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Abstract. A discrete event system (DES) is a dynamical system whose evolution in time develops as the result
of the occurrence of physical events at possibly irregular time intervals. Although many DES's operation is asyn-
chronous, others have dynamics which depend on a clock or some other complex timing schedule. Here we pro-
vide a formal representation of the advancement of time for logical DES via interpretations of time. We show
that the interpretations of time along with a timing structure provide a framework to study principles of the ad-
vancement of time for hierarchical DES (HDES). In particular, it is shown that for a wide class of HDES the
event rate is higher for DES at the lower levels of the hierarchy than at the higher levels of the hierarchy. Relation-
ships between event rate and evemt aggregation are shown. We define a measure for event aggregation and show
that there exisls an inverse relalionship between the amount of event aggregation and the event rate at any (wo
successive levels in a class of HDES. Next, we study how to design the timing structure to ensure that there
will be a decrease in the event rate (by some constant factor) between any two levels of a wide class of HDES.
It is shown that if the communications between the various DES in the HDES satisfy a certain admissibility con-
dition then there will be a decrease in the event rate. These results for HDES conslitute the main results of this
paper, since they provide the first matheratical characterization of the relationship between event aggregation
and event rates of the HDES and show how to design the interconnections in a HDES to achieve event rate reduc-
tion. Several examples are provided to illustrate the results.

Key Words: Discrete Event Systems, Hicrarchical Discrete Event Systems, Event Rate, Aggregation, Manufac-
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1. Introduction

In our main results we show that the interpretations of time which characterize the ad-
vancement of time in DES (introduced in Section 2) along with a timing structure provide
a framework to study principles of the advancement of time for hierarchical DES (HDES).
In Theorem 3.1 it is shown that for a wide class of HDES the event rate is higher for DES
at the lower levels of the hierarchy than at the higher levels of the hierarchy. Relationships
between event rate and event aggregation are shown. We define a measure for event aggre-
gation and show that a high amount of event aggregation will result in a much lower event
rate at higher levels in a certain class of HDES while a low amount of event aggregation
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P=XUY,S8 A\ X, n

where

X is the set of plant states x
U is the set of plant inputs u
Y is the set of plant outputs y
8: U X X — P(X) is the pl iti i
. g plant state transition function (P(X) d
AU x X = Y is the plant output function (P denotes the power setof X)
Xp C X is the set of possible initial plant states

rent: ?;;Tt s:a;i C:rzsmms;:onthfuncum} (a partial, point to set function) specifies for each cur-
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m); stan;c dlnp € (u, x, x") such that x’ € 6(u, x) and y = A(u, x). The model P is similar
oas u::;c eautf(_)m.aton, but X, U, and Y are not required to be finite. A run of P is defined
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2. Characterizing the Advancement of Time In DES

When a physical plant is modeled via (1), the meaning of the advancement of time must
be defined. If Z is an arbitrary set, then Z* denotes the set of all finite strings of clements
for Z. If Z and Z’ are arbitrary sets, then ZZ' denotes the set of all functions mapping Z'
to Z. Let N denote the set of natural numbers. In order to discuss timing issues for P, an

index set J and index sequences
act UM

are utilized similar to the approach in [Sain 1981). The index set J is thought of as a set
of times. Let R denote the set of strictly positive real numbers and R, = R* U {0},
the set of nonnegative reals. Note that N or R could be candidates for the set J. For conve-
nience, we assume that J = R,. The index sequences o € 2 J' U J are sequences of
time instants that can be of finite or infinite length. For & € J* U JN let || denote the
cardinality of the size of the string «. Note that either ot N = Jor a: [0, a) — J, where
[0, a] € N, and c(k)} simply denotes an element in J. An index sequence (function) o
€ J' U JN is said to be admissible if

(i) it is order preserving; i.c.,
(a) if & € JV, then for all k;, ky € N, k; < k; implies a(k)) = alk)
(b) if « € J°, then for all ky, ky € N with k;, &; € [0, Ja| — 11, k, = k; implies e (k)
= aky), and
(ii) it is injective and if o € J™ then a(k) — o as k — oo,

