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Abstract

A finite state automaton is adopted as a model for Discrete Event Dynamic Sys-
tems (DEDS). Stability is defined as visiting a given set E infinitely often. Stabiliz-
ability is defined as choosing state feedback such that the closed loop system is stable.
These notions are proposed as properties of resiliency or error-recovery. An impor-
tant ingredient in stability is shown to be a notion of transiton-function-invariance.
Relations between our notions of stability and invariance, and the notions of safety,
faireness, livelock, deadlock, etc. in computer science literature are pointed out. Con-
nections are estabished between our notions of invariance and the classical notions
of A-invariance and (A, B)-invariance of linear systems. Polynomial algorithms for
testing stability and stabilizability, and for constructing a stabilizing control law are

also presented.
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1 Introduction

Discrete Event Dynamic Systems (DEDS) have received considerable attention in the
control literature recently. Many large scale dynamic systems seem to have a DEDS
structure, at least at some level of description. Some examples are manufacturing
systems [12,18], communication systems (such as data networks, and distributed
systems) [3], and expert systems (such as CPU design, or air-traffic management)
[7,9,21].

The notion of the control of a DEDS was, to our knowledge, first explicitly intro-
duced in the work of Wonham, Ramadge, et al. [10,13,15,16,22,23]. In this work, it
is assumed that certain events in the system can be enabled or disabled. The con-
trol of the system is achieved by choice of control inputs that enable or disable these
events. The objective is to have a closed loop system, so that the event trajectory in
this system is always in a given set of desired strings of events. This approach is
generally classified as a linguistic approach, since the objective is defined in terms of
the language generated by the closed-loop system, i.e., the set of possible strings of
events.

This work has prompted a considerable response by other researchers in the field,
and one of the principal characteristics of this research has been the exploration
of alternate formulations and paradigms that provide the opportunity for new and
important developments building on the foundations of both computer science and
control. The work presented here is very much in that spirit with, perhaps, closer
ties to more standard control concepts. In particular, in our work, we have had in
mind the development of the elements needed for a regulator theory for DEDS. In
this paper, we develop notions of stability and stabilizability for DEDS which might,
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more concretely, be thought of as properties of resiliency or error-recovery.

The goal in the work of Wonham, Ramadge, et al. is to restrict the behavior of
the system so that all strings generated from the given initial state are in a given
set of “legal” strings. In a sense, what we seek here is to develop control methods for
re-establishing such legal behavior following the occurence of one or more anomalous
events. For example, a manufacturing system is always subject to failures. Thus,
in the Wonham and Ramadge context, one would include all possible strings with
failures and successful recoveries in the legal language (the set of legal strings). In
our formulation, we focus on states rather than strings. Specifically, assume that we
have identified the set of “good” states, i.e., the set of initial states, from which only
legal strings are generated. Our focus then is to test if all trajectories from other
states visit the “good” states infinitely often, so that the system recovers from any
possible error in a finite number of transitions. If, in fact, failures do not happen
very often, then the system will exhibit legal behavior “most of the time”.

Another goal of this work is to establish connections with the related notions in
computer science. In particular, the concept of stability we use here has been in-
troduced by researchers in a number of different computer science contexts. What
distinguishes our work and makes it of potential interest in computer science as well
as in control theory is the introduction of control and feedback to formulate and solve
the problem of stabilizing systems. For example, our notion of pre-stability and the
algorithm we provide is exactly the same as the notion of inevitable reachability and
the algorithm of Sifakis [17]. Other notions of Sifakis can be characterized using sta-
bility and transition-function-invariance (f-invariance of Section 2). Thus, our results

in stabilizability can be directly applied to his notions if control was to be introduced
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in his framework. In [6], a system is defined to be self-stabilizing if starting at any
unsafe state, it is guaranteed to reach a “safe” state within a finite number of tran-
sitions. This is also the same as our notion of stability, and therefore our results of
stabilizability can be applied to this case. Finally, fair execution sequences, in con-
current systems, are defined as those execution sequences in which each process is
executed infinitely often, [4]. This notion is also connected to our notion of stability
and our results on stabilizability can tell us how to achieve fairness.

In the next section, we introduce the mathematical framework considered in this
paper and address the problem of stability. In particular, we first introduce a notion
of pre-stability, which is based on testing if all trajectories from a state go through
the “good” states. We then define transition-function-invariance (f-invariance) in our
framework and characterize stability in terms of pre-stability and f-invariance. We
also present algorithms for testing pre-stability and stability. In Section 3, we ad-
dress the problem of stabilizability. We first present an algorithm to construct a
pre-stabilizing state feedback, and we classify different pre-stabilizing feedbacks by
the degree of restriction imposed on the behavior. As an extension of f-invariance,
we examine achieving f-invariance by control inputs and we then impose the con-
straint that f-invariance is achieved while keeping the system alive. We combine this
with pre-stabilizability and present an algorithm to construct a stabilizing state feed-
back. Finally, in Section 4, we summarize our results and outline further research

directions.
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2 Stability

In this section, we define our notion of stability and provide an algorithm that tests

stability.

