [3].

3.0 A Petri Net Representation for Discrete Event Systems

In this section a Petri net modelling methodology is developed that is used to produce the structure M.
A multiset (bag) is a collection of objects over some domain X, but unlike standard definitions of a set,
multisets allow multiple occurrances of elements [17]. Let B be a multiset, then #(x,B) represents the
number of occurrances of element x in multiset B. The set X™ is the set of al! multisets over a domain X.
If x,ye NB, x=[x],X2, ... Xp]t, and y=[y1,y2,ynlt (t indicates transpose) then the statement x2y is true
iff x;2y; 1<i<n. Similarly for >,<, and <. Let Q;, denote the set containing the column vetors of an n-
dimensional identity matrix and an n-dimensional vector of zeros. Let @ denote the null set.

The Petri Net structure is described by Ps=(P,U,Y,T Ip,IN,Op.[,W) where:
(i) P={p1.p2.Ppn} is a non-empty finite set of n=IP| (state) places represented graphically with circles

(O
(i) U={uj.u2, ..., “nc} is a finite set of n_=IUl control places represented graphically with circles as in (i).
(iii) Y={v1.¥2, -.- ,yny} is a finite set of ny=IY| measurement places, represented graphically with circles as
in (i).
(iv) T={t3,t2, ... ,tyy} is a non-empty finite set of m=IT| transitions represented graphically by line
segments (1),

Note that PAUNYNT=@3. Let IT=PUU and ng=ITII,
(v) ID:T—>IT™ is a mapping from transitions to the set of all multisets over II. It is represented
graphically by directed arcs (—) pointing from each input place of t;, me ID(Y;), to tj. If for some
ne IT, #(n.Ip(tj))=k>1, then the mapping can be represented graphically by a directed arc with multiplicity
k (—K®). Note that k is finite.

(vi) IN:-T—II" is a mapping from transitions to the set of all multisets over I1. It is represented
graphically by not arcs (inhibitor arcs) (—=g)) pointing from each input place of 1, ke IN(Yj), to tj. If
for some ne I, #(x.IN(1))=k>1, then the mapping can be represented by a not arc with multiplicity k
(—£.0). Note that k is finite.

(vii) Op:T—P™ is a mapping from transitions to the set of all multisets over P. It is represented
graphically by directed arcs pointing from the transition tie T to each outpur place of tj, pi€ Op(t). A
directed arc with multiplicity k can be used in a manner similar to (v), except k=#(p;, Op(t}).

(viii) I""T—U is a mapping from transitions to control places. It is represented graphically by control arcs
(——a) pointing from each u;e [(t;) to . It is required that #(u;,I'(t;)<1 for all tieT and ;e U.

(ix) ¥:P—Y is a mapping from places to measurement places. It is represented graphically with a
connection arc (D—Q) from pje P to yje '¥(p;). In this paper we require that for all p;e P there exist
a unique y;e ¥(p.

The set Tc={t;! there exists some uj, u;e I'(ty} and Tye=T-T¢. For convenience, a two-way directed arc
(<) is used to indicate a self loop, i.e. for pie P, pie Op(Y;) and pie In(t;). A directed not arc
(«@—0) is used to indicate the connections pie Op(t;) and pie IN(t;), where pie P. Also, every arc (except
the connection arc) defined above has a transition on one end and a place on the other, and no transition or
place exists without being connected to an arc,

A complete description, which also includes the execution characteristics of the Petri Net, is given by
PN=(PS,Tsxp,Xp°,U ,Ua,Yp.Ya,Er,‘b) Where:

(i) Ps is described above.

(i) T is the time index set which is specified according to the modelling problem at hand. Often Ts=N
and the initial time is 0, and each successive natural number represents an arbitrary length time step.
Alwernatively, the natural numbers represent fixed length time units such as seconds.

(iii) Xp:PxTs—N is the marking function, a mapping from (state) places and time steps into nonnegative
integers representing the marking of the place. The n-dimensional column vector
xp(K)=[Xp(P1.K).Xp(P2.K), ... Xp(Pn.k)1* is used to denote the state of the Petri net. The state is

represented graphically by tokens (@) that are put inside places (e.g. Xp(piX)=2 is represented as P, @).
The complete set of "reachable states” [17] will be denoted by Xp. It is required that Xp(pi k) be finite for
all pie P and ke T

(iv) Xpo is a non-empty finite set of initial conditions xp(0) for the state of the Petri Net; N9DX .

