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A parameter learning method 
is introduced and used to broaden the region 
of operability of the adaptive control system 
of a flexible space antenna. The learning 
system guides the selection of control 
parameters in a process leading to optimal 
system performance. The method is applica- 
ble to any system where performance 
depends on a number of adjustable para- 
meters. A mathematical model is not 
necessary, as the learning system can be used 
whenever the performance can be measured 
via simulation or experiment. 

Introduction 

The original motivation for this work was 
the desire to enhance the control of the 
transient behavior of a flexible space antenna. 
Flexible space structures pose unique control 
problems because of the complexity of their 
dynamic behavior. the limited knowledge of 
the model, and the uncertainty of the 
environment about the types of disturbances 
that will be encountered. While adaptive 
control has shown potential in controlling 
such systems [ I41 and offers good distur- 
bance rejection, the region of operability of 
the control system i s  rather restrictive. This 
is because the adaptive controller parameters 
are typically designed based on convergence 
and stability analysis only. and this may 
place severe limitations on the performance 
of the compensated system. These limitations 
can be seen as restrictions on the acceptable 
operating region of the controller, since 
outside this region the system, although it  
may be stable. can exhibit such completely 
unacceptable behavior as excessive overshoot 
and oscillations. By enhancing the conven- 
tional controller with learning, one effectively 
expands the region of operability of the 
controller and creates a more robust control- 
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ler. The control system can then compensate 
for a larger number of changes in the plant 
and its environment. Future control systems 
will have to be more robust to changes and 
will need a higher degree of autonomy than 
the systems of today. Autonomous bystems 
require a high degree of flexibility to adapt 
to situations which cannot be predicted [ 3 ] .  
and adaptive behavior of this type is not 
offered by conventional adaptive control 
systems. Learning methods appear to be 
useful in expanding the region of operability 
of the controller. and thus offer a higher 
degree of autonomy. 

It is perhaps appropriate at this point to 
briefly discuss learning and its application to 
control problems. We are interested in the 
ability of man-made \y\tems to learn from 
experience and. based on that experience. to 
improve their performance. Thus, we start 
with a working definition of such learning. 
Learning i s  the process whereby a jystem can 
alter its actions to perform a ta\k more 
effectively the next time. due to increa\e\ in 
knowledge related to the task. For example. 
a control system may change the type of 
controller used. or vary the parameters of the 
controller. after learning that the current 
controller doer not perform satisfactorily 
within a changing environment. The ability 
to learn entails such issues as knowledge 
acquisition, knowledge representation. and 
some level of inference capability. 

Learning. considered fundamental to 
intelligent behavior. ha\ been the subject of 
research in the field of machine learning for 
over twenty years (see [ IS]) and has gained 
a renewed interest in the artificial intelligence 
community. Machine learning has also 
attracted renewed attention in the control 
community [1].[2].[7].[12].[ 131. Alternate 
learning vehicles. in the fonn of expert 
system technology. and rule-based prograin- 
ming in particular. are providing new 
methods to implement learning strategic\. 
Neural networks with their massive paral- 
lelism and their ability to learn a150 offer 
exciting possibilities for learning in control 
systems [20]. 

The goal of the machine learning method 
proposed in this article, as applied to the 
flexible space antenna. i s  to broaden the 
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region of operability of the adaptive control 
system by allowing the controller parameters 
to better adapt to different plant and environ- 
mental conditions. These operating conditions 
may cause the nominal adaptive system to 
exceed the tolerances of its design. The 
parameter learning system determines 
parameter values for optimal performance for 
given operating conditions and then stores 
them in memory. In this way, the controller 
is able to operate effectively over a wider 
region. I t  should be noted that. at the local 
level. the parameter learning 5ystem perfoniis 
parameter auto-tuning. The overall system. 
however. does more than this: it  uses the 
result\ of auto-tuning to expand the region of 
operability of the control system. 