2.1 Preliminaries

The class of systems we consider are nondeterministic finite-state automata. The
basic object of interest is:

G=(X,%) (2.1)
where X is the finite set of states, with n = |X|, and ¥ is the finite set of possible

events. The dynamics of the system are characterized by two functions f and d:

zlk+1] € f(z[k],olk + 1)) (2.2)

ok +1] € d(z[k]) (2.3)

Here z[k] € X is the state after the kth event, and o[k + 1] € ¥ is the (k + 1)st
event. The function d : X — 2T is a set valued function that specifies the set of
possible events defined at each state (so that, in general, not all events are possible
from each state), and the function f : X x £ — X is also set valued, so that the
state following a particular event is not necessarily known with certainty. The triple
A = (G, f,d) representing our system can also be visualized graphically as in Figure
2.1. Here circles denote states, and arcs denote transitions, where the symbol in each
arc label denotes the event corresponding to that transition. Thus, in this example,
X ={0,1,2,3}, £ = {a, 8,6}, and, for example, d(1) = {a, 6}, f(0,3) = {0,3}, ete.
A transition, also denoted as z —7 y, consists of a source state, z, an event, o € d(z),

and a destination state, y € f(z,0).
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on

Figure 2.1: Simple Example

In the subsequent sections, we will use the following terminology concerning state

and event trajectories:

e A finite string of states, X = oz, ---z; is termed a path or a state trajectory

from z¢ if ;41 € f(zi,d(x;)) foralli =0---5 — 1, where
flzyd(z) = | f(z,0)
s€d(z)
We say z € Xif z; = z for some i. Let X( A, z) denote the set of all possible paths
from z. A path is termed a cycle if z; = z; and a cycle is termed a primary cycle
if there exists no distinct pair 7,,i; € 0---7 — 1 such that z;, = z,,, ie,, if it
contains no other cycles. For example, in Figure 2.1, 12, 3003, and 030 are all
paths, 3003, and 030 are cycles, and 030 is a primary cycle. In general, there
may be infinitely many cycles, but only a finite number of primary cycles. For

example, the primary cycles of Figure 2.1 are 00, 030, and 303.

¢ Similarly, a finite string of events s = o, ---o; is termed an event trajectory

from z € X if 0y € d(z) and 0y4y € d(f(z,01 -+ 0;)) for all ¢, where we extend
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f to £* via

f(zyo1-- 00} = f(f(z,01- - 0im1), 00)
with f(z,¢) = z, where ¢ is the empty string. In Figure 2.1, o336 is an event
trajectory. Let L( A, z) denote the set of all possible event trajectories starting

from state x.

For most applications of interest to us, it is desired that the system can never
reach a point at which no event is possible. This is a notion of liveness. For example,

a manufacturing system should, always, be capable of producing something. We use
R(A,z) = {y € X|z =" y}

to represent the set of states that can be reached from z, where —" denotes any
number of transitions, including ne transitions. Thus, R(A,z) always includes z.
For example, in Figure 2.1, the reach of 1 is X itself. Intuitively, we define a state to
be alive if all event trajectories from that state have infinite length extensions. We
let

D = {z € X|d(z) = 0} (2.4)
denote the set of states which have no events defined, and term these the dead states.

We formally define liveness as follows:

Definition 2.1 A state z € X is alive if d(y) # 0 for all y € R(A,z). A subset Y of X

is termed a live set if all z € Y are alive. A system A is termed alive if X is a live set. Q

For example, in Figure 2.1, D = {2} and 0 is alive, whereas 1 is not. Clearly, the
class of live sets is closed under arbitrary unions and intersections. The maximal live

subset of X, X,, is given by the set of states that cannot reach the dead states:

X, = R(A,D) (2.5)
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where overline denotes the complement and A~! denotes A with the transitions re-

versed, i.e., A™! = (G, f~!,d~') where:

fHz,0) = {yeXze fly,0)} (2.6)

d"(z) = {o €Z|3y € X such thatz € f(y,0)} (2.7)

Thus, R(A™1, D) is the set of states that can reach D in the original system. For
example, in Figure 2.1, D = {2} and X, = {0,3}. Note that the state 1 is not alive
since there exists a trajectory from 1 which goes to state 2, which is a dead state.

Note that if we replace D by any set of states, then X, is the maximal set of states
that aveid D. This situation arises, for example, in mutual exclusion problems, in
the context of manufacturing systems, [11], and computer systems, [1,2,5], where a
number of users compete for a limited number of resources, say r. In that case, the
states that represent p > r users attempting to use the resources are undesirable
and one wants to find the set of states that avoid this violation. Golazewski and
Ramadge, [8], address this problem, in the context of DEDS problems that consist
of many interacting components. Our contributions to this problem are presented in
[14].

We conclude this section by presenting an algorithm to compute the reach of a set
of states. It immediately follows from the definition that the reach of a set of states,
Xo, is the fixed point of R = f(R,X) = U_¢g f(z,d(z)) such that R 5 X,. Thus, we
have the following algorithm:

Proposition 2.2 The following algorithm computes R(A, Xo) for any Xy C X and it has
complexity O(n):
Algorithm Let Ry = ()o = X and iterate:

Rk+1 = Rk U f(Qka E)
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Qrs1 = Repi NR;

Terminate when R,y = R;.

Proof: Clearly, the algorithm terminates in a finite number of steps, say r, and R, =
R(A, Xo). Since each state is visited only once, the complexity of the algortihm is
O(n). Q

For example, in Figure 2.1, in order to compute the reach of 1, we have: Ry =
{1},R, = {0,1,2}, R, = X, R; = X, and the algorithm terminates. Thus, the reach
of 1is X.

2.2 Pre-Stability

The notion of stability we wish to capture can be thought of as error recovery. Specifi-
cally, as in Wonham and Ramadge, one can imagine a set of desired event trajectories
that one would like to see in a DEDS. For example, in a manufacturing system, these
sequences might consist of a concatenation of subsequences each of which corresponds
to the successful production of an individual component and the return of the system
to a "start-up” state, from which it can initiate the next production task. Because
of the possibility of failures or errors, actual behavior may deviate from this ideal,
and what one would like is that after such a failure, the system recovers. To capture
this idea, we suppose that we have identified a subset E, of the state space X, so
that returning to E corresponds to being in a position to continue desired behavior
from that point on. For example, in a manufacturing system, F might be the set of
all non-failure states or it might simply be the set of start-up states, which, in the
Wonham and Ramadge framework, can be thought of as the initial state from which

legal event trajectories are generated. Error recovery or stability then corresponds to
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Figure 2.2: Stability Example

a return to £ in a finite number of transitions following any excursion out of £. There

is a useful linguistic interpretation of this concept. Define the desired language as