(v) Up:UxT—N is a mapping from control places and time steps into nonnegative integers representing
the marking of the controt place. It is represented graphically with tokens as in (iii). The n.-dimensional

column vector up(k)=[Up(uy k), Up(uz k),U,;.(u“c,lu:)]t is used to denote the control inpur to the Petri
net. It is required that up(k)e Qy, for all ke Ts.

(vi} U, is a non-empty finite set of admissible control inputs up(k) for the Petri Net.
(vit) Yp:YxTs—N is a mapping from measurement places and time steps to a nonnegative integer
representing the marking of the measurement place. Let Yp(y;k)=Xp(p;.k) for all ke Tg where y;e \F(p)).

The ny(n)-dimensional column vector yp(k)=[Yp(y1.k), Yp(y2.k), ... ,Yp(yny,k)]t is used to denote the

output of the Petri net,

(viii) Y, is a finite set of admissible outputs yp(k) for the Petri Net, which, for this paper, is Xp.

(ix) E,:N“ﬂx'rs—ﬂ'r is the Petri net enable rule, a mapping from an ng-dimensional column vector of
nonnegative integers representing the marking of the state and control places and time steps into subsets of
transitions that are said to be enabled at step k. The notation tje Ef(k) is used to indicate that ¢j is enabled
atstep k. A transition t; can fire whenever it is enabled. Tokens are redistributed in the Petri net when a
transition fires according to the next state function described below. Following the definition in [17] it is
assumned that no two transitions will fire at exactly the same time. The set of enabled transitions is formed
at time k, then one is chosen to be fired. Also, the transitions fire only at times ke T;.

(x) O:TxNxT;—N" is the Petri net next state function (firing rule), a mapping from transitions, an n-
dimensional column vector of nonnegative integers representing xp(k), and time steps into an n-dimensional
column vector of nonnegative integers representing the next state xg(k+1). The next state function is
defined at step k iff tje E{k). Suppose that a transition fires at time k (or if k=0 then none has fired), then
the transition which fires next is chosen in the following manner. If tje Er(k) and tje T then the transition
4 is fired at time k+At where At—0, i.e., immediately after the last transition firing. All enabled
transitions tje T are fired, then the enabled transitions tj€ Tyc are allowed to fire asynchronously. This
will allow the plant to respond immediately to an input.

A candidate for the enable rule is given by E;=(tjIXp(pik)2#(pi,ID(t)), Xp@ik)<#(pi.IN{)),
Up(ujk)2#(u;,I'(t;)), Up(uik)2#(ui. XD (1)), Upluik)<#(u;,IN(t))), for ail pie P, uje U). The enable rule is
chosen based on the specific modelling task. This enable rule is used for all the examples in this paper.
Let A"=[ag], where ajj= #(p;,In(t;)) and A+=[a{ﬂ. where a,-*j:#(pi,on(tj)). Let A=AY-A". Let ej(k)=[00 ...
1... 0 0]* where the 1 is in the jth position 1<j<m. Let C=[cjj] with cjj=1 if yie ¥(p;j) and cj=0 if
vi€ ¥(p;). Let ©=[¢1,42,Hnlt. Using E; as the enable rule, an example next state function is
9i(tj. Xp(pi.k).K) = Xp(pik+1)=Xp(pi.k) - #(pi.ID(L;)) + #(pi,Op(Yy)) for all i, 1<i<n. Hence, for t;e Ex(k)

firing we have,

xpk+1)=xp(k) + Aej(K)

ypK)=CxpK)
which are similar to the state equations described in [17]. For this next state function tokens are not
removed from any control or disturbance place if I; fires, but they must be present to enable t;. Likewise,
tokens are not removed from places connected to transitions via a not arc. The connection arcs between any
place p; and a measurement place yj indicate that any tokens added or subtracted from p; are also added and
subtracted from yj, i.e. with the connection arc they are essentially duplicate places.

It must be emphasized that the Petri net defined above is a flexible modelling tool since we do not
confine ourselves to the standard definitions of the arcs, enable rules, and firing rules. They can be chosen
according to the modelling task at hand. For instance, in the third example on self stabilizing distributed
systems it is convenient {0 define an arc that connects transitions €T to places pie P which if ¢ is
enabled at step k and is fired then Xp(pjk+1)=1. Special symbols can be used for the graphical
representation of such arcs. For the arc just defined we use the symbol —@—9 .

