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Abstract. In this paper, the reconfigurable control problem is first formalized
mathematically and the common failures in flight control systems are classified;
mathematical models for each failure are provided. One of the key approaches
to the problem, the Pscudo-Inverse Method(PIM), is then analyzed and new
insight is obtained for both the state feedback and cutput feedback cases. It
provides, for the first time, justification for the successes and failures of this
practical approach. The main shortcoming of this method, which is the lack of
stability guarantees, is discussed and a new approach is proposed. In this new
approach, recent results on stability robustness of linear systems are used to
provide stability constraints for the solutions of the PIM, Finally, a novel
scheme for failure accommeodation of a stuck actuator is also proposed.
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INTRODUCTION

Reconfigurable/Restructurable Control Systems (RCS) are
control systems that posses the ability to accommaodate system
failures automatically based upon a-priori assumed conditions.
The research in this area is largely motivated by the control
problems encountered in the aircraft control system design. In
that case, the ideal goal is to achieve the so called "fault-
tolerant”, or, "self-repairing” capability in the flight control
systems, so that the unanticipated failures in the system can be
accommodated and the airplane can be, at least, landed safely
whenever possible. This problem has drawn the attention of
many tesearchers and many results have been published
(Caglayan, 1988; Chandler, 1984; Gao, 1989a, 1989b; Gavito,
1987; Eslinger, 1988; Howell, 1983; Huber, 1984; Looze,
1985; Ostroff, 1983, 1984; Pouts, 1981; Rattan, 1985; Raza,
1985).

The Pseudo-Inverse Method(PIM), has been accepted as a key
approach to reconfigurable control and it has been used quite
successfully in flight simulations as reported by (Caglayan,
1988a; Huber, 1984; Rattan, 1985; Raza, 1985). In this
approach, the feedback gain is to be modified so that the
reconfigured system approximates the nominal system in some
sense. This method is atractive because of its simplicity in
computation and implementation. The main drawback of the
PIM is that the stability of the reconfigured system is not
guaranteed, As aresult, the PIM, if applied with no appropriate
safeguard, can lead to instability. It is perhaps as worrisome
the fact that the results in literature do not provide adequate
insight as to why the PIM actually works when it does, or
under what circumstances it will fail. These are very important
questions that need to be answered because, in the control
system redesign, the first thing to recover has to be stability;
once stability is guaranteed, the performance, such as command
following, can then be taken into consideration. So it is
necessary in any approach to reconfigurable control, no matter
what method is used, to guaraniee the stability. Another
drawback in the current literature on reconfigurable control is
that the overall problem has not been clearly defined
mathematically. Here the mathematical model of the impaired
system under different failures will also be developed. The
reconfigurable control theory can only be established afier the
above issues have been addressed.

For convenience, the pseudo-inverse of a constant marrix is

defined here (Stewart, 1973; Golub,1983): Let A € RP*M has
the singular value decompaosition of the form:

a=v (5 JuH (L)
where V and U are unitary matrices. For any unitary matrix W,
we have WHW =1 and IWll; = 1; WH is the complex conjugate
of W,
Definition (Stewart, 1973, pp325): The Pseudo-Inverse of Ais
defined as

-1 o
+ _ H
A+=U (20 g (1.2)

Note that x = A+b is the solution of smallest norm for the linear
least squares problem of minimizing Il Ax - b 1I§ .

PROBLEM DEFINITION
Let the open-loop nominal plant be given by

x=Ax+Bu

y=Cx @

where A ¢ R, Be R75M and C ¢ RPX0. If the nominal
closed-loap system is designed by using the state feedback u =
Kx, Ke R™xn_ then the closed-loop system is

x = (A+BK)x

y=Cx (2.2a)

where K is the state feedback gain. Similarly, for the output
feedback u = Gy, Ge Rm=, the closed-loop system is



x = (A+BGC)x

2
yuCx (2.2b)

Suppose that the model of the system, in which failures have
occurred, is given by

%¢ = Agxg + Bug + Dw

2.3
yf=Cexg 23

where Afe RI%), Be RIX, Cpe R9FL, and D e RIX(M-1); w
contains the disturbances due to actuator failures. Let the new
control law be

ug = Kgxg (2.4a)

ug = GyCke (2.4b)

where Kf € R™S or Gf € R4 is the new feedback gain to be
determined, X is the new tneasured signal given by

k= Lxf (2.5)
¢ is different from xg only when there is a sensor failure.