L(AE) = | L(A,z) (2.8)

z€E
What we would like is the following. Suppose that for some reason, we are in a state
z ¢ E. Then, we want all possible event trajectories from x to differ from a desired
trajectory by at most a finite prefix.
Given E, we define a state z € X to be stable if all paths from = go through £

in a finite number of transitions and then visit £ infinitely often. For example, in
Figure 2.2, where £ = {0,2}, only 2 and 3 are stable states. State 1 is not stable
since the system can loop at 1 for an infinite number of transitions. States 0 and 4,
although 0 is in F, are not stable either since the sytem can make a transition to
state 1 and stay there forever. This notion is similar to but not exactly the same as
the notion of Biichi acceptance [20]: An infinite event trajectory is Biichi acceptable

if there exists a corresponding state trajectory which visits a terminal state (where a
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set of terminal states is given) infinitely often. In our notion of stability, if we let E
be the set of terminal states, all possible state trajectories, from a stable state, visit
E infinitely often.

Our notion of stability is captured in two stages. We term z pre-stable if all paths
from z go to F in a finite number of transitions. In other words, no path from = ends
up in a cycle that does not go through E. For example, in Figure 2.2, 0, 2, 3, and 4
are pre-stable. This notion is exactly the same as the notion of inevitable-reachability
of Sifakis [17]. A state is then stable if all the states in its reach are pre-stable. In
Figure 2.2, 0 and 4 are not stable since they can reach 1, which is not pre-stable.

We formalize pre-stability as follows:

Definition 2.3 Given a live system A and some E C X, a state z € X is pre-stable with
respect to E if for all x € X(A, z) such that {x| > n, there exists y € X such that y € E.
Qa

We say that a set of states is pre-stable with respect to E if all its elements are
pre-stable and a system A is pre-stable with respect to E, if all states in X are
pre-stable.

If all paths from z go through F, then they do so in less than n transitions since
otherwise = has a a cycle that does not go through F, and thus, there exists a path
which never goes through E. Equivalently, pre-stability can be characterized in terms
of the primary cycles. To formalize this, let Rg(A,z) denote the set of states that
can be reached by trajectories from z that do not go out of E if they enter E at all.
For example, in 2.2, Rg(A,4) = {0,3,4}. In other words, Rg(A,z) = R(A', r) where
A’ is an automaton created from A by removing all transitions, from states in E,

which take that state outside of E. For example, in Figure 2.2, we only remove the
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transition 0 —° 1. Then, z is pre-stable if and only if all primary cycles in Rg(A, z)
go through E. In Figure 2.2, the self-loop at 1 is a primary cycle and does not go
through F.

Proposition 2.4 Given alive A and z € X, z is pre-stable with respect to E iff all primary
cyclesin Rg(A, z) include at least one state in E. In general, A is pre-stable with respect
to E iff all primary cycles in X include at least one state in E.

Proof: Straightforward by assuming the contrary in each direction. o

The class of sets, that are pre-stable with respect to F, is closed under arbitrary
unions and intersections. Now, we derive an algorithm that computes Xp, the max-
imal subset of X that is pre-stable with respect to E. Our algorithm, which is the
same as the one given for inevitable reachability in Sifakis, is based on starting from
E and growing the currently known set of pre-stable states by including, at each step,
those states = such that f(z,d(z)) is a subset of the current set.

In developing this algorithm, we first need the following lemma, which states that
if some state z is pre-stable, then either z is in E or all the events defined from z

take z to a pre-stable state:

Lemma 2.5 z € X is pre-stable with respect to E iff z € E or f(z,d(x)) is pre-stable
with respect to F.

Proof: Straightforward. Q

Also, note that given a set of pre-stable states (), that include F, we can test pre-
stability of other states by testing pre-stability with respect to Q:

Lemma 2.6 Given ¢y, @2 C X such that @, is pre-stable with respect to Fand @, D F,

Q2 is pre-stable with respect to E iff ), is also pre-stable with respect to ¢};.
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Proof: (—) Obvious since Q; D E.
(~) Suppose that some z; € Q; goes to a cycle that avoids £. By Proposition 2.4, this
cycle goes through some state r; € ;. Then, z, cannot be pre-stable with respect to

E, and we have a contradiction. Qa
These two lemmas lead to the following algorithm:

Proposition 2.7 The following algorithm computes Xp, and it has complexity O(n?):

Algorithm Let X, = E and iterate:
Xiy1 = {:I:lf(m,d(z)) C Xk} U X,

Terminate when Xy = X

Proof: Clearly, X, is pre-stable with respect to £. Suppose that X is pre-stable with
respect to . By Lemma 2.5, X; is pre-stable with respect to X and by Lemma 2.6,
it is also pre-stable with respect to E. This algorithm terminates in at most n steps.
Let us say that it terminates in r steps. Suppose that there exists some z, € Xp such
that z; ¢ X,, then there exits ¢ € d(z,) and z; ¢ X, such that z, € f(z;,0). The
same holds true for z, and some z3 ¢ X, etc. Thus, there exists a path which never
reaches X,. Since also X, O E, z; is not pre-stable with respect to £ and we have
a contradiction. Finally, to justify complexity, note that this algorithm terminates in
at most n iterations. Since all states can be visited at most once at each iteration,

the complexity of the algorithm is O(n?). a

In Figure 2.2, X; = X; = Xp = {0,2,3,4}. Note that the number of steps in
which this algorithm terminates, is a notion of radius for the pre-stable part of the
system where F is taken as the center. That is, it is precisely the length of the

maximum length trajectory between any pre-stable state and the state in E at which
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this trajectory enters £ for the first time. In Figure 2.2, this radius is one. In fact, if
some z is included at step & of the algorithm, then the maximum number of transitons

it takes to go from z to F is k.