This completes the definition of the Petri net. Although it is not necessary, a controller can be used
for the Petri net. One possible controller for the Petri net is given by G¢:Xp—Uy, a mapping of states of
the Petri net into admissible inputs to the Petri net. The initial controller output is the appropriate element
of U, depending on the initial state of the plant. Note that if a transition in the plant fires, changing
xpi€ Xp to Xpj' Xy, the control input to the plant is updated instantanecusly from Ge(xpi) 10 Ge(xpi).

We only briefly outline how the structure M can be formed using the Petri net. Clearly, regardless of
whether a controller is used or not, the state equations above provide for the specification of the structure
M. The structure states S are the states of the Petri net and the firing of various transitions specifies the
relation R. The function P; depends on what is to be verified. For instance, if the input-output properties
of the plant are of interest then the atomic propositions may be elements of the sets U, and Y,. The CTL
structure also depends on the initial state, If there is more than one initial state then the CTL structure may
have to be produced for each initial state (depending on if the initial condition is in the CTL structure
produced for another initial condition). With M, and the design specifications stated in the branching-time
temporal language, the verification algorithm is used to prove whether the specifications are true or not.

Several examples of the modelling methodology, design specifications, and their verification are given in
the next section.

4.0 Examples '

In this section we briefly describe how the above results are applied to three examples. For the first
example, consider the surge tank taken from [9] shown in Figure 4.1 with a sensor distinguishing among
five liquid levels (empty, low, normal, high, and full) and with the controller simply opening and closing a
fill valve. Unpredictable users operate an empty valve to drain the tank. The objective is to verify that a
given controller will properly regulate the liquid leve! in the tank,

Fill Valve Empty Valve
Full - F
High L.
- Liquid

Normal rmeo |- A" Level

Low
Empty !

Figure 4.1 Surge Tank

The liquid level "empty” indicates that the tank is absolutely empty, hence if the fill valve is opened
the tank will immediately become "low". The liquid level of "low" means that the liquid height is between
empty and "normal”. "High" is between normal and "full”, which indicates that the tank {(which is sealed at
the 1op) is completely full. The Petri net mode! of the surge tank is given in Figure 4.2 below.

Figure 4.2 Petri Net Model of the Surge Tank

The place p) is used to represent the state of the system which is the liquid height. The interpretation of
time is that each successive ke T represents one second. The cases where xp(k)=Xp(p1K)=i, with
i=0,1,2,3.4 represent the five liquid levels in the tank (empty, low, normal, high, and full respectively).
Denote these states with atomic propositions Xpi» i0,1,2,3,4 respectively. The connection arc joins the
measurement place y;j to the state place pj, hence the measured output is yp(k)=xp(k), the state of the
system. The input place u; represents the fill valve, and up(k)=1 indicates that the fill valve is on while
up(k)=0 indicates that it is off. The set of transitions T={1},12,t3,t4,t5}. Each of these transitions specifies
certain rules about the behavior of the plant. Transition (i) 1) indicates that if the liquid level is empty
{(xp(k)=0) and the fill valve is on, then the liquid level will immediately become low (xp(k)=1), (ii) t©2
indicates that if the liquid level is empty and the fill valve is closed then the liquid level will stay empty,
(iii) t3 models the case where if there is a liquid level above empty and the fill valve is off then the liquid
level may drop cne level depending on the empty valve, (iv) t4 indicates that if the liquid level is less than
full (xp(k)<4) and it is greater than or equal to the empty level and the fill valve is on, then the liquid level
may raise depending on the empty valve, and (v) t5 models the case where if the liquid level is above empty
it may be that the next state is exactly the same as the previous one.

Next, the controller for the surge tank is specified. For the surge tank the set of reachable states is
Xp={0,1,2,3,4} and the set of admissible inputs is Us={0,1}. The controlier for the surge tank, G, is
given by: (1) Gc(0)=G(1)=G(2)=1 and (ii) G¢(3)=G#)=0. Using the controller and the Petri net model of
the surge tank, the CTL structures appropriate for each of the following design specifications were generated
for the verification algorithm.

