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Cyclicity and Controllability in Linear
Time-Invariant Systems

P. J. ANTSAKLIS

Abstract—A number of results, involving the notions of controllability
(observability) and cyclicity in a linear time-invariant control system, are
derived using a new basic theorem. New tests of cyclicity and controllabil-
ity (observability), together with new algorithms to evaluate the controlla-
ble (observable) modes and the minimal polynomial are also presented.

I. INTRODUCTION

The controllability (observability) of a linear time-invariant system
{A,B} and the cyclicity of a square matrix 4 have been dealt with
extensively in the literature in recent years, and many important proper-
ties have been shown using a variety of methods. In this paper, a basic
theorem (Theorem 1) dealing with the linear independence of the K
matrices B,4AB,- -+ ,AX 1B is presented, and a combined simple test of
controllability and cyclicity is given (Corollary 1). A method to evaluate
the minimal polynomial of A, the controllable part of A4, is then
introduced (Theorem 2), and its use in evaluating the minimal (or
characteristic) polynomial of 4 as well as the controllable modes of the
system is indicated. Corollary 3 presents a new test for the cyclicity of 4
and in Section IV, a new simple proof to an important property of linear
control systems, namely, the ability to reduce a multiinput system to a
single input controllable system, is given.

II. PRELIMINARIES
Assume that the linear time-invariant system
x ()= Ax(t)+ Bu(t) )

is given where 4 € R"*", B€ R"*™, and x(7), u(¢) are the state and the
input vectors, respectively. It is known [1] that there exists an equiva-
lence transformation matrix Q such that
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with 4, € R™*" B €R™™, and {4,B.)} completely controllable.
Furthermore, [s]— A|=|sI — A|=|sI— A_|-|s] — A;| where |sI— A_| is the
polynomial with roots the 7<n controllable poles of the system. Clearly,
if pM = rank M, then

p[B,AB, - ,A""'B)=p[B,AB,--- ,A"" B |
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Let g( <) be the degree of the minimal polynomial of 4,; note that g
is uniquely determined by (2), since any other A, which results from an
equivalent to (2) representation {4, B} with the same structure will obey
a relation of the form A4,=QA4,Q ~!, which preserves [3] the minimal
polynomial. Also let 4, i=1,2,---,m denote the ith column of B and

define
A,
| A%,
= . | @

Pip = [PoP1s - - sPK 1]

A'b,

m

The main theorem of this paper can now be stated and proved.

III. MAIN RESULTS

Theorem 1: The K matrices B,AB,--,A¥ 1B are linearly indepen-
dent (pPX;=K) if and only if K<gq.

Proof Necessity: 1f K >g, then, from the definition of the minimal
polynomial, there exist reals ;, i=0,1,- - - ,K— 1 such that Tk oa; A‘ =0;

this in turn implies that

K—1

A"B k=1 K=1
Y @AIB =0, 2 ePei=0, X @d'B=0, 2 aA'B=0,
i=0 i=0 0 i=0 i=0
ie., B,AB, --,AX"1B are not linearly independent. Thus, K<q is
necessary.

Sufficiency: Let K <q, but B,AB,--- ,A*~'B linearly dependent,
ie, there exist reals g, i=0,--+,K—1 such that ZX 0aA’B 0 or
K JaA/B, =0. If the last relatxon is premultiplied in turn by
A, A2+, A7, the telation

laoks+ @A + -+ +ax_,AX"")-[ B, A.B., -, 477 'B.]=0
is obtained from which @yl + a4+ - -+ +ax_,AX =0, since {4,,B.}
is controllable. This clearly implies that K—1>q or K >¢q, i€, K<q is
also sufficient. Note that in view of (4), pPS; =X if and only if the
matrices B,AB,---,AX"'B are linearly independent, which establishes
the part in parentheses.

Corollary 1; The n matrices B,AB,---,A" !B are linearly indepen-
dent (pP}z = n) if and only if {4, B} is completely controllable and 4 is
cyclic.

Proof: From Theorem 1, pPig=n iff n<q. Note, however, that
g <A <n always. Consequently, pPip=n iff g=r=n.

Remark: Corollary 1 clearly suggests a new rank test (rank (P5p)) to
determine whether or not the given system (1) has two important
properties, namely, if it is completely controllable, and if the state matrix
A is cyclic. Note that this test can be easily carried out since, in view of
the above, Pj; can be directly constructed from the controllability
matrix of {4,B} and the full rank of PJy; can also be tested usmg the
determinant of the (#Xn) Grammian matrix [4] [g;] where g;; = r
P bj=12-,n

The following corollary is important in establishing Theorem 2.

Corollary 2: AXB+3XJa,A'B=0 (AXB +X5 Ja,AIB,=0) implies
AX+2K)a.41=0if and only if X >¢.

Proof: Note that the relation inside the parentheses is equivalent to
the first relation, since it is derived from the equivalent to (1) representa-
tion (2). Clearly, in view of Theorem 1, K > g is necessary for the linear
dependence of B,AB,---,4A%B; it is also necessary for the existence of
an annihilating polynomial of 4, of degree K. If the relation inside the
parentheses is now premultiplied in turn by 4,42, --,47, the rela-
tion [AX+3X'a.4/1B,, 4.8, ---,A7"'B,]=0 is obtained, or the de-
sired AX+3Xla.4/=0 since {4,B,} is controllable. Thus, K >4 is
also a sufficient condition.