It is very difficult to control the transient 
re5ponse and the performance of an adaptive 
control system. This is due to the mathemati- 
cal complexity of the nonlinear relationship 
between the design parameters in the 
adaptive controller and the output of the 
compensated system. even for quite simple 
plants. Only recently, some progress has been 
made for low order plants and particular 
adaptive controller\ (41.151. The approach 
introduced in thi\ article i\ general and it  
offer5 a viable alternative to analytical 
approaches. It  can be used either when no 
analytical methods exist or when existing 
methods are too cumbersome. 

The learning approach proposed in this 
article i s  applicable to any control system 
where performance depends o n  a number of 
adjustable parameters. The mathematical 
relation between the performance and the 
parameters does not need to be known. Given 
particular values for the parameters. a 
perfomiance index i s  evaluated via computer 
simulation or physical experiment. If the 
mathematical relation i s  known. the perfor- 
mance evaluation can be done directly. 

The learning system determines the next 
set of parameters in a process leading to an 
optimum perfomiance. In effect. the learning 
system guides the \election of parameters for 
optimi7ation: this procedure seems to be a 
form of learning by observation and discov- 
ery rather than learning by example. since the 
experiment\ are generated by the system 
itself. After the best parameter values have 
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been discovered, they are stored in memory 
along with the corresponding operating 
conditions. This provides the memory which 
is a necessary element for learning. When the 
same operating conditions recur (here it is 
assumed that information about the operating 
conditions is provided to the learning 
system), the system selects the appropriate 
controller parameter values it has learned. 
Interpolation is used to select values when 
similar, but not the same, conditions occur. 

In this article, a general format of the 
parameter learning system is first outlined. 
Next, the model of the antenna and the 
antenna parameter learning system are 
described. The results of two experiments, 
the transient regulation and the command 
following experiment, are then presented. 
Note that several of the above results have 
appeared in [ I  1],[16],(17]. 

The Parameter Learning System 

The role of the parameter learning system 
described here is first to determine the best 
parameter values given certain system 
operating conditions, and then to store these 
values in memory for future use. This 
parameter learning method is applicable to 
any system where performance depends on 
a number of adjustable parameters. Further- 
more, a mathematical model is not necessary, 
as the learning system can be used whenever 
performance can be measured via simulation 
or experiment. A particular application of this 
learning system to the control of a space 
antenna is described in the next sections of 
this article. 

The functional diagram of the parameter 
learning system is given in Fig. 1. First, 
initial parameter values are assigned; these 
values can be assigned randomly or based on 
information about the system’s behavior from 
data stored in memory, or by some other 
method as discussed below. This current set 
of parameter values X ,  is sent to the system 
and system performance is evaluated by 
computer simulation or physical experiment. 
Here the performance is measured via a 
performance index J and it is assumed that 
the parameters X ,  and the performance index 
J ,  are related by the following where the 
function ,fl.) is typically unknown: 

The performance of the system is actually 
evaluated using measurable quantities Y, via 
a different equation where ,q(.) is a known 
function: 

Esumale lniual 
Parameter Set for 
Given Condmns P 

I Yes 

Store Be51 
P m e t c r  Set lor 
Given Condiuons 

This is accomplished as follows: as X ,  vary. 
the measurable quantities Y ,  reflect the 
changes in system performance, and J ,  is 
then evaluated via (2). To illustrate, in the 
antenna parameter learning system described 
below, Y ,  are measurable quantities such as 
settling time and maximum output error, 
while g( . )  of (2) is chosen to be a weighted 
sum of these quantities. 