Reconfigurable Control: Problem Formulation

Redesign the feedback gain, K¢, automatically so that it will
i)stabilize the impaired system (2.3) if it is stabilizable,
and

ityrecover the performance, such as command
following and disturbance rejection, as much as
possible.

There are a number of important characteristics which make the
Reconfigurable Control Problem unique. The control redesign
must be accomplished automatically and rapidly. The following
remarks shed some light into the problem requirements.

Remarks:

1. The importance of part i) in the formulation is obvious, In
the flight control systems of an aircraft, the stability takes the
highest priority in failure accommodation. Once the stability is
recovered, the immediate danger of disaster will be removed
and this gives time for the reconfiguration system to recover the
performance of the impaired system. The performance
recovery in part ii) is almost as important as part i) because
merely regaining the stability is usually not enough in failure
accommodation. For example, to save an impaired aircraft one
must regain the control of the system as well as the stability; in
this way, safe landing of the aircraft will be possible. This
problem is usually difficult to formulate since how much of the
performance can be recovered is very much dependent on the
severeness of the impairment.

2. Here we deal with potentially large variations in the
parameters of the plant. These variations may happen very
rapidly during operation corresponding to step like changes in
the values. It appears that these problems can not be resolved
just by using conventional fixed control or adaptive control
techniques. First, the parameter space may be so large that no
fixed control law will be able to cover the entire space. Second,
the parameter changes may be too fast for any conventional
adaptive control system to follow.

3. The control redesign procedure should be autornated to some
degree because in many cases of failure, such as the failures in
an unmanned spacecraft, the failure accommodation has to be
done with little or without hutnan intervention, Furthermore,
by eliminating the human factor, the speed of the process can be
greatly improved.

4. Since the failures could be catastrophic and the time to
respond is often very limited, the control redesign procedure
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should be efficient. A good example of the desired
characteristics of such procedure was reported in (NTSB,
1979) where the pilot had only 15 seconds to save the airplane
but he failed.

Fajlure Classification

It is important, for the understanding of the Reconfigurable
Control problem, to classify and model the types of failures.
The classification below is in terms of state space description
(2.3) and it is novel. The failures of the physical plant are
classified into three categories:

Plant Structural Failures:

For this kind of failure, we assume that the dynamics of the
plant are changed, but all the sensors and actoators are fully
capable. In this case the dimensions of the system, that is the
number of states and the number of inputs ahd outputs are not
changed. Here the impaired system is

xf = Agxg + Bguf

ye=Cexg @8
This is derived from (23) withl=n,r=m,q=p,s5=1,
Xf=xf, and w = 0.

Actuator Failures:

This is the type of failure where at least one of the actuators is
either stuck at a constant value, which is called an "actuator
stuck” failure, or it is osciliating between two values, which is
called an "actuator floating” failure. The actuator failure will
change, in general, the dimensions of the system. For
example, when the ith actuator is stuck an angle a, the impaired
system takes the form of

xf = Agxf + Bpug + bja

yE=Cexf @D
where, in terms of (2.3), we have l=n,r=m-1,q=p,s=1,
%f = xf, w = a and D is the ith column of B.

Sensor Failures:

Sensor failures result in at least one of the states not being
available for feedback gain calculation in (2.4). For example,
when one sensor fails the impaired system takes the form:

kg = Afxf+ Bug
yg=Crkf (2.8

where %5 = Lx¢, e Ri-lands =1-1

The Pseudo-faverse Method

The PIM has become a key approach to reconfigurable controt.
Its main objective is to maintain as much similarity as possible
to the original design and thus to provide graceful degradation
in performance. This is achieved by reassigning the feedback
gains, Here it is assumed that the impaired system is of the
type (2.6). In the PIM (Ostroff, 1985), the objective is to find
a new feedback gain so that the impaired systetn approximates,
in some sense, the nominal one in (2.2a) or (2.2b). For state
feedback, A+BK is equared to Ap+BKy and an approximate
solution for Kf is given by

K¢ =Bg(A - Ap+ BK) (2.92)

+
where By denotes the pseudo-inverse of By, Similarly, for
output feedback,

G =By(A - Af + BGC)CF (2.9b)