2.3 Stability and f-Invariance
As motivated in the previous sections, we define stability as follows:

Definition 2.8 Given a live system A and some E C X, a state z € X is stable with
respect to E. if all infinite state trajectones starting from z visit E infinitely often. More
precisely, x is stable if for all x;,x; € X(A, ) so that X; = x,Z, with |z]| 2> n, then there

exists y € Z such that y € E. a

This definition states that at any point in a trajectory from a stable state, we know
that the trajectory will re-visit £ within a finite number of transitions. In Figure 2.2,
clearly, 1 is not stable. States 4 and 0 are not stable because there exist trajectories
that start from these states and go to state 1, and subsequently, these trajectories
may loop in state 1 forever.

An immediate consequence of this definition is the following, which states that

the stability of a state is equivalent to the pre-stability of its reach.

Proposition 2.9 Given a live A and =z € X, z is stable with respect to E iff R(A,z) is

pre-stable with respect to E. Q

A subset of X is stable if all its elements are stable, and a system A is termed stable

if X is a stable set. We immediately have:

Proposition 2.10 A is a system stable with respect to E iff it is also pre-stable with

respect to E. Q
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We also have the following counterpart of Proposition 2.4:

Proposition 2.11 Given a live A and =z € X, z is stable with respect to E iff all primary
cycles in R(A, z) include at least one state in E. In general, A is stable with respect to
E iff all primary cycles in X include at least one state in E.

Proof: Straightforward. Q

If we compare this to Propoesition 2.4, note that the second statements are exactly the
same. This is due to Proposition 2.10.

The class of sets stable with respect to E is closed under arbitrary unions and
intersections. Let X g denote the maximal set stable with respect to £ (Note that
Xs can be the empty set, for example, if we let £ = {0} in Figure 2.2). Then, X
is the set of states in Xp from which we can only reach pre-stable states. Let us
first formalize this notion of staying within a given set of states (corresponding to the

notion of A-invariant subspaces of system thoery):

Definition 2.12 A subset Q of X is f-invariant if f(Q,d) C Q where

(@ d)= | f(z,d(z))

z€Q
Q

It immediately follows that any trajectory that starts in an f-invariant set stays in

that set:

Proposition 2.13 @ is f-invariant iff R(A,Q) C Q.

Proof: Straightforward. Q

The class of f-invariant sets is closed under arbitrary unions and intersections. We

then have:
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Proposition 2.14 X is the maximal f-invariant set in Xp.
Proof: (C) Clearly, Xs C Xp. Also, X5 is f-invariant since if a state z € X5 can
reach a state that is not stable, then x cannot be stable.
(D) Let X, denote any f-invariant set in Xp. Any path from a state in X goes
through E, and if gets out of £ it stays in X; and thus in Xp. Therefore, X; is
stable. a

Note that the maximal f-invariant set in () is the set of states in ¢} that cannot

reach any state in @, i.e., it is R(A-1, Q). Thus, we can compute X5 as follows:

Xs = R(A™', Xp) (2.9)
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3 Stabilizability

So far, we have dealt with notions that are close to those commonly seen in the
automata theory literature, In this section, we introduce control and reconsider the
notions formulated in the previous section. We define pre-stabilizability (respectively
stabilizability) as finding a state feedback such that the closed loop system is pre-
stable (stable). We present a polynomial algorithm for constructing a pre-stabilizing
feedback. This algorithm is a natural extension of Algorithm 2.7 and it generates a
state feedback which is maximally restrictive, in the sense that it disables as many
events as possible at each state, and path minimizing, in the sense that the maximum
length path from pre-stable states to £ is minimized. We also present an algorithm
for constructing a minimally restrictive feedback., Finally, we introduce a notion of
(f,u)-invariance, achieving f-invariance by choice of state feedback, and use this
notion, together with the constraint that the closed loop system needs to be alive, to

develop a polynomial algorithm for constructing a stabilizing feedback.

3.1 Pre-Stabilizability

To introduce control, we modify our system model as follows:
G=(X,L,U) (3.1)

where, U is the set of admissible control inputs. We introduce control by allowing
certain events at each state to be disabled. This framework is the same as that of
Ramadge and Wonham, except that in our case, an event that is controllable at one

state may not be controllable at another state. We let I/ = 2% and the dynamics are
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described by:

zlk+1] € f(z[k],olk+ 1]) (3.2)
olk+1] € (d{z[k]) Nnu[k]) Ue(z[k]) (3.3)

where, u[k] € U is the control input after the kth event, and e : X — 2% is a set
valued function that specifies the set of events that cannot be disabled at each state.
Without loss of generality, we assume that e(z) C d(z) for all z. The interpretation of
3.3 is straightforward. The set d(z) represents an “upper bound” on the set of events
that can occur at state z—no matter what we do, the next event will be in d(z). The
set e(z), on the other hand, is a lower bound—no matter what we do, any event in e(z)
may still occur. The effect of our control action is adjusting the set of possible events
between these bounds, by disabling some of the controllable events, i.e., elements
of the set d(z) Ne(z). Note, therefore that while in our definition u(x) can be any
subset of T, we can, without loss of generality assume that u(z) C d(z) Ne(z). We
will make this assumption throughout. The quadruple A = (G, f, d, ¢) representing
our system can also be visualized graphically as in Figure 3.1. In addition to the
graphical representation of the previous section, we mark the controllable events by
“u”. For example, in Figure 3.1, v is controllable at 1 and 2, whereas 3 is controllable
only at 3.