It should be stressed that in a particular 
problem, given the adjustable parameters X,,  
there are typically many appropriate choices 
for Y, and J,. It is up to the designer to select 
Y, so that they are good measures of the 
changes in performance and at the same time 
easy to determine. In the parameter learning 
system of Fig. I ,  the performance of the 
system is then judged to be adequate or 
inadequate. If inadequate, a new set of 
parameter values X,,, is generated to improve 
the performance. Since the function f( .)  in ( 1 )  
is not known, an optimization method that 
does not require a mathematical model is 
used to generate X,,,. Of course, if the 
function f(.) is known, other optimization 
algorithms may be used and (2) may not be 
necessary. This process continues until the 

performance is judged adequate. At that time, 
the best parameter values found are stored in 
memory, which here is taken to be a 
dictionary containing, in each entry, the 
given system operating conditions and the 
corresponding best parameter values. 

The main objectives in developing this 
approach and applying it to the space antenna 
control problem have been the effective use 
of all available information and the learning 
system’s speed of response. This task appears 
plausible because the interest is in developing 
a learning method for a rather specific class 
of problems where the available information 
is well defined. It is important to utilize the 
available information about the system 
dynamical behavior because, and this needs 
to be stressed, the more the system knows 
the faster it can learn. 

Whether or not the parameter learning 
system is invoked will depend upon the time 
restrictions placed on determining a new 
parameter set and whether learning is 
necessary. After the operating conditions 
have been presented to the learning system, 
the dictionary containing information about 
such conditions is consulted to determine if 
they are known by the system. If these 
conditions are known, the parameters can be 
set appropriately, and learning is not 
required. If the conditions are unknown, a 
decision to enable learning is made. If time 
allows, learning is enabled. Otherwise, the 
parameter values are estimated from known 
conditions in the dictionary using, for 
example, an interpolation method. Or the 
parameter values may be left unchanged. The 
decision-making mechanism to determine 
whether or not the learning system will be 
invoked is beyond the scope of this project 
and thus has not been implemented. 

The Antenna Parameter Learning 
System 

The parameter learning system described 
above is now used for the selection of 
parameter values for the adaptive control of 
a large flexible space antenna. The adaptive 
control system to be considered, shown in 
Fig. 2, is taken from [ 141. For the design of 
the adaptive controller, a model of the 
antenna including only the twelve boom-dish 
modes was considered. These modes involve 
motion of the boom, hub, and dish structures 
of the antenna together. This model is 
decoupled into two single-input single-output 
subsystems, each with six modes; one 
contains the six boom dish modes in the rib 
axis 1-7 of the antenna, and the other the six 
modes in axis 4-10, orthogonal to axis 1-7 
[14]. For simplicity, only one of these 
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subsystems is considered, the one containing 
the boom-dish modes in axis 1-7. The input 
and the output of this system are a hub 
torquer and a hub angle sensor, respectively. 
This is a single-input single-output system of 
order twelve, represented by the standard 
equations, where the state feedback gain 
matrix G was chosen to satisfy the conditions 
of the adaptive controller design method 
[14]: 

Further details of the plant model are 

The adaptive control action U,, is defined 
found in [4],[ IO],[  141, and [ 191. 

as shown, where 

P = e )  -\-I I t , ) ,  1 

with .\-,,, of dimension I . ,  the dimension of the 
modeled system, and e , ,  U,,, scalars: and k is 
a vector gain of dimension I' + 2: 

diagram. 

The vector gain k has the following form, 
where k1 and k,, the integral and proportional 
gains, respectively, are given by [ 141: 

k = kp  + k ,  (6) 

(7) 

(8) 

k ,  = -elk, + L ~ , $ T  

k p  = -u2kp + &,?'T 

The adjustable controller parameters are S = 
lo,, o?. L ,  L,  T ,  7 }.  They were originally 
selected in an ad hoc fashion, mainly to 
satisfy stability requirements. It is desirable 
to select their values in the design process to 
optimize system performance. However, there 
is no systematic, analytical method available 
for designers to make the best possible 
choice. This is due to the complexity of the 
transient response analysis of (nonlinear) 
adaptive control systems, which makes the 
analytical relation between performance and 
the actual parameter values extremely 
difficult to determine. Here we shall deter- 

mine the optimal performance via a non- 
analytical, systematic method. 