Note that K¢ or Gy can be calculated from (2.9) for many
anticipated failures and stored in the flight control computer.
Once the failure has occurred and is identfied, that is the model
of the system with failure (2.6) is obtained, the feedback gain
can then be modified. This is considered as a relatively fast
solution to stabilize the impaired airplane(Ostroff, 1985). This
PIM method has also been used for on-line accommodation for
unanticipated failures (Caglayan, 1988a; Huber, 1584, Rartan,
1985; Raza, 1985) although it appeared in differemt forms.
However, there is one problem which might render the method
useless, namely, that the solution from (2.9) does not
necessarily make the closed-loop system in (2.6) and (2.4)
stable; see example 1 and example 3.

The Properties of the PTM

Although the PIM has been used widely in the literature of the
RCS, the theoretical aspects of this methods have not been fully
investigated. For example, it is not clear in what sense the
closed-loop system in (2.6) and (2.4) approximates the one in
(2.2) when the PIM is used. In the following analysis, the state
feedback u = Kgxg is used for convenience. Note that the
results applies to the output feedback system as well.

In the PIM, it is desirable to have
A +BK = Ag+ BiKs (2.10)

This equation may or may not have an exact solution depending
on the row rank of the matrix By. If By has full row rank, then
(2.9a) always satisfies (2.10), otherwise, there is no exact
solution to (2.10) and Ky from (2.9a) is only an approximate
solution. It is interesting to see what the PIM implies in terms
of the eigenvalues, which are often used in the specifications of
the performance criteria. First let's look at the following
lernma:

Lemmal Let

§ =11 (A+BK) - (Ap+BgKe Il 2.11)

where IH[ stands for the Frobenius norm. Then the Ky

obtained from (2.9a) minimizes J.
Proof: see Gao(198%9b).

Note that when output feedback is used Gy is to be obtained by
(2.9b), which minimize the Frobenius norm: J = l{A+BGC) -

(Ap+BGCp)lf. (Pentose, 1966). Lemmal shows that the

solution (2.9) makes the closed-loop system (2.6) and (2.4)
approximate the nominal one (2.2) in the sense that the
Frobeni rm_of iffer f the cl -1 "A"
ices is minimized. The underlining idea in the PIM is that
if the norm J is minimized, hopefully the behavior of the
reconfigured system will be close to that of the nominal system.
It goes without saying that we would like to know just how
close it is going to be and in what sense exactly. The relation
between variations of closed-loop eigenvalues and the
Frobenius norm in (2.11) is given by the following theorem:

Theoreml: Let (A+BK) be non-defective, that is, it can be
reduced to diagenal form by a similarity ransformation, and let
X be the eigenvector matrix of A+BK in (2.2) and
X-1(A+BK)X = diag(Ay, Ag, - Ay), the eigenvalues of
Ag+BgKy lie in the union of the disks

Di={A:IA-AISEX I UX 1] ) (2.12)

where J is defined in (2.11) and Ill; denotes the matrix 2-
norms.
Proof: see Gao {(1989b).

The significance of this theorem is that it provides a bound to
the variation of the eigenvalues in terms of eigenvectors of the
nominal system and the Frobenius norm J. If the nominal
system is robust in the sense that all the eigenvalues are

relatively far left of the jo axis, then the PIM has a good chance
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to work provided J is small enough; J can be made small when
the failure is not "too severe”. This fact must be taken into
consideration in the design of the nominal system. Theoreml
also shows the limitations of the PIM. It is clear that by just
minimizing J, stability is not guaranteed; the minimum J can be
large enough to allow the eigenvalues of the closed-loop system
shift to the right half plane. That is, the use of the PIM in the
autornatic reconfiguring control system may result in an
unstable closed-loop system unless it 15 restricted to only certain
classes of failure where the value of J is small enough, in which
case all the disks in (2.12) lie in the left half plane.

Example 1: Let the nominal plant in (2.1) be

a3 3] B= 4] e

and the feedback gain be given by K = [-1, 0] which assigns
tl;c clg:edJoop poles at (-1,-2). Let the model of the impaired
plant

-1
Af=A Bf= [1] Ce=C
By using the PIM, (2.9a) gives
Ke=BJ(A- A+ BK) = 12,121 4 ] =12, 01

But the eigenvalues of (Af + BgKp) are {1, -1}. This shows
that the PIM can led to an unstable system. In this case, J =
424, D= (A:IA-%15429) forky=-1 and Ay =-2,

In the next section, a new method for reconfigurabie control
with guaranteed stability is proposed. [t is based on the PIM
and recent results on the stability robusmess of systems with
structured uncerainties.