The first two design specifications involve verifying that if the liguid level is initially normal (xp(0)=2)
and the fill valve is open then (i) it will not be the case that the tank will become full or empty, and (ii) it
is inevitable that the level will always be either normal or full. Stated formally these two design
specifications are:

(@) Vp EX{—~(xpovxps)), and

(i) Vp © (vp [(xp2vxp3))
respectively. These two specifications were easily verified using the algorithm described in Section 2.2.
The third and fourth design specifications consider the case when the tank is initially empty (xp(0)=0) and
the fill valve is initially off. The two specifications are:

(iii) Vp © @p B (xp2vxp3)), and

(iv) 3p © Gp B (xp2vg3)).
The verification algorithm was used to show that the third design specification is false and the fourth one is
true. The third specification is not true becanse it is possible that the liquid level end up being forever at
the low level and the fourth one is true because it is possible for the controller to raise the level if the
empty valve is off sofficiently often.

We use the manufacturing system originally studied in [9] for the second example. We have one
machine which must process different parts from two buffers (B1 and B2) each supplied by two different
producers (P1 and P2). Upon completion of processing, each type of part is put in its respective output
bin. A controller must ensure mutual exclusion in the machine, i.e., only one part of one type is processed
at a time. Also, the controller must also ensure that producer P1 gets priority in the use of the machine.
To perform its task, the controller can sense whether there is a part in a given buffer and can also determine
the type of part in the machine. The controiler acts to allow the different parts to enter the machine. The
Petri net model of the machine is given in Figure 4.3 below.

Figure 4.3 Petri Net Model of a Manufacturing System

The producer P1 (P2) is represented with the transition ty (t2). The buffer B1 (B2) is represented with the
place p3 (p4) and measurement place y4 (y3) is used to indicate if a part is in buffer B1 (B2). The place p;
(p2) and measurement place y; (y2) are used to represent whether or not a P1 (P2) type part is in the
machine. The firing of t3 (t4) indicates that parts from B1 (B2) are put in the machine and the firing of t5
(t¢) indicate that parts are removed from the machines and put into their respective output bins.

The interpretation of time is that each ke T represents an arbitrary length time step. The state
xp(k)=[Xp(p1.k) Xp(p2.k) Xp(p3.k) Xp(pa,k)l". Hence the state xp(k)=[1 0 0 1]* means that there is a P1
part in the machine, there is not a P2 part in the machine, there is not a P1 part in buffer B1, and there is a
P2 part in buffer B2. We shall use the notation "1001" to represent this state and a similar notation for
other states. The input up(K)=[Up(u; k) Up(uz.k)]‘=[l 0]t indicates that a P1 part is to be allowed to be put
into the machine. The notation "10" will be used to denote this input and others will be denoted similarly.
The set of admissible inputs is contains 10,01, and 00. The controller for the manufacturing system G, is
given by: (i) G¢(x)=10 if x=0010 or 0011, (ii) G(x)=01 if x=0001, and (jii) G.(x)=00 for all other reachable
states. The initial conditions are that the state of the plant is 0000 and the controller output is 00. The
CTL structure was generated using the Petri net model of the manufacturing system and the following
specifications were considered:

(i} Vp & (—(1100v1101v1110v1111Y)

(i} Vp E(0011-Vs @ (1001v1011))
The first specification is a statement of mutual exclusion. It was verified first. The second specification
says that producer P1 should have priority over producer P2. In particular, it says that if it is ever the case

where there are parts in both of the buffers then the P1 part should be allowed to enter the machine. This
CTL formula was also verified using the verification algorithm. This manufacturing example is similar to
the "Two Class Parts Processing” example in [18]). There, however, Thistle and Wonham allow an
arbitrary finite number of parts of one type to enter the machine. This forces their controller to have an
infinite number of states, so the verification algorithm cannot be applied to their example., There are,
however, many practical problems that are finite state.

The third example is taken from Dijkstra’s paper "Self Stabilizing Systems in Spite of Distributed
Control” where he considers the existence of gelf stabilizing distributed svstems and provides three sysiems
that are supposed to possess this property [5]. Thistle has used a certain linear temporal logic proof system
to prove that one of Dijkstra’s systems is self stabilizing (although in a different manner than originally
thought by Dijkstra) [18]. In this example we shall prove, using the verification algorithm, that another of
Dijkstra's machines that is supposed to be self stabilizing is in fact not. The problem formulation follows
the one in [18].

The sort of distributed systems considered are those that can be modelled as a sparsely connected finite
graph having at each node a finite state machine. Each of these machines can communicate only with its
"neighbors”, i.e., those machines located at nodes directly connected to its own. If a machine makes a state
transition, or "move”, its new state is a function only of its previous state and the states of its neighbors.
Also, the moves of a machine can be enabled or disabled only on the basis of the states of the machine and
its neighbors: in order for a move to occur, a corresponding Boolean condition on the states of the machine
and its neighbors must be satisfied. These conditions are called "privileges”, and when satisfied, a privilege
is said to be "present”. A "demon" selects at random one of the privileges that is present and the
corresponding move occurs; consequently asynchronous operation of the machine is modelled.

