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Abstract 

The uncertainties inherent in the dynamics of flexible space- 
craft make robustness questions very important when design- 
ing vibration suppression systems for these vehicles. This often 
leads to the use of sensors and actuators which are collocated on 
the structure, so as to avoid the potentially destabilizing prob- 
lem of unknown modal phase differences between non-collocated 
sensors and actuators. The closed-loop performance attainable 
is, of course, reduced if we restrict ourselves to collocated pairs: 
the object of this paper is to  investigate whether the special 
properties of the transmission zeros of such structures can be 
used to  quantify these performance limitations. 

Int,roductioU 

The dynamics of Flexible Space Structures (FSS) are gener- 
ally rather poorly known before launch. This is partly a con- 
sequence of the fact that producing finite-element models for 
complex structures is still something of a “black art”, with no 
guarantees given for the resulting accuracy. This would not be 
so serious, though, if it were possible to correct the model based 
on the results of accurate vibration tests before launch. Unfortu- 
nately, as FSS are quite weak, any such tests musl be conducted 
with the structure extensively supported against gravity, so the 
dynamics that are actually measured are those of the structure 
plus support system. Furthermore, the presence of air resistance 
makes it very difficult to deternine the very low levels of damp- 
ing present in the structure itself. It is therefore difficult to gain 
more from ground tests than an approximate idea of how the 
structure will actually behave in orbit. 

A consequence of these considerations is that it is very im- 
portant that any control system used to  suppress vibrations on 
an FSS is not too adversely affected by differences between the 
true and nominal dynamics. This in turn often leads to the 
use of sensors and actuators which are collocated on the struc- 
ture, as the use of non-collocated sensors and actuators on a 
poorly-defined structure can easily lead to instability. To see 
this, suppose that the vibration rate measured by a sensor on a 
structure is fed back to generate the control input a t  an actu- 
ator some distance away. Suppose further that, in the nominal 
structural model, the i th  mode shape is such that the sensor and 
actuator stations vibrate in phase. It is therefore clear that neg- 
ative feedback will serve to  increase the damping of this mode, 
giving better closed-loop response. However, it is particularly 
difficult to  obtain accurate mode shapes for FSS, so it is en- 
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tirely possible that the sensor and actuator points on the true 
structure actually vibrate out of phase, and negative feedback 
will destabilize mode i. It is to avoid this problem of unknown 
phase differences between sensors and actuators that collocated 
pairs are often used. 

Of course, restricting ourselves to the special case of collo- 
cated sensors and actuators is bound to have an adverse affect 
on the attainable closed-loop performance. The purpose of this 
paper is to begin to look at  describing this performance in some 
manner. The approach taken liere is based on the results re- 
cently proved [21, 22lconcerning the transmission zeros of flex- 
ible structures. It was shown there that, as long as only collo- 
cated pairs are used, these zeros have very detailed generic prop- 
erties. It therefore seems likely that some generic performance 
information can be derived for those vibration suppression tech- 
niques in which the zeros play a central role. The approaches 
looked a t  in this paper are the optimal linear regulator together 
with its derivative, high-authority/low-authority control [2], and 
the pole/zero cancellation method of [22]. 

Properties of FSS Transmission Zeros 

Consider an Tx-niode model for the structural dynamics of a 
non-gyroscopic, non-circulatory Flexible Space Structure (FSS) 
with m compatible sensor/actuator pairs. (By compatible we 
mean that the direction of the linear/angular motion measured 
by each sensor is the same as that of the force/torque applied 

by the actuator which is collocated with it.) This model can be 
written in modal form [3] as 

1 

i j  + c+ + d i a y ( w 3 9  = (DTVU, 

y = w~@‘?j + kVd@q, (1) 

where 9 is the vector of modal coordinates, U that of applied 
actuator inputs, and y that of sensor outputs. Czi = (&) is 
the ( m  x n )  modal influence matrix (& is the value of mass- 
normalized mode j, corresponding to natural frequency w J ,  at  
sensor/actuator station i )  C = CT >_ 0 is the damping nia- 
trix in modal form, and V is an ( m  x m) non-singular matrix 
describing how actuator inputs translate to  the physical forces 
applied to  the structure. Typically, V is diagonal if the forces a t  
each station are independent, while it has a column of the form 
(0, a, 0, -a ,  O ) T  if equal and opposite reaction forces are applied 
between two stations; LV,. and IV, are defined similarly for rate 
and displacement sensors, respectively. 