THE MODIFIED PSEUDOQ-INVERSE METHOD

In the implementation of the RCS, the stability is probably the
most important property of the system. Although the PIM has
many good aspects, the lack of stability guarantees puts severe
constraints on its application. In this section, an alternative
approach is proposed. This method utilizes the recent research
results on the stability robustness of linear systems with
structured uncenainty (Barlett, 1988; Barmish, 1984; Yedavalli,
1988: Zhou, 1987; Siljak, 1989). The objective of this
approach is to maintain the closed-loop stability while
recovering the performance as much as possible. Equivalently,
the objective is to keep the closed-loop system in (2.6) and
(2.4) stable, while minimizing the norm in (2.11). Clearly this
is a constraint minimization problem(CMP). In order 1o use
standard, easy to implement, numerical algorithms on the CMP,
the stability constraints will be expressed explicitly in termns of
the individual elements of Kf as simple inequalities.

Let's assume that the pair (Ag, Bp) given in (2.6) is stabilizable.
Without loss of generality, we assume that Ag is stable.

Suppose that the state feedback is used and a stability bound &
can be found, by (Barlert, 1988; Barmish, 1984; Yedavalli,
1988; Zhou, 1987; Siljak, 1989), such that if

Ke(ij <& fori=12,.,mandj=12,...,n (3.1)
the system in (2.6) and (2.4) will be stable; for convenience,
IKe(ij)l €8 fori=12,..,mandj=12,.,n(3.1)

will be used instead of (3.1), where & = § - £ for some small
¢. Now the reconfigurable control problem can be described as
follows:

Problem Formulagion:
Determine Ky to minimize J in (2.11) subject to (3.1a) (3.2)



Since JZcan be decomposed as a sum of the square 2-norm of
colurmn vectors(see (3.4)), problem (3.2) can be solved as a set
of constrained least square problems(CLSP). Algorithms to
solve constrained minimization problems can be found in
(Lawson, 1974; Gill, 1984).

When the plant is a single-input system, or it can be
decomposed into SIMO subsystems, then the following
theorem gives an explicit solution to the reconfigurable control
problem (3.2).

Assume that the PIM solution (2.9a) makes the closed-loop
system in (2.3) and (2.4) unstable.

Theorem?: If Bf e R"*1, then the K¢ below solves (3.2):

Ks(ig) if IKe(ij) € &
Ki(i.h) =

sgn(Kei.ns’ otherwise 3.3)
where K¢ is obtained from (2.9a).

Proof: see Gao(1989b)
For single input systems we have the following algorithm:

Algorithm 1: (A-1)
Stepl: Calculate K¢ from (2.9a);
Step2: Check the stability of (2.6) with feedback (2.4) for
the K¢ obtained in stepl;
Step3: If the closed-loop system is stable, stop; otherwise
calculate K¢ using (3.3).

We call this approach the Modified Pseudo-Inverse Method
(MPIM).

Example 2:
For the system in example 1, E can be constructed as:

e=nekr=ka [} o] + o 1]

The bound on Ky is found to be & = 0.5 using
Yedavalli's(1988) resule; this is for kf) and kf2 nonzero in

general. If we consider kpp =0, and E = k) [i 8] then § =

0.828. Let &'= 0.8, and use Theorem2; then Kf=[-8,0}isa
solution to the reconfigurable control problem (3.2).

Remarks:

1. The stability constraints obtained in (Barlett, 1988; Barmish,
1984; Yedavalli, 1988; Zhou, 1987; Siljak, 1989) are sufficient
conditions only. They tend to be more conservative as the
number of uncertain parameters gets larger. Thus for high
dimensional systems, the stability bounds could be too
restrictive to be useful. In such case, it is suggested that the E

marix be constructed as E = B(B¢K¢ ), where Ky is obtained in
{2.9a}, and the bound on P is to be found. In this way, there

are bounds to be established only on one parameter B. These
bounds appear to be less conservative than before. This is
illustrated in example 3,

2. In implementing the MPIM in practice, the cases when the
impaired systems are unstable must be considered. In these
cases, the system has to be stabilized first by modifying the
feedback gain. Many methods can be used here, but the key
issue is that this process has to be compuationally efficient.
Only after the system is stabilized can the MPIM be applied to
improve the performance of the system.