It is desirable to select the control parame- 
ters to optimize performance for pulse 
disturbances and step command inputs. Note 
that the main purpose of the work is to 
demonstrate the applicability of the method, 
and these conditions along with the particular 
antenna model were chosen for simplicity: 
more complicated model and operating 
conditions could have been used. The search 
procedure used to generate a new parameter 
set X,,, is a modified version of the Hooke 
and Jeeves multidimensional search algorithm 
[6] .  The performance of the system is 
evaluated using measurable system quantities 
and is defined as shown with M',, M'?, and wi 
as weighting factors: 

J = * RMS + II'? * M E  + \v3 * ST 

(9) 
The RMS is defined in the usual way 

where N is the number of iterations in the 
simulation: 

M E  is the largest absolute value of the output 
error e , ,  and ST is the time it  takes the output 
to settle to 4% of its maximum value. In the 
simulations, M',, w2, and M'? were chosen as 
100, IO, and 0.1 to equally weight each term 
of the performance index so that no particu- 
lar term is favored in the determination of 
the best solution. 

In the remainder of this section, the 
components of the antenna parameter 
learning system are discussed in detail. 

The Grid Seal-c.h Procedure 

The grid search procedure is used to 
estimate an initial set of parameter values 
and it is optional. The goal of the procedure 
is to approximately characterize the perfor- 
mance surface and to extract information 
about the system behavior for the learning 
system. Grid search is typically done when 
searching for global instead of local minima, 
and is performed only once, when the 
dictionary (memory) is empty. The procedure 
uses information about values and range of 
the parameters, given by the original control 
design of the antenna, and obtains an 
approximate mapping of the performance 
surface. The data collected during the 
evaluation process includes values for each 
parameter, the performance index, and all 
components of the performance index (RMS, 
M E ,  and ST). This data is sorted and stored. 
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The three performance indices of lowest 
value and the associated controller parame- 
ters are then used by the optimization search 
procedure to determine an optimal set of 
controller parameters. The final three 
parameter sets from the optimization search 
are stored in memory for future use. After 
this initialization. memory is consulted for a 
starting point anytime a new operating 
condition is encountered. 

The optimization search procedure uses a 
variation of the Hooke and Jeeves multidi- 
mensional search algorithm [h] described 
below. Formulated a s  an unconstrained. 
nonlinear optimization problem. the search 
for the optimal parameters of the adaptive 
controller is based on the perfonnance index 
(9). I n  the optimization search procedure, it  
i s  typically assumed that the perforniance 
surface is strictly quasiconvex. The local 
versus global minimum problem is not 
addressed at this level. I t  is also assumed that 
therc is no magnitude constraint on the 
values of the parameter\, although precau- 
tions are taken to guard against sudden 
increases i n  parameter values. thus keeping 
the system in a desirable parameter region. 
The search procedure alternates between an 
exploratory search and a multidimensional 
pattern search of the performance surface 
unt i l  an optimal controller parameter set is 
obtained. I t  is important to note that the 
mathematical relation between the parameters 
of the adaptive control system and the 
performance index is unknown. A rule-based 
system monitors the optimization process. I t  
keeps track of the parameter being varied. its 
current step size and direction, the value of 
the performance index. and thc next parame- 
ter of the search process. 

I n  the following. details of the modified 
Hooke and Jeeves optimization algorithm are 
brietly presented. A modified version of the 
Hooke and Jeeves algorithhn was used 
because it  has shown faster convergence than 
the standard Hooke and Jeeves algorithm; it 
has also been shown to be much faster than 
the cyclic search method. which was 
implemented as well. The modification 
involves different logic and step sizes in 
changing the parameters. 