Taking Laplace transforms, we obtain the polynomial matrix 
respresentation [8,13,23] 
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for the given FSS, where P ( s )  = s* I+sC+diag(w~)  and W ( S )  = 
slVr + W,. Note that P ( s )  is symmetric, i.e., Eq. ( 2 )  respects 
the special structure of the FSS equations of motion. This is in 
contrast to the state space representation { A ,  B,  C} obtained by 
setting x = (i7=, $)=, where A no longer preserves this valuable 
symmetric structure. 

As long as its actuators and sensors have been positioned in 
such a way as to make it completely controllable and observable, 
i.e., so that each mode can be both excited and sensed, the 
transmission zeros of this (invertible) system are those s, which 
reduce the rank of the system matrix 

( 3 )  

Associated with each transmission zero si is a zero mode shape 
17, which satisfies 

(4)  

v i  can be regarded as the solution of a constrained modes prob- 
lem [SI ,  with the constraint being that the mode have zero de- 
flection/slope at  each linear/angular sensor location. 

It can be shown from Eq. ( 3 )  that det(W(s)) = 0 specifies 
qs finite sensor zeros (0 5 qs 5 m);  there are 2nz - qs zeros at  
infinity, and the remaining 2 ( n  - 772) structural zeros are defined 
by the physical properties of the structure and the positions 
chosen for sensor/actuator pairs. The structural zeros always lie 
in the left-half plane (LHP): furthermore, if, as is often the case, 
the structure is modally damped [3] with damping ratios { C } ,  
i.e., C = diag(2('iwi), then (171 the poles -Ciw, f j u , J [ l  - C:] 
of the system define a portion of tlie LHP in which all these 
zeros must lie, regardless of the specific locations chosen for 
sensor/actuator pairs. This generic result, consisting of upper 
and/or lower bounds on the real and imaginary parts, moduli, 
and damping ratios of all zeros, is a consequence of the special 
form of the equations of motion of structural dynamics: it can be 
regarded as a generalization of the classical observation ( l o ]  that 
the zeros of a single input/single output undamped structure 
alternate with its poles along the imaginary axis. It admits a 
very simple graphical interpretation, as shown in Fig. 1 for an 
arbitrary distribution of poles 'x'. 

min(-<pi) max(-<pi) 

Fig. 1 Zero Region for Modally Damped Structure 

Any choice for sensor/actuator positions thus leads to trans- 
mission zeros somewhere in the shaded region of Fig. 1. A re- 
lated question now is: given some specified points in this region 
can sensor/actuator locations be found which lead to zeros a t  
these points? This is clearly not possible in general, as there are 
( n  - m )  zero pairs and m inputs, so if n - n z  > m (i.e., m < n/2; 
typical of FSS) there is no chance of assigning all zeros arbitrar- 
ily. Even if we wish, say, to use a single sensor/actuator pair 
to only assign the fundamental (lowest-frequency) zero, i.e., the 
one of most practical importance, the following example shows 
that this is not always possible: 
Consider a uniform undamped cantilever beam of length L, cross- 
sectional area A, second moment of area I, Young's modulus E 
and density p, with a single angular (angle/torque) sensor/actu- 
ator pair mounted at distance 1 = a L  from its built-in end. It is 
well-known [3] that the poles of this structure are { jw , } ,  where 
w, = J I E Z / p A ] p l / L Z  and the { p , }  are dimensionless parameters 
given from the cantilever characteristic equation cos pi cosh p i  + 
1 = 0; the first two solutions of this are 1.S75 and 4.694. It can 
be shown t1ia.t the zeros j z i  are similarly defined by diniension- 
less parameters {v i } ;  unlike tlie { p i } ,  these of course depend on 
the chosen sensor/actuator position. Fig. 2 plots the first five 
{vi} as functions of a : it can be seen that the zeros interlace 
the poles as expected, and that it is not possible to find any 
sensor/actuator position which gives VI above about 3.0. Thus, 
the entire shaded region of Fig. 1 is not in general attainable. 