3. From 1, and 2. above, it can be seen, in general, that one
way to adjust the reconfigured feedback gain is to use kmpim =

k1 + Bak, where kj is the stabilizing feedback gain, P is the
stability bound found for [ in 1. above and Ak is obtained by
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the PIM: Ak = Bf ((A+BK) - (Af + Bgk ).

In a general MIMO system, a closed-form solution to problem
(3.2) does not appear 1o exist. Note that (3.2) can be viewed as
a minimization problem subject to simple bounds, and this is a
well srudied problem in optimization theory. The choice for the
particular optimization glgorithm used should be guided by the
requirement for rapid feasible solutions. For a quick solution
with a reasonable sacrifice in optimality, an algorithm is
proposed in the following:

Let A = A+BK - Ap=[2;, 8, -+ 3p). K= [ kg1, kez, - kfnls

where 3; and kg, i = 1, 2, ..., n, are column vectors. Then J
can be written as

J2=1I[ &y - Bekgy, 39 - Bekpp, 8y - Bekpl Il%

=ay - Bekpy 12+ 1133 - Bekgp 12 + -« + 1l By - Bekgn 15
3.4
For the K¢ obtained form (2.9), its ith column has the form: kg
= B; 2;, which is the least square solution of the equation, a; =

Bgkg. Such kg minimizes the vector norm H 3; - Bk Il% and

kgl for i = 1,2, ...n. Let

kfi=kf+ ¥ (3.5)
where j is a column vector with its elements chosen such that
i) all elements in kg satisfy the stability constraints (3.1a)

ii) and thy;lly is the smallest possible.

Algorithm?2: (A-2)
Step 1: Calculate K¢ from equation (2.9a);
Step 2: Check the closed-loop stability, If it is stable,
stop. Otherwise

Step 3: Set y(3) = 0 if k() satisfies (3.1a), otherwise

set yi(j) = &' - sgn(kp (D) kg ()l fori=1,2, ...nandj
=1,2,..,m
Step4: Calculate the solution

R =Kg+ ¥ (3.6)
where ¥ has w;, i =1, 2, ..., 1, as its columns.

Note that the solution given in (3.6) satisfy the stability
constraints (3.1a) by the nawre of the algorithm. Although itis
no longer the optimal solution, the distance from this solution to
the optimal one is bounded by

IR - Kell s 091 3B

A bound on the increase of the performance index can also be
found. Let J = Il (A+BK) - (As+B¢Kg )l . the J is bounded

by

I-1 < IIBfIlFlI‘l‘E. (3.8)

This can be seen from
1.7 =1(A+BK) - (Ap+BeRe I - Il (A+BK) - (Ap+BfK ).
5 iB¢K¢ - BeKg g
< IBAILIY]L



Example 3: This is a design example by Friedland (1986). Let
the nominal system (A, B, C) be given as:

.0507 -3.861 0. -32.17
Ad-0012 -5164 1.0 0.
0001 1.4168 -4932 0.
0. 0. 1.0 0.
oqi 7 0T
071 0.
3{—1.645] C= [1.0]
0. 0.

A full state feedback is used with the gain: k = [-.0043, -3.872,
-.7186, -.0988], which assigns the closed-loop eigenvalues to
the desired locations:{-.0095 * .0941i, -1.25 £ 2.1655}.
Suppose a failure occurred and the model of the impaired
system is given as:

0.
Af=A, BF[::%{’]’ Ce=C
0.

The PIM method (equation(2.9a)) gives an unacceptable
solution, kpim = [-.0367 -33.17 -6.154 -,8456], where the

closed-loop ‘A’ mamx (Ag + Bfkpim) is unstable.