The first step in the Hooke and Jeeves 
algorithm is an exploratory search. This 
search explores along the coordinate axes of 
the performance surface in the space of each 
parameter individually. Under the assumption 
that the surFace is strictly quasiconvex. there 
is only one minimum along each of these 
coordinates in the parameter space. Assigned 

an initial value for each parameter. either 
from the grid search or from the dictionary, 
the simulation of the closed-loop adaptive 
control system produces a value for the 
performance index. The exploratory search 
rule-base uses this first set of parameter 
values as a starting point on the performance 
surface. 

A second set of values is obtained by 
changing a single parameter. The change in 
the parameter value is initially taken to be 
30%. After this parameter change, the 
simulation is repeated to determine the effect 
of the change. If the performance index 
decreases on the second iteration, the 
parameter is again changed and the simula- 
tion i s  rerun. I f  the performance index 
decreajes three consecutive times, i t  is 
assumed that the appropriate direction has 
bcen found and the step size is increased by 
a factor of ten in an attempt to reach the 
minimum on the performance surface faster. 
This process continues until a parameter 
change causes the performance index to 
increase. Whenever the performance index 
begins to increase. the rule-base system 
assumes that the parameter i s  moving off in 
the wrong direction. The rule-base system 
resets the parameter to the last known good 
point on the perfonnance surface and 
reverss  the direction of the parameter 
change. If this again causes the index to 
increase. the step size of the parameter is 
decrcased by a factor of ten and the search 
rcwmes. This last rule is executed each time 
the performance index increases in either 
direction. 

Once the changes in a parameter become 
small. less than 0. I % ,  i t  is concluded that the 
parameter will no longer contribute to a 
significant decrease in the performance index, 
and the exploratory search for the next 
parameter begins. If at any time during the 
exploratory search the parameter changes 
cause the parameter to exceed a proportional 
maximum or minimum, the exploratory 
search on that parameter is stopped. This 
prevents the parameter from changing in 
magnitude too rapidly and causing the system 
to exhibit undesirable behavior. 

The second step of the Hooke and Jeeves 
algorithm is a pattern search on the perfor- 
mance surface. Once the exploratory search 
for all parameters is completed. and changes 
in the performance index at the start and the 
end of the search indicate that progress on 
the performance surface still appears 
possible. the pattern search is initiated. The 
rules that control the pattern search are 
similar to those for the exploratory search. 
Here, however, the direction of the search i s  
along a vector of parameter changes. When 

the pattern search is completed, the explor- 
atory search will start from the last position 
obtained during the pattern search. This 
cyclic process will continue until i t  is 
decided that further parameter changes will 
not offer any significant performance 
improvement. 

The results obtained by these search 
methods are very dependent on the initial 
step size, the starting points, and the stopping 
criteria. If the initial step size is increased, a 
larger portion of the performance surface is 
explored. However, this may lead to undesir- 
able behavior of the closed-loop adaptive 
system. The effect of the stopping criterion 
is similar. When it is too large, the search for 
the minimum performance index will be cut 
short. Too small a stopping criterion, 
however, does not yield a significant 
decrease in the performance index. Starting 
points also affect the relative coverage of the 
performance surface. I t  is possible with a 
different starting point to find a better 
minimum on the performance surface, since 
the global minimum problem is not being 
addressed at this level. This is the reason for 
implementing the grid search procedure. 
While an exhaustive search of the entire 
performance surface is unwieldy, it is 
possible to get a general impression of the 
performance surface, and thus narrow the 
search space. 

It should be noted that the Hooke and 
Jeeves method has been used for similar 
purposes in [8],[9] to auto-tune the control 
parameters of a robotic arm. The method 
presented here, although similar to some 
aspects of Chen’s work, differs in the 
addition of the grid search procedure and the 
dictionary to assist in the selection of initial 
starting points for the optimization search 
procedure. 

The Dictionary 
The dictionary, a specific memory 

structure, is initially empty and is gradually 
built from data consisting of operating 
conditions and corresponding best values of 
controller parameters. It is assumed that the 
operating conditions are given to the learning 
system. When i t  has been determined that 
there is need for improved performance, the 
dictionary is used to determine a starting set 
of controller parameters for the optimization 
search procedure. Once the optimal set of 
parameters is found, this information, along 
with the corresponding operating conditions, 
is added to the dictionary for future use. 