L I 

. . . . ._. . . . . .._ . . . . -.. . . . . . .. . . . . . ._ . . . . . .. . . . . ... .. . -. . . . . . ._ . .. ... . . . . 
1st Pole 

, o  
.2 . 4  . 6  .8 1 

a : normalized sensor/a&uator pos i t ion  
FIRST 5 CANTILEVER ANGULAR ZEROS 

Figure 2. 
A final point concerning the properties of FSS zeros is their 

sensitivity to perturbations in the system parameters. As the 
pole/zero interlacing property of undamped SISO structures must 
hold even if the structure is perturbed, it seems likely that the 
zeros of such systems have about the same sensitivity proper- 
ties as do their poles. Indeed, it has recently been proved [21], 
first in terms of partial derivatives and then condition numbers, 
that this conclusion is actually true for general MIMO damped 
structures. 

Pole/Zero Cancellation in FSS 

The results of the last section are central to an analysis of a 
vibration suppression technique recently derived for FSS. This 
pole/zero cancellation approach is based on using state feedback 
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to make as many closed-loop modes as possible unobservable, so 
that they do not appear in the sensed outputs [1,6,20]. A prac- 
tical reason for wishing to do this arises [ll] if the open-loop 
system has a slowly decaying mode which prevents fast output 
regulation: it is likely to require less control effort to make this 
undesirable mode unobservable than it would to speed up its re- 
sponse substantially. In the frequency domain, each such mode 
corresponds to a closed-loop pole and associated mode shape 
which are made equal to some transmission zero and its asso- 
ciated zero mode shape. Note that the zero bounds illustrated 
by Fig. 1 guarantee that no structural zero will lie far from the 
open-loop poles, so the feedback gain required to shift poles to 
all the zero locations is never likely to  be prohibitively large. 

A canonical form that has proved to be very useful for the 
study of pole/zero cancellation in FSS with compatible sensors 
and actuators is based on the QR decomposition [5] of the full 
column rank aT ,  i.e., aT = QR with Q orthogonal and R = 
(RT, O)* upper triangular and of full rank. Substituting this 
factorization into Eq. (3) gives 

(5) 

so the structural zeros are clearly simply those s, which make 
singular the (n. - m) x ( n  - m) 

QTP(s)Qz = sZI + SCZ + A’z, (7) 

where Cz = QTCQZ and Kz = Q~diug(w~)Qz.  Note that QZ 

depends in an explicit way on the positions selected for sen- 
sor/actuator pairs: its columns form an orthonormal basis for 
the orthogonal complement [5] of QT, or equivalently K e r ( Q ) .  
This formulation was used in [lS] as the basis for an algorithm 
to compute the transmission zeros of an FSS which is a t  least 
GO times as fast as the general-purpose zeros method of [4] when 
applied to an undamped structure, and 15 times as fast for a 
lightly-damped one. 

In the transformed coordinates of Eq. ( G ) ,  linear state feed- 
back U = F,.i + Fdq + G v  gives rise to a polynomial matrix 
representation with denominator matrix 

where F,(s) = F(s)Q, ,  Fz(s) = F(s)Q2 and F ( s )  = sF, + F d .  