Following [Sain 1981], the state of the plant x € X is associated with the index a(k)
for some a € J* U JN and is denoted x(a(k)), meaning **the state at time a(k).”” Similar-
ly, iputs « € U and outputs y € Y are associated with that same index and denoted u{c:(k))
and y(ce(k)), respectively. The transition 1o a state in the set 8 (i, x) can be thought of
as leading to the next state, with **next’* quantified with the index sequence o as a(k +
1). With this, the transition function is given as x (& (k + 1)) € 8Qu(a(k)), x(a(k))), which
is often abbreviated x| € 8(t, X). Similarly, the output is often denoted by y, = Muy,
x;) for k € N. Each run of P(ug, Xo, Yo, (g, X1, Y1)s -+ has an associated index sequence
ael UJIN a=a@, a(l), ..., specifying the time instants at which the triples are
defined. Notice that if for some x; € X and alt u; € U, 8@y, ;) = 0, then a(k + 1) is
undefined and in this case o has finite length (in this situation we say that Pis
‘“‘deadlocked’").

A DES often activates or triggers other DES to act. For instance, in the case where
P represents a plant, P may trigger a controller to generate an input to P. In this case,
the trigger often represents certain changes that occur in the plant. For instance, events
can be used as the trigger. Similar to [Ramadge and Wonham 1987], welet E C X X

X denote the set of events e, where

E={(xx)eX X X:x'€du x} &)
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An event ¢ = (x, x") is said to occur if the state transition from x 10 x' € §(u, x) takes
place. For convenience we shall assume that the event occurs (is defined) at tht; time in-
stant.o:(k + 1) where the next state is defined. Due to the injective part of the admissibility
requirement for o the variables x, », and ¥ are defined at time instants which are distinct
from one another. By condition (ii) of the admissibility requirement when state transitions
oceur it is gua}'anteed that time will advance (although it may be a very small amount)
and 1f_ an mﬁmt? number of events occur this will take an infinite amount of time. The
other important implication is that using the definition of events E in (3) it is automaticall

assn{med that events occur at distinct times; i.e., simultancous events are not allowed becausz
tl:e index sequences are required to be admissible. Suppose for a moment that condition
(u)kof the admissibility requirement is omitted, so that for e € J° U JN it is possible that
alk+ 1) = a(k_) for any & € N such that a(k) and ae(k + 1) are defined. This will allow
events to' 0cc1-1r simultaneously at a particular time instant. In fact, for o € JM it will allow
even an mﬁ.mte number of events to occur at one time instant, resulting in the possibilit

that time will not advance. Normally, to treat simultaneous events only a finite numbeﬁ
of events are allowed to occur at a single time instant; hence, oth,er events representin,

Fhe case thgl “‘several events occur at once” can often be defined. So the problclrJn of deaE
ing with s1multa.neou's events is often transformed to the case where only a single event
gccurs at each time {nstant, so that time is guaranteed to advance and admissibility can

e assumfad (e.g., this can be done for Petri nets [Peterson 1981]).

The.pau' 1= (4,J), where Jis an index set and 4 C J° U JN will be referred to
as an interpretation of time since it specifies the meaning of the adv;nces in time for the
t(-)hcall;rc-,ncc of state transitions; i.e., it specifies the time instants where the variables of
Ofetim]iSI P= are defined. In general,.a system P is said to have a particular interpretation

{4, J) as long as the time instants associated with the clements of the runs
of P are elements of J and the index sequences associated with the runs of P are elements

of A. The admissible interprerati ] i
o e dmis: rpretation of time will be denoted La = (A, Jog), where J 4 is

Ay ={aely UIN: 4is admissible} . @

Most oftgn we can cheose J,y = J = R, and this is what we will assume here It is com-
mon to dlSCl:ISS the timing characteristics of DES relative to a clock Bya cIoc.Ic we mf:rzla-l

a ?ewce ‘whlch has a fixed interval T € R* between ticks and which' does not stop tic:kin:-,';1
fl :he;-e is deadlock, the clfack keeps Ficking but no events occur). Next we provide defini-
lons for several standard interpretations of time used in DES studies:

DEefFINITION 2.1. Th i ; PR
R, and e asynchronous interpretation of time is I, = (A,, J,), where J, =

A= {a € 4y a(0) = 0).