A state feedback law is a map K : X — U. Given a state feedback X, let

Ag = (G, f,dk,e) denote the closed loop system where
di(z) = (d(z) N K(z)) Ue(z) (3.4)
We define pre-stabilizability as follows:

Definition 3.1 Given a live system A and some E C X, z € X is pre-stabilizable with
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Figure 3.1: Example for the Notion of Pre-Stabilizability

respect to E if there exits a state feedback K such that z is alive and pre-stable with

respect to E'in Ag. A set of states, (), is a pre-stabilizable set if there exists a feedback law

K(z) so that every z € () is alive and pre-stable in A, and A is a pre-stabilizable system

if X is a pre-stabilizable set. g

Figure 3.1 illustrates the importance of the liveness requirement in the above defini-
tion. Note that 1 is pre-stabilizable since disabling ~ pre-stabilizes 1. On the other
hand, disabling v at 2 leaves no other defined event at 2. Thus, neither 2 nor 3 is
pre-stabilizable.

Let ) and Q; be two pre-stabilizable sets. Clearly, any feedback that pre-
stabilizes either one of them also pre-stabilizes their intersection. Thus, pre-stabilizable
sets are closed under intersections. The following result states that they are also

closed under union:

Proposition 3.2 Given pre-stabilizable sets @, and Q;, @, U Q; is also pre-stabilizable.
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use K;

@ use Ko

Figure 3.2: Feedback that Pre-Stabilizes the Union of Two Sets

Proof: We show this by constructing a feedback that pre-stabilizes the union. First
let K; pre-stabilize ();. Then, pick, say, K, for the reach of ¢};, and K, for those
states in the reach of ()3, but not in the reach of @, (see Figure 3.2). More precisely,

we pick a feedback F' as follows:

Ki(z) if z € Re(Ak,, Q1)
F(z)={ Kiy(z)  ifz € Rg(Ak,,Q2) 0 Re(Ak,, Q1)

don’t care otherwise
Recall that Rg(A, Q) is the set of states that can be reached from @ by trajectories
that do not exit £ once they enter it. Clearly, ¢}, is pre-stable in the closed loop
system Ar. By Lemma 2.6, (), is also pre-stable, since the trajectories, from a state
in ()2, either go to E or go to a state that is also in the range of @, in which case,
they will eventually go to £. Thus, F' pre-stabilizes @, U Q.. Q

We immediately have the following corollary:
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Coroliary 3.3 A maximal set that is pre-stabilizable with respect to E exists. Let P(E)

denote this set. Q

Recall, from Lemma 2.5, that a necessary and sufficient condition for the pre-
stability of a state z is the pre-stability of f(x,d(z)). A natural generalization of this
condition is that the set of events defined at = can be restricted, say by K C X, so
that there is at least one event defined from z, i.e., dx(z) = (d(z)NK)Ue(z) # 8, and
all those events take x to pre-stabilizable states, i.e., f(z,dx(z)) is a pre-stabilizable

set:

Lemma 3.4 z € X is pre-stabilizable with respect to E iff z € E or there exists some
K C Z such that dg(z) = (d(z) N K) Ue(z) # @ and f(z,dk(x)) is pre-stabilizable
with respect to E.

Proof: (—) Immediate from Lemma 2.5.

() Let K, be a feedback that pre-stabilizes f(z, dx(x)). Let

Ki(z')  if2' € Rp(Ak,, f(z,dk(z)))
Ky(z'y=¢ K fe' ==z
don’t care otherwise
Then, also by Lemma 2.6, K, pre-stabilizes z. Note that we do not care about the
feedback for states other than the ones we have included in the above equation for

K3, since z cannot reach those states under K, Q

Now, we can construct a natural counterpart of Algorithm 2.7 using the above
lemma. As in Algorthm 2.7, we start with £ and then add in the states that satisfy
Lemma 3.4. In particular, at each step, we include the states z for which e(z) # @
and f(z,e(z)) is a subset of the current set of states which are known to be pre-

stabilizable, or (if e(z) = (), we can find an event ¢ € d(z) such that f(r,0) is a
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Figure 3.3: Example for the Pre-Stabilizability Algorithm

subset of the current set. For example, in Figure 3.3, We start with the state 0. At

the first step, we include 1 and 2, and at the second step we include 3.
Proposition 3.5 The following algorithm computes P(E) and a feedback that pre-stabilizes
it. It has complexity O(n?):

Algorithm Let X, = F and iterate:

P J z| (e(z) # 0 and f(z,e(x)) C X)) or

k =

" (e(z) = 0@ and Jo € d(z) such that f(z,0) C X))

K(z) = 4 ’ ele) #0 , for z € Py
| some g such that f(z,0) C X; otherwise

Xev1 = XpUPiyy

Terminate when X, = X;.
Proof: Straightforward by following the proof of Proposition 2.7 and using Lemma
3.4. Q

In Figure 3.3, v is disabled at 1 and 3 is disabled at 2 in the first step, and S is

disabled at 3 in the second step.
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Algorithm 3.5 leads to a feedback that disables as many events as possible. We

formalize this as follows;

Definition 3.6 A pre-stabilizing feedback K is maximally restrictive, if for any pre-stabilizing

feedback K’ such that dg:(z) C di(z) forall z € P(E)NE, K' = K. Q

We immediately have the following resuit:

Proposition 3.7 A pre-stabilizing feedback K is maximally restrictive iff

K(z) = oged(z) ife(z)y=20 ,
e(z) otherwise

forallz € P(E)NE.
Proof: Straightforward. Q

Thus, Algorithm 3.5 leads to a maximally restrictive feedback.