Dijkstra considers a distributed system to be "self stabilizing” if for all initial states it eventually
reaches a "legitimate” state. The set of legitimate states can be defined to be any set having the following
properties: (i) in every legitimate state, at least one privilege is present; (ii) from any legitimate state, all
enabled moves bring the system into another legitimate state; (iii} each privilege is present in at least one
legitimate state; and (iv) from any legitimate state it is possible to reach any other legitimate state (as long
as the demon happens to select privileges appropriately). The concem is with whether self stabilizing
distributed systems exist that are "non-trivial”, meaning that not all system states are legitimate states.
Dijkstra proposes three solutions to this problem, but he leaves the proof that the systems are seif
stabilizing 10 the reader. We shall study his second solution, the "Solution with Four-State Machines”.

Dijkstra confines the his study to N+1 machines placed in a "ring", and considers legitimate states to
be the states in which exactly one privilege is present. In his solution using four-state machines each
machine in the ring has four possible states. We consider the simple case where there are only four
machines in a ring shown in Figure 4.4,

Figure 4.4 Ring of Four Machines

The arcs represent communications between the various machines, The state of each of the four machines
is represented with two Boolean variables:

Machine Mr |Mp |[|Mp |ML
Position Top |Right | Bottom| Left
Boolean State Variables | XT.XTy | XR-XRu| XB-XBu{ XL.XLu

Although, in general the Boolean state variables can take on values of 1 (True) or 0 (False), Dijkstra
restricts the values of the top and bottom machine's states. For the bottom machine xg,=1, and for the top
machine x7,=0 by definition. These machines are therefore only two-state machines. If x is a Boolean
variable let x:=0 (x:=1) denote the assignment of false (true) to x. Also, let x:=—x denote the switching of
the truth value of x. To complete the definition of the distributed system the privileges are defined with a
set of rules as follows:

(i) If xp=xg and xgy=0 Then xg:=—xp
(i} If x7#x1, Then xT:=—xT

(iii) If xg+#xpg Then xg:=—xg and xg,:=1

(iv) If xg=xT1 and xg,=1 Then xg:=0

(v) If xp_#xT Then x1;=—x[and xp ;=1

(vi) If x| =xg and xp ;=1 and xg,=0 Then x ;=0

Before the Petri net model is given a few observations are in order. First, notice that since xg,=1 by
definition the sixth rule will never be used. Hence, there is no communication between the bottom
machine and the machine to its left even in the general case where there are N+1 machines in the ring. The
result is that the "ring" is not a ring at all but a string of communicating finite state machines. This does
not hinder our ability to determine if the system is self stabilizing. The second observation is that the left
hand side of all the rules (i)-(v) does not depend on xy; consequently no privileges depend on it and it will
not affect which moves are made in the system. It is therefore not necessary to model it, so M can also be
considered a two-state machine. The Petri net model of the string of finite state machines is shown in
Figure 4.5.

Figure 4.5 Petri Net Model of a Distributed System

The interpretation of time is that each ke T represents an arbitrary length time step. Notice that places
were used to represent each of the machines and that Xp(p1.k)=xL, Xp(p2.k)=xT, Xp(p3.k)=xRy,
Xp(p4.,k)=xR, and Xp(ps,k)=xp. The transitions t;, j=1,2, ... ,10 represent the rules that describe the
privileges. For instance, privilege (i) is represented with transitions t; and t. The function of the special
ac —@—9» was explained at the end of Section 3.0; it is used 0 make the assignment xg,:=1. The state
xp(k)=[000 1 11! indicates that xg=1 and xg=1 and that the other state variables are equal to zero. Asin
the manufacturing system example we shall use 00011 to denote this state and other states will be denoted
in a similar manner. The set of inital states Xpo=Xp, the set of reachable states. Notice that there is no
explicit representation of a controller. The CTL structure is formed by considering in turn each initial
condition and generating the structure for that particular initial condition by firing various transitions.

The verification algorithm was used to prove that the specification 3p Lo {00111v11100} is true, ie.,
that there exists a path from any state to the state 00111 or 11100. But notice that in these states the
distributed system is deadlocked. This is easily seen by examining the above Petri net. Clearly, Dijkstra's
solution is invalid since it does not satisfy the criteria necessary for the set of legitimate states. Note that
the proof here is only for the case when N=3, i.e., four machines. It may be the case that the system is self
stabilizing for N>3.