Implements! ion 
The antenna parameter learning system 

was initially designed to run on a PC-AT 
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Fig. 4.  Plant oritput after leurning applied Mith disturbance nia~ynititclc~ = 2.0, dirrutiori 
= 2 s 

compatible computer with a math co- 
processor. Both the antenna and the adaptive 
controller were implemented in the C 
programming language, and the learning 
system was coded using a commercial expert 
system shell called CxPERT. CxPERT, based 
on the C programming language, allows easy 
interaction between the rule-based system 
and the model of the antenna and adaptive 
controller. 

The most time-consuming portion of the 
system runtime was the simulation of the 
plant and controller. When system runtimes 
had become prohibitively long on the AT 
compatible machine-n the order of 3 
h-the learning system was recoded in C, 
using if-then statements, and ported to a 
SUN 3/50 computer. This allowed results to 

be obtained in several minutes. Later, the 
addition of the grid search procedure 
increased the number of required system 
simulations, which prompted the porting of 
the system once again, this time to a Convex 
computer. This allowed results to be obtained 
in minutes, instead of about an hour on the 
SUN computer. 

Results 

The controller parameters in the set 

of (7) are to be chosen in the design process 
to optimize system performance when certain 
external inputs are present. Without loss of 

generality, T and T are fixed and set to 0.05 
1141. The parameters o,, (T:, L ,  and L are 
then optimized with respect to the perfor- 
mance index (9). For the remaining discus- 
sion, S will denote the parameter values ((T,, 

(T?, L ,  i) and S,,, will denote the values of 
the parameters that optimize system perfor- 
mance. 

It is important to stress at this point that the 
emphasis here is on illustrating the learning 
method. The particular choice for the 
performance index and the actual values of 
the parameters are of secondary importance. 
Other performance criteria leading to 
parameter values which satisfy additional 
constraints could have been chosen. 

The simulation results of the antenna 
parameter learning system are presented for 
two experiments: the transient regulation and 
the command following experiments. In the 
simulation, the 12th-order model of the 
antenna described above was used for 
numerical simplicity. The ful l  164th-order 
model [ 191 could have been used, but this 
would have significantly increased the time 
required for the simulations. The actual 
physical antenna could also be used, with 
appropriate sensors, without requiring 
significant changes in the learning system 
software. 

In this experiment. the reference model of 
the adaptive system in Fig. 2 is set to zero 
throughout the simulation, i.e., it has zero 
input and zero initial states. With the initial 
parameters given in the design of the 
adaptive control system [ 151, oI = 0.5, (T? = 
21.99. L = i = 1 . 0  x IO', and introducing a 
pulse disturbance with a magnitude of 2.0 
and duration of 2 h,  the closed-loop adaptive 
control system was able to track the zero 
reference model output as expected. The 
plant output is presented in Fig. 3. The 
corresponding performance index and its 
components are given in Table 1. 

Note that in all experiments, the controller 
is switched on and the output is measured 
starting at time 2 s. 

Next. the parameter learning system was 
used to enhance the performance of the 
adaptive system. The plant output of this 
system after learning is shown is Fig. 4. The 
corresponding performance index and its 
components are given in Table I. The optimal 
parameter set S,,,, is (T, = 0.093, (T? = 10.05. 
L = 49 000 and L = I19 703. These values 
provide a 30% improvement over the original 
system design. The total number of control 
system simulations performed was 88 12, 
which includes 8712 iterations for the grid 
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search procedure. The grid search does add 
considerable computational time in finding 
the optimal parameter set. However, the grid 
search procedure increases the confidence 
that the parameter set found is near optimal. 
In addition, the grid search is run only once, 
if needed, when the dictionary does not 
contain knowledge about the performance of 
the system. 