The feedback of Algorithm 3.5, also minimizes the maximum number of transi-
tions it takes to go from a state to E. Clearly, it also minimizes the radius. In Figure
3.3, it takes a single transition to go from 1 or 2 to 0, and two transitions to go from 3
to 0. To formalize this, let us assume, without loss of generality, that A is stabilizable,
and let r(A, z) denote the length of the longest path from z to a state in E, where
r(A,z)=0forallz € E:

Definition 3.8 Given a stabilizable system A, a pre-stabilizing state feedback K is path
minimizing if for any pre-stabilizing feedback K’ such that r(Ags,z) < r(Axk,z) for all
z, r(Agr,z) = r(Ag, z) for all z. Q

For any two path-minimizing feedbacks, the longest path lengths are equal at each

state:
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Proposition 3.9 For any two path minimizing feedbacks K, and K,, r(Ax,,z) = r(Ak,, )
for all x.

Proof: We prove this by assuming the contrary and contructing a feedback, £ which
leads to shorter path lengths than those of K, and K.

If we assume the contrary, then there exists z,y € X such that r{Ag,,z) <
r(Ax,,z) and r(Ag,,y) > r(Ak,,y). To construct F, we want to use K, for the
reach of z and K, for the reach of y. However, we need to make sure that we do
not introduce any loops by doing this. Thus, we want to show that if z € Rg(Ak,,y)
then y € Rg(Akg,,x), and vice versa.

Assume the contrary to this, i.e., assume that = € Rg(Ak,,y), andy € Rg(Ak,, ).
If € Rp(Ak,,y), then r(Ak,,y) > r(Ak,,z). On the other hand, if y € Rg(Ax,,z),
then r(Ag,,z) > r(Ag,,y). Since also r(Ak,,z) < r(Ak,,z) and r(Ag,,y) >
r(Axk,,y), r(Ak,,z) > r(Ak,,y). Thus, we have a contradiction.

Therefore, the following choice of F' is pre-stabilizing, if we assume, without loss

of generality, that € Rg(Ax,,¥):
Ky(z') if 2’ € Rg(Ak,, )
K(z') otherwise

F also leads to shorter path lengths than those of K, and K, and thus, neither K,

nor K is path-minimizing. Therefore, r(Ag,,z) = r(Ak,, z) for all z. Q

Let 7(z) denote this minimal path length for x. Finally, we show that Algorithm 3.5

leads to a path-minimizing feedback, and it also constructs 7(z):

Proposition 3.10 The feedback of Algorithm 3.5, K, is path-minimizing. Furthermore,
z € P, at step k of the algorithm, if and only if K = ¥(z), and thus, the algorithm also

constructs 7(z).
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Proof: Suppose that K is path minimizing for X at step & of Algorithm 3.5. Then,
for some z € Pit1, f(z,dx{z)) N P # 0 since otherwise x € P, for some z < k + 1.
Therefore, K is path minimizing for X, and by induction, K is path-minimizing

for P(E). The proof of the second statement is straightforward. Q

If all the trajectories in the desired behavior consist of states in F, then a max-
imally restrictive feedback is desirable for stabilization since it does not restict the
desired behavior, and in addition, it ensures returning to F in a minimum number
of transitions. However, if the desired behavior involves states outside of F (for ex-
ample, if F is simply a set of desired initial states), then one would prefer a less
restrictive feedback so that all stable trajectories of the desired behavior are enabled.
In what follows, we present an algorithm to construct a feedback that disables as few

events as possible:

Definition 3.11 A pre-stabilizing feedback K is minimally restrictive, if for any pre-stabilizing

feedback K’ such that dx:(z) D dx(z) forallz € P(E)NE, K' = K. Q

Our algorithm is based on the following lemma, which states that a feedback,
K, is minimally restrictive if and only if enabling any event at any state, which
is otherwise disabled, makes that state unstable, i.e., creates a cycle that does not
go through E. That is, K is minimally restrictive if for any state z, enabling any
o that had been disabled by K can move the system to a new state from which it
can return to r without going through E. For example, in Figure 3.3, consider the
feedback which disables v at 1 and 3 at 3. Enabling either of these events makes the

corresponding state unstable.

lemma 3.12 A pre-stabilizing state feedback K is minimally restrictive iff for all z €

P(E) and ¢ € d(z) N K(2) Ne(z), z € Re(Ax, f(z,0)).
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Proof: (—) Straightforward by assuming the contrary.
(+) Since we cannot enable any event without making some state unstable, K is

certainly a minimally restrictive feedback. Q

In order to compute a minimally restrictive feedback, we start with a maximally
restrictive feedback, and add events, that are otherwise disabled, until the condition
of the the above lemma is satisfied. Our algorithm visits all states in P(E) N F
and for each state z, it includes all events o € d(z) N K(z) N e(z), such that z ¢
Rg(Ak, f(z,0)), in K(x). Since K is possibly modified after visiting a state, when the
next state is visited, the new feedback should be used in computing Rg(Ak, f(z,0)).
For example, in Figure 3.3, if we start with state 3, we get the minimally restrictive
feedback which disables v at 1 and 3 at 3. Depending on the order the states are
visited, different minimally restrictive feedbacks may be generated. In Figure 3.3, if
we start with state 1 or 2, we get the minimally restrictive feedback which disables
g at 2.

On the other hand, we do not need to compute Re{ Ak, f(z,0)) for each ¢ and z.