Now, it can be seen that choosing Fz(s) such that QTP(s)Q, - 
RlVF2(s) = 0 is sufficient for full pole/zero cancellation; it can 
also be proved [22] to be necessary. F*(s) satisfying this condi- 
tion always exists and is unique, as RIV is non-singular. FI(s )  
by contrast, is arbitrary: it is equivalent to dynamic output feed- 
back, and can be used to freely place those poles which remain 
observable in the closed-loop system. Two properties of these 
residual poles are of interest: 

( i )  if Fl(s) is chosen to be zero, so minimizing the norm of the 
feedback gain matrix with the intention of making the control 
effort small (but not minimized: see [22]), the residual poles are 
simply the eigenvalues of QTP(s)QI ,  a section [15] of P ( s ) .  As 

this is of precisely the same form as the matrix QTP(s)QZ which 
defined the zeros, the residual poles here have all the properties 
of transmission zeros: they therefore must also lie in the shaded 
region of Fig. 1. A physical interpretation of this is that all 
closed-loop modes obtained by pole/zero cancellation, even for 
the relatively low-performance case of Fl(s) = 0, must have 
decay rates and frequencies no lower than the lowest open-loop 
values. 

(ii) The sensitivity of each closed-loop pole produced by 
pole/zero cancellation to perturbations in the open-loop system 
parameters can be shown [21] to be bounded from below by that 
of the corresponding zero. Approximate equality is obtained if 
FI(s )  is chosen so as to shift all residual poles to locations far 
from all zeros (as would be desired in any case for fast output 
response). But the zeros themselves have sensitivities approxi- 
mately equal to those of the open-loop poles, so the sensitivities 
of the open-and closed-loop (for appropriate Fl(s))  poles are 
closely related. 

It is interesting to note from points (i) and (ii) that pole/zero 
cancellation using collocated sensors and actuators can lead to  
somewhat poor performance in the minimum-norm (F,(s) = 0) 
case. For, (i) shows that the residual poles cannot be apprecia- 
bly faster than the open-loop poles. Furthermore, (ii) implies 
that the nominally unobservable closed-loop poles may be quite 
sensitive to  perturbations in the FSS dynamics: the resulting 
near pole-zero cancellations will then lead to closed-loop modes 
which are actually observable, albeit only slightly. Thus, it is 
indeed possible to say something meaningful about the perfor- 
mance of minimum norm pole/zero cancellations directly from 
the properties of the zeros of flexible structures. It should be 
noted that it is also possible to  conclude that a suitable choice 
for Fl(s)  # 0 will serve to overcome both these limitations, as 
demonstrated in the following example: 

Consider the uniform vertical steel plate used in [22] for 
pole/zero cancellation simulation studies. This plate, based 
on the DFVLR laboratory test article described in [14], has 
horizontal length 1.50m, vertical length 2.75m, thickness 2mm, 
and isotropic material properties E = 2.0 x 10”N/mZ,p = 
S.0 x 103kg/m3 and v = 0.3. For simplicity, it is assumed to  
be simply-supported along all four edges, leading [3] to a lowest 
natural frequency of 2.741 Hz and ten modes below 20 Hz. These 
modes make up the model studied here; a somewhat high damp- 
ing ratio of 1% is chosen for each mode in order to demonstrate 
the effects of damping on zeros sensitivity more clearly. 

If a single linear sensor/actuator pair is placed a t  a horizontal 
distance 0.Gm and vertical distance 1.2m from the lower-left tip 
of the plate, i.e., offset slightly from the central node point, none 
transmission zeros result, the lowest being at  4.321 Hz. The 
single residual mode that results from minimum-norm feedback 
is a t  11.607 Hz: it is clearly seen in the closed-loop response to 
a 0.1N impulse shown in Fig. 3. The performance limitations 
described above result in the closed-loop response only being 
superior to the open-loop after about 2 seconds. By contrast, 
if additional rate feedback is used to shift the real part of the 
residual pole to  the quite large -50s-’ the resulting closed-loop 
response is essentially at rest after about 0.12s. It is interesting 
to note (Fig. 4) that, although the norm of the gain matrix 
F is increased somewhat in the “fast residual” case, the actual 
control effort applied to the system is reduced considerably over 
the minimum-norm case. This results from the fact that the 
displacements used to construct the feedback control force are 
now damped out much faster than before. 
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.a25 precisely the asymptotic values of those branches of the optimal 
root locus [9] which remain finite as the allowable control gain 
teiids to infinity. The properties of the zeros of flexible structures 
shown in Fig. 1 therefore have clear implications for the high- 