Accordi . _ . .
l]mc:::)&l"csilng l:o convention J, f.Ja = R,. with the time instant of zero corresponding to
¢ Where no state transitions have occurred. Here I, represents the situation where
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the plant P is asynchronous (out of sync, not synchronous) with a clock. For I, the time
instants at which the plant variables are defined are at nonuniform (irregular) distances
from one another along the time line R,. Notice that 4, C Ay if Juy = J,, so that asyn-
chronous interpretations of time are admissible interpretations of time, but not necessarily
vice versa.

DEFNITION 2.2. The partially asynchronous interpretation of time is I, = (A,g, Jpp), with
Jo=Rianddy={a€d:af)+y=ak+]= a(k) + B} for v, B € R*,
where 8 = 7.

Here I, represents the case where we know that the time instant where the next state is
defined is constrained to occur at least +, and no more than 8 time units later. Notice that
A,g C A, if J, = J,; that is, partially asynchronous interpretations of time are asyn-
chronous interpretations of time, but not necessarily vice versa.

DEFINITION 2.3. The general synchronous interpretation of time is I, = (Ar, J;) with J;
=R, and Ay = {a € 4, : alk + 1) = a(k) + T, where n € N—{0}} with T € Rt

For the general synchronous interpretation of time, the time instants at which the plant
variables x, u, y are defined are at distances nT, for n € N— {0}, from one another along
the time line R,. Notice that, in general, a state transition may not occur between any
two particular ticks of the clock (since n > 0), and that after each state transition occurs
another may not eventually occur. When n = 1, we shall refer to I; simply as the syn-
chronous interpretation of time. For the synchronous interpretation of time it is not necessar-
ily the case that |47} = 1 since any finite length index sequence may be possible. Notice
thatifn = 1, Ay C A,g provided thaty = T =< # so that the synchronous interpretation
of time is a partially asynchronous interpretation of time, but not necessarily vice versa.
Note that it is not, in general, required that the timing characteristics of the plant be
defined relative to a clock although they are often treated as such. In general, in a manner
similar to that with the clock, the plant may be in sync (out of sync) with changes in other
systems. Also notice that for asynchronous time if &, € A, and the current time is o, (k),
then the next time is o,k + 1) = e,(k) + r, where r € R*. On the other hand, for
general synchronous time if oy € A7 the current time is o, (k), then the next time is ¢, (k
+ 1) = a,(k) + r', where r' € Ry and R, = {nT : n € N—{0}} for a given T ¢ R*.
Since R, is equinumerous with N— {0}, a proper subset of R*, it is the case that card
(R*) > card (R)). Hence, no matter what the time interval 7, the number of possible
“next” time instants is always greater if an asynchronous interpretation of time is used
rather than a synchronous one. This helps to clarify the intuitions we have about the rela-
tionships between the synchronous and asynchronous interpretations of time. It is clear
that synchronous time cannot be used if the underlying system can only be accurately
represented with an asynchronous intepretation. However, it is possible that the synchronous
interpretation of time with T very small may result in an accurate model for some asynch-
ronous systems. This will depend on the particular plant to be modeled and the design
objectives to be studied.
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3. Timing Characteristics of Hierarchical DES

The formation of a control theory for HDES is just beginning [Zhong and Wonham 1988,
1989, 1990], even though such systems occur quite frequently. Some principles of the evolu-
tion of time in hierarchical systems have been postulated but not fully investigated [Albus
etal. 198]; Antsaklis et a). 1989; Mesarovic et al. 1970; Passinoe and Antsaklis 1988; Saridis
1983; Valavanis 1986]. As in [Gershwin 1989] what these researchers have recognized is
that “systems usually operate at higher rates at the lower levels in a hierarchical system.”
We shall verify this intuition for a wide class of HDES here.