Using the MPIM method, we must first stabilize the impaired
system since neither Ag nor (Af + Byk) is stable. There are
many ways to accomplish this. Here, it is done by solving the
matrix algebraic Riccati equation:

0=SA¢+A]S-SBRIBS +Q

where R and Q are standard weighting matrices used in LQR.
The stabilizing feedback gain has the form

k =-R°1B]S

Note that this solution will guarantee the stability if the impaired
system is stabilizable and detectable. To make kj reasonably
small, we choose Q as identity and R = 10, and the resulting k1
is k] = [.2925 -8.83 -13.86 -16.74]. Although this gain
stabilizes the system it does not provide a desirable
performance, see Fig.1. To recover the performance, the PIM
1s used in the form:

Al = Bf (A+BK) - (Ag + Bgk1))

The idea is to adjust k by the amount of Ak so that (Af +
B(k1+ Ak)) is close to the nominal closed-loop ‘A’ marrix
(A+BK). Unfortunately the Ak obtained does not preserve
stability, therefore, the stability bound should be found and
enforced. As mentioned, the gain obtained by MPIM can be
used to establish stability bound on ecach elememt of Ak.
However, less conservative results were obtained using the

form kpyppim = k1 + Ak, where f=.6 is the stability bound
found by using the method in (Yedavalli, 1988). The
performance is much improved by using this new gain, see
Fig.l.

It is interesting to mention that in some cases the performance
can be further improved by tuning both k and Ak. Thatis

Kmpim = (1-00k + aAk

where ¢ is increased from zero to the largest number (smaller
than one) before the system becomes unstable. This is true in

this example. It turns out the gain obtained in this way (& =
48) gives the best rransient response, see Fig. 1. In fact, this
gain gives smaller changes in eigenvalues and eigenvectors than
the gains obtained above. This approach worked very well for

Z. Gao and P. J. Antsaklis, "Pseudo-Inverse Methods for Reconfigurable Control with Guaranteed Stability,”
Proc.ofthe 19901 FAC 1 1th W orld C ongress , Tallinn, USSR, Aug. 13-17, 1990.

this example. Further investigation is necessary to establish the
validity of the approach in general.

ACTUATOR STUCK ACCOMMODATION

For the approaches described above, it is required that the
number of states, of input and of ourputs are unchanged under
the failure, This is usually the case for the plant structural
failures as it was defined in (2.6). But for actuator and sensor
failures in general, this assumption does not hold. For
example, when an actuator is stuck at a position, it comesponds
o one of the elements in the input vector u being set to a
constant value. In this case, we can not simply redesign the
feedback gain, Ky, and set uf =K¢x¢, because this control law
can not be physically implemented. It should be realized that
there is hardly any method that can be used alone to deal with
all possible failures; the failures have to be classified and treated
accordingly. This fact, however, has neither been clarified nor
adequately addressed in the literature of reconfigurable control.
This resmiction puts significant limitations on the applicability
of existing results.

To address these problems, a general model for the impaired
system was defined in (2.3). Also given in the same section
were the specific models for the plant structural failures, the
actuator failures and the sensor failures. As an illustration,
consider the model of a single acmator failure:

xf = Afxf + Bpug + bia
yf=Cpxg @n

The failure could be actuator "stuck” or "floating”. From (2.7),
the actuator failure can be viewed as input disturbance. For
acmator stuck, assume the value a is known, then a disturbance
cancellation technique (Skelton, 1988) can be used. Let

uf = Ufc + Ufw (4.1

where uy,, satisfies

Bfuf, +bja=0 (4.2)

and ug; can be designed using the PIM approach. Note that the
accommodation of such failures in (2.7) have not been fully
investigated; the previous methods in reconfigurable control can
not be used directly in this case. Further investigation of
actuator failure accommodation is to be carried out for different
types of actuator failures,

CONCLUSIONS

In this paper, the reconfigurable control problem was
formulated and mathematic models for three different types of
failures are given. One of the key approaches to the problem,
the Pseudo-Inverse method(PIM) was analyzed and significant
new insight has shed into the method. It was pointed out that
the key problem with the PIM is the stability of the reconfigured
system. To guarantee stability, the reconfigurable controi
problem was formulated as a constrained minimization problem
and a modified Pseudo-Inverse Method was proposed which
guarantees the stability of the reconfigured system. A closed
form solution was derived for single-input systems. For
general multi-input multi-output systems, the problem was
formulated as a minimization problem subject to simple bounds.
A simple, near optimum solution was found by sacrificing the
optimality of the solution to the stability of the reconfigured
system. This new method is iilustrated in an airplane control
example. Also proposed was a formulation for failure
accommodation when an actuator was stuck; an approach to that
problem was also introduced.
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Fig. 1 The comparison of outputs of the reconfigured system with different gains