Remark: If AXB+35'a,A'B=0 is written as
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then it is clear that the set of K reals ¢;, i =0, - - , K— 1 which satisfies (5)
is unique iff pP%; =K, or in view of Theorem 1, iff X <g. Consequently,
in view of Corollary 2, a unique annihilating polynomial of A, of degree
K is implied by the linear dependence of B,A4B,- -+ ,4XB iff K=g. Note
that this agrees with the well-known result of the uniqueness of the
minimal polynomial (of A.) and the nonuniqueness of any annihilating
polynomial (of A_) of higher degree.

An important theorem is now presented, which relates the columns of
the controllability matrix [B,4B,---,4"~'B] to the coefficients of the
minimal polynomial of the controllable part of (1). Namely:

Theorem 2: The minimal polynomial of A, is s9+39-Ja,s'=0 where
g = pPjgand g, i=0,1,---,4—1 is the unique set of reals which satisfy

o
q
Fip

a,_,

g-1
=-p, (A"B+ _20 a,.A"B=0).

i=

Proof: In view of Theorem 1, it is clear that only the first g columns
of PZg (only B,---,4971B) are linearly independent, ie., pPiz=pPJp
=gq. This implies that there exists a unique set of reals @;, i=0,---,9—1
such that Pplag, - +.a,_\]"=—p, (49B+23}s,4'B=0). Corollary 2
together with its Remark directly now imply that 42 +3920a,4:=0, i.e.,
594+ 32924a;s" is the unique minimal polymonial of 4,.

Remark: Theorems 1 and 2 are quite genecral and perhaps their
generality obscures their usefulness and applicability, which is best
shown through some special cases. Observe that if {4, B} is controllable,
then Corollary 1 provides a new rank test for the cyclicity of 4, and
Theorem 2 suggests a direct method of calculating the minimal poly-
nomial of 4 (or the characteristic polynomial if 4 is cyclic). Further-
more, if 4, is cyclic (or A is cyclic in which case, as it can be easily
shown, 4, will be cyclic as well), Theorem 2 gives the part of the
characteristic polynomial of the state matrix 4 which contains the
controllable modes of the system, i.e., [sI;—A|.

Corollary 3: pP5;=n if and only if 4 is cyclic. Furthermore, the
minimal polynomial of A is 59+ 329Z{a;s’, with ¢ = pP2, and g, i=
0, - -,g—1 the unique set of reals which satisfies

Qg A qel

n

where ¢, is the zero column vector with unit at the ith position.
Proof: Corollary 3 is Theorem 2 for the case B=], and A, =A.
Note that {A4,7} is completely controllable for any 4.

Remark: Corollary 3 gives a simple new rank test for the cyclicity of
A, and at the same time, provides an algorithm for the evaluation of the
minimal (or the characteristic in case A4 is cyclic) polynomial of 4. Note
that this algorithm is similar to Krylov’s algorithm? for the evaluation of
the minimal polynomial, although it does not depend on the choice of a
vector x such that x,Ax,---,49 'x are linearly independent (a draw-
back of the method). Similarly, contrary to the existing methods, the
above test for cyclicity depends strictly on the matrix 4.

IV. A New PrOOF TO AN IMPORTANT PROPERTY

The above results can also be used to provide a simple new proof to a
known important property of linear control theory, namely:

Corollary 4: Given {A,B} there exists a column vector g such that
{A,Bg} is controllable if and only if {4,B} is completely controllable
and A cyclic. If this is the case, then almost any g will suffice. (It should

2Krylov's method of transforming the secular equation [3].
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be noted at this point that this useful property was first shown by
Wonham [5, Lemma 3] in a complicated manner. The following proof is
completely different and much simpler.)

&
Proof: Let g= and premultiply PS5 by the (am X nm) matrix
&m
al, gl Emly
0 n .- 0
sal - . .
0 0o .- I

If there exists a vector g such that {4,Bg} is controllable, then the
(mn X n) matrix product SP;z will have full rank n. This follows from
the fact that the first # rows of the SP7p will be linearly independent
since, as a simple calculation shows, they are the n rows of the (nXn)
controllability matrix {Bg,4Bg,- - -,4" " 'Bg]. But the rank of a matrix
product is always less than or equal to the rank of the factors, which
implies that pPgz=n and in view of Corollary 1, that {4,B} is com-
pletely controllable and A is cyclic. Assume now that {4,B} is com-
pletely controllable and 4 is cyclic, i.e., pPg =n. Then, the first # rows
of SPjp, ie., [Bg,ABg, --,A" " 'Bg], will be linearly independent for
almost any g, since |Bg,- - -,4"~ 'Bg|, which is the sum of the products
of all the nth order minors of [g,1,.81,, * - ,&n{,] multiplied by the
corresponding nth order minors of PJy (at least one of which is non-
zero), is actually a multivariable polynomial in g,,g,,**-,g, and be-
comes zero only when g,,85," - - , &, take on values equal to the roots of
this polynomial.

Remark: Using duality, similar results involving observability instead
of controllability can be directly derived.

V. CoNCLUSIONS

In this paper, it has been shown that a number of important results
involving the notions of controllability (observability) and cyclicity can
be derived from a basic, simple theorem (Theorem 1). A new proof has
been given to a useful property (the reduction of a multiinput system to
a single-input controllable system), tests for cyclicity and controllability
have been presented, and methods to evaluate the controllable (observ-
able) modes of the system and the minimal polynomial have been
shown.
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Some Properties of the Value Matrix in Infinite-Time
Linear-Quadratic Differential Games

M. PACHTER

Abstract—The null space (and range space) of the value matrix in an
infinite-time linear quadratic differential game is characterized.
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