3.1 A Hierarchical DES Model

We shall focus on HDES that have as components two types of DES, G, | < Jj=m,
and P;, 1 = i < n, all defined via (1) except with different timing characteristics. We think
of the F; as modeling the physical system, and hence its timing characteristics are given
by the interpretation of time for the respective portions of the system modeled by each
P;. We think of the G; as modeling controllers and hence as having timing characteristics
that are influenced by the physical system and the other component controliers in the HDES,
We introduce what we call a timing structure, which will define how the various components
of the HDES influence (are influenced by) the timing characteristics of other components
of the HDES. The definition of the timing structure is based on the interpretations of time
defined in Section 2 and what will be called input and outpur triggers. Each Pl =i
< n, in the HDES has timing characteristics that are simply specified via their own inter-
pretation of time denoted with Ini = (Api, Jp;). Roughly speaking, each G,l=j=m,
has timing characteristics that depend on other P; and G, via the timing structure as we
now discuss in more detail.

Let E,; denote the set of events for P;, and E;, the set of events for G; both defined in
a similar manner to the events E for P in (3). Let C,i (Cg) denote the set of communica-
tions that can be transmitted from P, (Gj) via the timing structure to other G;. The output
triggers for the P; (resp. for G;) are defined via

$i By~ Cu l<isn (esp,¥:Ey=Cy 1 <jsm) (5)

(or restrictions of these maps). The output triggers define how the P; and G; connect to
other components of the HDES to influence their timing characteristics. If ¢;(e) = cor
¥;(e’) = ¢, then ¢ and ¢’ are communications that are said to occur due to the oceur-
rence of event string e or e’ (e triggers communication ¢). We will have occasion below
to utilize a null communication & which cannot cause an event occurrence in any other
DES in the HDES. We use the standard notation for concatenation; e.g., if e, e’ € Ep,
then ee’ denotes the concatenation of e and e, The time instant at which the communica-
tion ¢ (c’) occurs is the same time instant that g € E,i (a' € Ey) occurs where ¢;(eq) =
¢ (;(e'a’) = c¢'). The inpur triggers for the G; are defined by the r; maps for j, 1 < j
=< m, where
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i1 Cpp X 0 X Gy X Gy X o0 X Cgi-1 X Cgar X X Gy = {0, 1}, (6)

and 7;() = 1 (= 0) indicates that an event ¢, j(a(k. + D)€ Egj,' wl.1ere euh(‘a:.kp+arl;)d) ;
(xgj(0e(k)), xgj((k + D)) is forced (not) to occur in G;. T hg 7; indicate which P; t;
communicate with G; via the timing structure; hence 7; descn_bes l}ow various componen
of the HDES cause events in Gj{e,; (o (k + 1))) to occur at time instant a(k + 1). Equa-
i indi ; i m the cross prod-
tion (6) indicates the form for the 7; maps; the absence ofa Cj, or ngf fro . ' .
uct in the domain of 7; indicates that P; or G, does not communicate with G; via 7j. t
is assumed that the 7; maps form a “tree structured” urmng structure as we describe next,
Let each DES component P;, 1 < i < n, or Gj, 1.5 Jj = m, of the HDES repres;f:nt
a node (e.g., denoted with boxes as in Figure 1) of a directed graph 8 and let the 7; dg ine
the arcs (e.g., denoted with shaded arcs in Figure 1) that c_onnfact the P; and G,.t% ; 1):(1
the following manner: Let i1, i2, £1, £2 € N. If there exists i(¢) such that 75 : Coi
w X Cp X X Cpg X Cypy X 0 X Cp X 0 X Cer» — {0, 1, then there exisis an
arc poilf;ing from P; to G; (Gy to G;). In this paper we assume that the HDES pas a tree
structured timing structure; i.e., we assume that § has no closed cycles. In this way :e
eliminate the possibility that some Gj can directly. forcq its own eyents 10 occur via l e
timing structure. Although this limits the manner in which th.e various P; anr:l G; (?alr: |l|‘1-
fluence the timing characteristics of other G, it does not restnct. the manner in whi: .t :
inputs and outputs of the various P; and G; are connected. Notice that the P;, 1 < i =
n, are the “leaves” of the tree structured timing strgcture. ) )
Intuitively, the ¢; and ¥; specify what each DES will communicate (Cpi and Cy) tz t 'c
other DES in the HDES. The 7; define communication channels (the arcs and pat § in
$) and where the communications are distributed in the HDES. Next, we define the time
instants at which events occur when they are forced to do so by other DES components
f the HDES via the timing structure. . '
° Whereas the interpretation of time is always specified for the P;, 1 = i = ", the inter-
pretations of time for the G; are specified in terms of the othe_r G,.and the P; wha. ll;e tim-
ing structure. Let agi(k + 1) and o (' + 1) (-1en0te the time instants at which c?am;
munications ¢,; € Cp; and ¢y € Cpe ocCur, respectively. Suppose t:hat.at some time 1nsh‘ nh
ok + 1), () = 1 so that ez (e, + 1) € E,; oceurs, This time instant at whic
e (ag(k + 1) occurs is given by