I gain behavior of FSS. This is not all that can be said about 
the optimal root loci of flexible structures though. In fact, it 
has recently been shown [I91 that those closed-loop poles which 
tend to infinity in the high-gain case, i.e., the zeros at infinity, 
also have simple properties: these depend only on whether the 
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system outputs are made up of rates or displacements. 
The low-gain behavior of lightly-damped structures also can 

be characterized fairly easily and completely. In this case it can 
be shown 1191 that the branches of the optimal root locus set off 
roughly horizontally (to the left) from each open-loop pole, a t  
rates proportional to  the contribution of the corresponding mode 
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0 1 2 3 + 3 to the output to be regulated. It should be noted that all these 
Tme, s properties, and so the conclusions that can be drawn concern- 

ing attainable closed-loop performance, are simpler and more 
complete than those that hold for general linear systems. There 
is, however, some correspondence between the results of [19] 

single-input two-state linear systems under an optimal regula- 
tor. The latter paper pointed out that, if the weighting matrix 
Q in the quadratic objective function J = J;[xTQx + uTRu]dt 
is restricted to be positive definite, as is usually done, then there 
are “forbidden” regions of the left half-plane in which closed-loop 
poles cannot be placed for any choice of Q and R. For the simple 
n = 2 case of a 1-mode flexible structure, this “forbidden” re- 
gion corresponds very well with the generic properties derived for 
flexible structures: for instance, both treatments show that no 
closed-loop poles will lie closer to the imaginary axis than does 
the open-loop pole. It appears likely that the greater simplicity 

(i 

Figure 3. 

- and the conclusions in [7] concerning performance limitations in 
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Figure 4. 

Optimization-Based Approaches 

Another type of vibration suppression technique in which 
the zeros play a clear and central role is the Linear optimal 
Quadratic Regulator (LQR). This approach is often taken in FSS 
applications, as many typical structural problems (e.g., niinimiz- 
ing the RMS surface deflection or line-of-sight error of a flexible 
antenna) are easily expressed in a quadratic optimization form. 
Furthermore, the optimal regulator generally forms the basis 
for another common structural control technique, that of high- 
authority/low-authority control (HAC/LAC) [2]. The idea here 
is that control of a very lightly-damped structure by a “high- 

of the optimal root loci generic results will make this the easier 
approach to apply to the study of such performance-limitation 
questions in multi-mode flexible systems. 
As a final point, we return to the high-authority/low-authority 
control scheme, with the HAC loop taken to be an optimal reg- 
ulator. The key question in the design of the LAC loop is just 
where these dampers should be placed so as to yield the best 
possible performance for the final composite closed-loop system. 
In the past, it has tended to be assumed that what is impor- 
tant is that the poles of the composite system (FSS + LAC) 
be as highly damped as possible. However, if the HAC opti- 
mal regulator is operating at fairly high gains, i.e., speeding up 
the closed-loop system significantly, it appears that it is actually 
the zeros of (FSS + LAC) that are important in determining the 
performance of the overall system, not its poles. The question 
of whether these zeros can be used to determine good damper 
locations in a simple way is still under investigation. 
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authority” outer loop could be made in some sense easier if a 
“low-authority” inner loop were first used to increase structural 
damping appreciably. The LAC loop is generally thought of 
as being made up of passive dampers, dissipative layers on the 
structure, or a simple arrangement of independent local rate 
sensor/actuator pairs. The HAC loop, on the other hand, can 
consist of any desired control law, in most applications though, 
a linear optimal regulator HAC loop is used. (See e.g., [12] for 
a recent discussion.) 

It is very well established that the zeros of a system are 
closely related to the behavior achievable if an LQR is used to 
control it. For, the zeros of the system (or the mirror images 
of any non-minimum phase zeros about the imaginary axis) are 
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