Acknowledgement:
The authors gratefully acknowledge the partial support of the Jet Propulsion Laboratory under contract
No. 957856.

5.0 References

[1] Ben-Ari M., Pnueli A., Manna Z., “The Temporal Logic of Branching Time", Acta Inf., Vol. 20, pp.
207-226, 1983,

[2] Browne M.C,, Clarke E.M., "SML - A High Level Language for the Design and Verification of Finite
State Machines", IFIP WG 10.2 International Working Conference from HDL Descriptions to Guarantee
Correct Circuit Designs, Grenoble, France, Sept, 1986,

(3] Clarke E.M., Emerson E.A., Sistla A.P., "Automatic Verification of Finite-State Concurrent Systems
Using Temporal Logic Specifications: A Practical Approach”, Tenth ACM Symp. on Principles of
Programming Languages, Austin, Texas, 1983,

[4] Clarke E.M., Browne M.C,, Emerson E.A., Sistla A.P., "Using Temporal Logic for Automatic
Verification of Finite State Systems”, Apt K.R., ed., Logics and Models of Concurrent Systems,
Springer Verlag, NY, 1985.

{5] Dijkstra E.W., "Self-stabilizing Systems in Spite of Distributed Control”, Comm, of the ACM, Vol.
17, No. 11, pp. 643-644, Nov. 1974.

[6] Emerson E.A., Halpern J.Y., ""Sometimes" and "Not Never” Revisited: On Branching versus Linear
Time Temporal Logic", Journal of the Association for Computing Machinery, Vol. 33, No. 1, pp. 151-
178, January 1986.

[7] Ichikawa A., Hiraishi K., "Analysis and Control of Discrete Event Systems Represented by Petri Nets",
in Varaiya P., Kurzhanski A.B., eds., Discrete Event Systems: Models and Applications, Lecture Notes
in Control and Information Sciences, Springer Verlag, NY, 1987,

[8] Inan K., Varaiya P., "Finitely Recursive Process Models for Discrete Event Systems”, [EEE Trans, on

Automatic Control, Vol. 33, No. 7, pp. 626-639, July 1988.

[9] Knight J F., Passino K.M., "Decidability for Temporal Logic in Control Theory”, Proc. of the Allerton
Conf. on Communication, Control, and Computing, Univ. of Illinois, Urbana-Champaign, pp. 335-
344, Oct. 1987.

[10] Krogh B., "Controlled Petri Nets and Maximally Permissive Feedback Logic”, Proc. of the Allerton
Conf. on Communication, Control, and Computing, Univ. of Illinois, Urbana-Champaign, pp. 317-
326, Oct. 1987.

[11] Lamport L., ""Sometime" is Sometimes "Not Never": On the Temporal Logic of Programs”, ACM
Symp. on Principles of Programming Languages, pp. 174-185, 1980.

(12] Manna Z., Wolper P., "Synthesis of Communicating Processes from Temporal Logic Specifications”,
Dept. of Computer Science, Stanford Univ., Report No. STAN-CS-81-872, 1981.

[13] Manna Z., Pnueli A., "Verification of Concurrent Programs: a Temporal Proof System”, Dept. of
Computer Science, Stanford Univ., Report No. STAN-CS-83-967, 1983.

[14] Ostroff J. S., Real-Time Computer Control of Discrete Systems Modelled by Extended State
Machines: A Temporal Logic Approach, PhD Dissertation, Report No. 8618, Dept. of Elect. Eng.,
Univ. of Toronto, Jan, 1987.

[15] Passino K.M., Antsaklis P.J., "Artificial Intelligence Planning Problems in a Petri Net Framework”,
Proc. of the American Control Conf., pp. 626-631, Atlanta GA, June 1988.

[16] Passino K.M., Antsaklis P.J., "Planning Via Heuristic Search in a Petri Net Framework", Proc. of the
Third IEEE Int. Symposium on Intelligent Control, Arlington, VA, Aug. 1988.

[17] Peterson J.L., Petri Net Theory and the Modelling of Svstems, Prentice-Hall, NJ 1981,

(18] Thistle J. G., Wonham W. M., "Control Problems in a Temporal Logic Framework", International
Journal Control, Vol. 44, No. 4, pp. 943-976, 1986,