Instead, we can compute, for each z, the set of states that can reach z and check to

see if any element of f(z,0) is in this set:

Lemma 3.13 Given z and o € d(z) N K(z) Ne(z), z € Re(Axk, f(z,0)) iff f(z,0) N
RE(AI-(I::‘:) # 0.
Proof: Straightforward. Qa

We then have the following algorithm:

Proposition 3.14 The following algorithm computes a minimally restrictive feedback. It

has complexity O(n?):
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Algorithm For all z € P(E) do:

S = K(z)U{o €d{z)nK(z)Ne(z)|f(z,0) N Re(Ag', z) = 0}

Kiz) = S

Proof: The proof follows from Lemma 3.12. The complexity is O(n?) since all states

are visited and the reach operation has complexity O(n). Q

3.2 Stabilizability and (f, w)-Invariance

Stabilizability, like pre-stabilizability, is defined as a natural extension of stability.
A state z is stabilizable if we can find a state feedback such that z is stable in the

closed loop system:

Definition 3.15 Given a live system A and some E C X, 2 € X is stabilizable with
respect to E if there exits a state feedback K such that z is alive and stabie with respect

to £ in Ag. A set of states, Q, is a stabilizable set if there exists a feedback law K (z)

so that every z € @ is alive and stable in Ax, and A is a stabilizable system if X is a

pre-stabilizable set. Q

Let (), and @, be two stabilizable sets. Clearly, any feedback that stabilizes either
one of them also stabilizes their intersection. Thus, stabilizable sets are closed under

intersections. The following result states that they are also closed under union:

Proposition 3.16 Given stabilizable sets @, and @2, @1 U Q- is also stabilizable.
Proof: We show this by constructing a feedback that stabilizes the union. First let

K; stabilize ();. Then, pick, say, K; for the reach of ();, and K, for those states in
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the reach of @),, but not in the reach of Q,. More precisely, we pick a feedback F as

follows:
Ki(z) ifr € R(Ak,,)
F(z) = K,(z) if z € R(Ax,,@2) N R(Ak,, Q1)
don’t care otherwise
F clearly stabilizes Q, U Q. Q

We immediately have the following corollary:

Corollary 3.17 A maximal set that is stabilizable with respect to E exists. Let S(E)

denote this set. Q

To achieve stabilizability, we try to make P(F) f-invariant by choice of feed-
back. Thus, we first need to define the following counterpart of the notion of (A, B)-

invariance:

Definition 3.18 A subset Q of X is (f,u)-invariant if there exists a state feedback K

such that Q) is f-invariant in Ag. Q

Let Ay denote A with all controllable events disabled, i.e., Ag = (X, f,¢,¢). Note
that if some @ is f-invariant in Ay then it is also (f, u)-invariant in A. The following
result formalizes this and it also establishes a connection with the well-known result
in (24] that a subspace V is (A, B)-invariant iff AV C V + B, where B is the range

of B (compare to item 2 below):
Proposition 3.19 The following statements are equivalent:
1. @ is (f,u)-invariant in A.

2. Vz € Q, f(z,d(z)) C QU f(z,e()).
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3. @ is f-invariant in A,.

Proof: (1 — 2) Suppose that there exists z € @, ¢ € d(z), y € f(z,0o) such that
y ¢ @ andy ¢ f(z,e(x)). But, then y € f(z, e(z)) and we have a contradiction since
the transition to y is undesired and cannot be disabled.

(2 — 3) Assume the contrary. By Proposition 2.13, there exists ¢ € @, o € e(z) such
that f(z,0) ¢ Q. By (2), f(z,0) C f(z,e(z)) and we have a contradiction.

(3 — 1) Simply use the feedback K{z) = e(z). Q

The class of (f,u)-invariant sets is closed under arbitrary unions and intersec-
tions. Thus, a unique maximal (f, u)-invariant subset of @ exits, and let 7'(@}) denote
this set. Clearly, T(Q) = m. This notion of (f, u)-invariance, however, is not
sufficient for stabilizablity since we also need to keep S(E) alive. So, we define the
following notion which requires that we can find a state feedback such that @ is both

alive and f-invariant in the closed loop system:

Definition 3.20 A subset Q) of X is a sustainably ( f, u)-invariant set if there exists a state

feedback K such that Q is alive and f-invariant in Ag. Q

The class of sustainably ( f, u)-invariant sets is closed under arbitrary unions but not
intersections. In Figure 3.4, (; (respectively (};) can be made (f,u)-invariant and
alive by disabling é (respectively «) at state 1. On the other hand, ¢, U Q) is clearly
sustainably ( f, u)-invariant, but ¢, NQ, is not, since if both « and § are disabled, the
state 1 is no longer alive. Let (@) denote the maximal sustainable (f, u)-invariant
subset of Q).

The characterization of sustainable (f, u)-invariance requires a slightly more care-

ful look at what it means if an (f,u)-invariant set is not sustainable, Specifically,
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Figure 3.4: Example for the Sustainable (f, u)-Invariance of Unions and Intersections

for any @ and all states = in T(Q), we know that all events that may take z out-
side of T'(Q) are controllable, and can therefore be disabled to achieve the desired
invariance. However, z may have no other events defined, and thus, making T(Q)
f-invariant will disable all events from z. Then, T(Q) is not sustainable. Qur algo-
rithm for computing I(Q) is based on first computing 7((Q) and then throwing away
all states that are no longer alive, We then apply the same procedure to this new set.
This iteration continues until no states are discarded on a step. The following result

states that we then have a sustainable ( f, u)-invariant set:

Proposition 3.21 Given @ C X, let
Q@ = T({z € Q| there exists some ¢ € d(z) such that f(z,0) C Q})

Then, Q is sustainably (f, u)-invariant iff Q' = Q.

Proof: (—) Obvious

(=) Q' = Q then Q = T(Q) and for all = € Q there exists some ¢ € d(z) such that
f(z,0) C Q. Therefore, Q is alive and f-invariant in Ax with K(z} = {o|f(z,0) C
Q}. Q
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This resuit implies that in order to find /{Q), we can apply the operation T iteratively

by throwing away the states that are no longer alive after the last step:

Proposition 3.22 The following algorithm computes I(Q) and it has complexity O(n?):
Algorithm Let Xy = (). lterate:

Xis1 = T({z € Xi| there exists o € d(z) such that f(z,0) C Xi})

Terminate when X, = X;.