Table I1 contains the results of training, 
using a number of pulse disturbances of 
different amplitudes. The table represents the 
contents of the dictionary after learning. 
Additional disturbances, known to cause 
excessive output values in the original 
adaptive control system, were introduced to 
validate the usefulness of the dictionary. 
These disturbances are listed in Table 111. 
The resulting optimal parameter sets S,,, 
found by the antenna parameter learning 
system are also presented in Table 111, along 
with the respective performance indices. Figs. 
5 and 6 show the plant output for the 
disturbance of magnitude 8.0, both before 
and after learning. 

The results show that, besides learning the 
values of controller parameters that improve 
system performance, the parameter learning 
system is able to extend the region of 
operability through training. Note that 
training is has to be incremental, building 
upon previous knowledge. Since the relation- 
ship between the performance index and the 
controller parameter set is nonlinear, the 
learning process needs to take steps small 
enough to determine the effects of different 
size disturbances on the plant. 

In this experiment, the reference model is 
a standard highly damped second-order 
transfer function H ( s ) ,  with < = 0.9 and o,, 
= 1.885. H ( s )  was discretized for simulation 
purposes, using a sampling frequency of 20 
Hz. Notice that in Fig. 2 the command input 
equals U,,, and it is added to U,,, the input to 
the plant. 

Using cy = 0.5, o2 = 6.28. L = L = 0.15, 
and this time introducing a command step 
input applied at time 2 s, the closed loop 
adaptive control system was able to track the 
second-order reference model output. The 
plant output is present in Fig. 7. The 
corresponding performance index of the 
system and its components are given in Table 
IV. 

Next, the parameter learning system was 
used to enhance the performance of the 
adaptive system. The plant output of this 
system after learning is shown is Fig. 8. The 
corresponding performance index is given in 
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Table I 
Performance Indices for Transient Regulation Experiment 

RMS ME ST J 
Onginal control \y\tem 0 195 0 087 19 I 4 7315 
After learning 0 015 0 058 12 15 3 3240 

Table I1 
Training Disturbances and Parameter Sets After Learning 

Amplitude Duration 01 0 2  L L Index ( J ) 

2.0 2 0.093 10.05 49000.0 119703.96 3.324 
2.25 2 0.213 7.04 39200.0 131674.35 3.969 
2.5 2 0.302 7.35 44046. I 145910.16 4.509 
3.0 2 0.307 15.79 37325.7 183327.84 5.390 
3.5 2 0.876 9.56 44046.1 175092.19 5.956 
4.0 2 0,808 10.48 291 14.0 203493.90 6.415 
4.5 2 1.767 10.48 32025.4 203493.90 6.897 
5.0 2 3.924 8.70 48450.7 140073.75 7.394 
5.5 2 6.928 7.73 41567.5 138395.55 7.871 
6.0 2 11.08 10.05 41567.5 138395.55 8.437 
7.0 2 14.41 19.10 41567.5 110716.44 9.723 

Disturbance so,, Performance - 

Table I11 
Disturbances Causing Excessive Output Values in Original System and Parameter 

Sets After Learning 

Performance Disturbance SO,, - 
Amplitude Duration 01 0 2  L L Index ( J )  

8.0 2 23.06 19.1 41567.48 88573.15 10.81 
9.0 2 1383.5 11.33 48450.71 77923.24 11.526 

Table IV 
Performance Indices for Command Following Experiment 

RMS ME ST PI 
Original control system: 0.142 0.255 24.95 19.26 
After learning: 0.039 0.185 20. I O  7.72 

Table V 
Training Commands and Parameter Sets After Learning 

Command 
Amplitude 

1 .oo 
1.10 
1.15 
1.20 
1.25 
1.30 
1.35 
I .40 
I .45 

01 

-0.098 
-0.091 
-0.084 
-0.078 
-0.072 
-0.066 
-0.062 
-0.057 
-0.053 

so,, 
0 2  

- 15.0 
-3.0 
-3.0 
13.0 

- 15.0 
- 15.0 

13.0 
-3.0 
437.3 

L 

0.409 
0.383 
0.350 
0.322 
0.297 
0.274 
0.254 
0.236 
0.220 

- 
L 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.001 
0.0 
0.001 

Performance 
Index ( J ) 