Proof: Clearly, this algorithm terminates in a finite number of steps, say r steps. By
Lemma 3.21, X, C I(Q). On the other hand, I(Q) C X,. Suppose that I(Q) C Xi
for some k. Then, X, D T(I(Q)) = I(Q). Thus, I(Q) C X, for all k, implying that
I(@) = X,.. To justify the computational complexity, note that we visit each state at

most once at each iteration, and there can be at most n iterations. Q

Now, we proceed with deriving an algorithm for the maximal stabilizable set,
S(E). We begin by computing P(E), the maximal pre-stabilizable set with respect to
E. If P(E) were sustainably (f,u)-invariant, we could be done, with S(E) = P(E).
More generally, however, there may be some states in P(FE) for which it is impossible
to find a feedback which keeps trajectories within P(F). Furthermore, since all
elements of P(E) are pre-stabilizable, some of these troublesome states must be in
E. Thus, what we must do is to compute /(P(F)) and then discard elements of E
not in J(P(E)), reducing E to a new set E'. However, there may now be states
which were pre-stabilizable with respect to £ but not with respect to £’, and we
therefore must repeat the process. For example, in Figure 3.5, £ = {0,3}, P(F) =
{0,1,2,3} and I(P(E)) = {1,2,3}, so that E' = {3}. Now, {1} is not pre-stabilizable

with respect to £’ and must be discarded. The iteration in this case would produce
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Figure 3.5: Example for the Stabilizability Algorithm

P(E') = {2,3} = I(P(E')). It is not difficult to check that {2,3} = S(E) as well,
and indeed the following result states this more generally and provides the basis for

our algorithm:

Lemma 3.23 Given F,Q C X, let

Q' =I(P(ENQ))

If @' = @ then Q) is stabilizable with respect to E.

Proof: We first show that Q = P(ENQ). If @' = @, then, clearly, @ C P(ENQ). In
order to show that @ D P(ENQ), suppose that there exists some z € P(FNQ) such
that ¢ € () (see Figure 3.6). Then, there exists some feedback such that all paths
from z go to £ N @ with trajectories that only lie in P(E N Q). Since by assumption
Q@ =I1(P(ENQ)) but z ¢ @, = can reach some y € ENQ and ¢ € e(y) such that
fly,0) € P(EN Q). But then, @ cannot be sustainably ( f, u)-invariant, which is a
contradiction. Therefore, ) = P(FNQ), and this immediately implies that @ = I(Q)

as well.
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P(EnQ)

Figure 3.6: Illustration for the Proof of Lemma 3.23

In order to show that () is stabilizable, let K » denote a feedback that pre-stabilizes
P(ENQ) and let
Kp(z) ifzeENQ
{o|f(z,0) CQ} fze ENQ

K(z)=

@ is clearly alive in Ag. @ is also pre-stable in Ax since Kp insures that all paths
from states in QNE go to QNE. Q is then stable in Ax. Therefore, Q is stabilizable,
and K is a stabilizing feedback. a

This result leads to the following algorithm:

Proposition 3.24 The following algorithm computes S(F) and a feedback that stabilizes

it. It has complexity O(n?).
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Algorithm Let X, = X and iterate:
Xy = I(P(EN Xy))

Terminate when X4 = X;.

Proof: To show that X, C X for all k, first note that X; C X,. Assume that
Xiy1 C X for some k. Let P denote P(E N Xi). Note that Py, C FPg since
ENXi C ENX,. Then, I(Pryy) C I{#) and thus Xiys C Xiq1. Therefore,
this algorithm terminates in a finite number of steps, say r steps. By Lemma 3.23,
X, C S(E). On the other hand, S(E) C X,. Assume that S(E) C X for some k.
Then, clearly, S(E) C P(E N X;). Since also I(S(E)) = S(E), S(E) C Xi41, so that
S(F) = X,. The feedback which achieves pre-stability at step r, say F, also achieves
stability for S(E), since states in S(E) are not pre-stable with respect to £ N S(E)
and thus F' cannot be enabling any event that takes a state in S(E) outside of S(F).
Also, for states in E N S(FE), all events that take those states outside of S(£) should

be disabled. In short, the stabilizing feedback X is

F(z) ifze S(E)NE
K(z) =1 {c ed(z)|f(z,0) C S(E)} ifzeS(E)NE

don't care otherwise

To justify computational complexity, recall that the computation of P(E) is O(n?),

and note that the above algorithm terminates in at most n steps. Q

Note that a stabilizing feedback has two components: one component for pre-stability
and another for invariance. Clearly, there is no flexibility in choosing the feedback
to achieve invariance (events that do not take the state out of Pi,, should not be

disabled of course). For pre-stability either a minimally restrictive or a maximally
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restrictive feedback can be chosen. Then, the corresponding stabilizing feedback is,

accordingly, minimally restrictive or maximally restrictive.



4 CONCLUSIONS 33

4 Conclusions

In this paper, we have introduced notions of stability and stabilizability for discrete-
event systems described by finite-state automata, and we have developed polynomial
algorithms to test for stability and stabilizability and to construct maximal stable and
stabilizable sets, and for the latter, a feedback control law that makes a stabilizable
set or system stable. Our work has drawn on a blend of concepts from computer sci-
ence and from dynamic systems and control. In particular, the notion of pre-stability
used here is well-known in the computer science literature, while the concepts of
state feedback, f-invariance, and (f, u)-invariance that are of critical importance for
our study of stability and stabilizability, are control concepts in systems and control.

The stability concepts that we introduced here can be thought of as notions of
error recovery or resiliency in that the system always returns to “good” states. From
the control perspective, one can also formulate several related concepts and problems.
For example, in many applications, one may not have (or want) access to full state
or event information but may still wish to stabilize the system. This leads directly to
questions of state reconstruction, observability, and output feedback. Alse, motivated
by problems such as schedule-following in a flexible manufacturing system, one can
formulate regulator or tracking problems for DEDS in which a feedback system is
sought so that the DEDS produces a particular desired sequence of output events.

Analysis addressing these and related problems will be the subjects of subsequent

papers.
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