7.72 
7.89 
8.15 
8.44 
8.71 
8.97 
9.27 
9.52 
9.79 

Table VI 
Commands Causing Excessive Output Values in Original System and Parameter 

Sets After Learning 

Command SO,, Performance 
Amplitude 01 0 2  L L Index 

I .40 -0.057 -3.0 0.236 0.0 9.52 
1.45 -0.053 437.3 0.220 0.001 9.79 
I .so -0.049 2536.5 0.206 0.001 10.06 

- 
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Fig. 5 .  Plant outpiit of original c~ontroller M'ith distur.hunc~e mugnititde = 8.0, dur-ution 2 s .  
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Fig .  6 .  Plant oirtpiit M,ith disturhanc~e niu,qnitiidc = 8.0. dwution = 2 s after- leurniti,g upplied. 
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Table IV. The optimal parameter set So,, is 
0, = -0.098, o2 = -15.0, L = 0.409 and L 
= 0.0, which provides a 60% improvement 
over the original system design. 

Table V contains the results of training, 
using a number of command inputs of 
different amplitudes. The table represents the 
contents of the dictionary after learning. 
Additional commands, known to cause 
excessive output values in the original 
adaptive control system, were introduced to 
validate the usefulness of the dictionary. 
These commands are listed in Table VI. The 
resulting optimal parameter sets So,, found by 
the antenna parameter learning system are 
also presented in Table VI, along with the 
respective performance indices. Figs. 9 and 
10 show the plant output for the command of 
magnitude 1.4, both before and after learning. 

Again the results show that, besides being 
able to learn controller parameters that 
improve system performance, the parameter 
learning system is able to extend the region 
of operability through training. The second 
experiment also shows the flexibility of the 
learning system. The learning system can 
use different plant models, reference models, 
performance indices, or optimization 
methods, depending on its goals. 

Conclusions 

The learning method presented here 
provides performance adaptation for adaptive 
systems. This appears to be a novel approach 
to the problem. This method also deals with 
the question of boundedness of adaptive 
control systems. While analytical tools exist 
to determine whether a system variable will 
be bounded, the analysis typically does not 
indicate how large the bound will be. It is 
possible to exceed the system tolerances and 
yet be analytically stable. The learning 
method can determine this bound, and use 
the information in the process of controlling 
the system. 

This method is general and i t  can be 
used in any system where performance 
depends on a number of adjustable parame- 
ters. As a matter of fact, the method was also 
successfully applied for verification purposes 
to determine the optimum gain in an LQR 
problem. However, specialized methods, 
when they exist, are obviously more efficient 
to solve specific problems. General methods, 
like the one presented here, are recommended 
for complicated problems when traditional 
methods fail. The method presented is also 
modular, since both the functional evaluation 
and the optimization search procedures can 
be modified to match the particular problem 

Fig .  7. Plant output (f original c m t r o l  system Mith c.ommand unit step input 
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Fi,?. I O .  Plarir ourpiit with c,oniniurid iripirt of niugiiirirde I .4 u f w  Ic~arniricg upplied. 

at hand. Possible modifications include, for 
example, the gradient approach and other 
alternate methods. In addition, functional 
evaluation can be performed via computer 
simulation, physical experiment or mathemat- 
ical calculation. 

It is noted that the learning method 
presented here uses a priori information on  
what is known about the system. This is in 
contrast to many machine learning applica- 
tions, where learning is usually accomplished 
with little U priori information. In engineer- 
ing applications, it is recommended to pay 
particular attention to utilizing all available 
information. The more the system knows, the 
faster i t  will learn. 
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