P goo Pn

Figure 1. Hierarchical DES with single-branch.
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agik + 1) = max {ag,k + 1), ek’ + 1) ¢

3 an arc in 8 from P; or Gy to Gj} )]

and corresponds to the time instant at which the last communication accessible to G; oc-

curred and caused 7;() = 1. Each time a communication occurs which forces () =1,
an event occurs in Gj; hence the *“1” represents a pulse sent 1o G; via 7; which forces an
event to occur. Hence, if 7;(*) is set equal to I at some time instant, an event in G; must
occur at that time instant (unless Gy is deadlocked); if every communication in a sequence
of communications all cause 7;(} = 1, then there is one event occurrence in G; for each
communication in the sequence. The interpretation of time for any G; is found by executing
all possible runs (in all possible orders) of the Pi, 1 = § = n, and G, for which there
exists a path in 8 from P; or G, to G;. Then via (7), the time instants and hence index
sequences and interpretations of time for the G; are specified. We shall study HDES where
there is at least one P; and the intepretations of time for the G; can be uniquely defined
in terms of the P;,

Note that although we consider only tree structured timing structures we place no restric-
tions on the manner in which the DES inputs U and outputs ¥ are connected. This allows
our results to apply to a large class of HDES with a wide variety of input/output connec-
ting structures. Tree structured timing structures allow us to study properties of what has
been called a “time scale hierarchy” [Antsaklis et al, 1986}. In this hierarchy a DES com-
ponent is “higher in the hierarchy” than another DES component if its timing characteristics
can be influenced by the other DES (i.e., there exists a path in 8 from one to the other),

3.2. Lower Event Rates at Higher Levels in the HDES

To analyze the timing characteristics of HDES we study one fundamental component (shown
in Figure 1) of the HDES defined above. Even though we consider only P; at the lower
level, it requires only a simple modification to consider a mix of P; and G; at the lower
level, and all of our results below are still valid. Moreover, our resulis easily generalize
to the fully interconnected HDES by repeated application of the derived relationships which
pertain to the two levels in Figure 1.

Let the admissible interpretation of time for Fibe I = (Ap, Jp), 1 < i < n, with
Jpi = Ry, and for Gy let it be I = (4g, Jy). For any possible run made by the P; with
an index sequence c,; € Api, the corresponding run in G, has index sequence denoted by
058] € Agl'

DeFINITION 3.1. The event occurrence rate (event rate} in P; or G; is the number of events
that occur in the time interval 7, = (r,, r,], where (ri, ] C R™, and it will be denoted
#P;, T,) and #G;, T,), respectively.

Notice that if P; has a synchronous interpretation of time with 7 € R* and we choose
T, such that |r, -~ r,| = T, then #(P;, T,) = 1; i.e., there is one event occurrence in the
time interval 7, no matter what the values of ry and ry are. If P; has an asynchronous

EVENT RATES AND AGGREGATION IN DISCRETE EVENT SYSTEMS A

interpretation of time, then no matter how 7}, is chosen it is poss-ible }hat #P, T,) = 0,
since we cannot guarantee that an event will occur in the given time interval 7. In 'fa'ct,
we do not know how many events will occur in 7,. It would appear that our defin_lllon
of event rate is too restrictive. This is, however, not the case, since the focfus here |§ on
comparing the event rates of different DES components in the HDES, and this comparison
is made relative to T,, an interval of the real time line.

THEOREM 3.1.

n
D MP, T,) = #Gy, T,) = 0 forall T,

Proof. Suppose that an event e € E,; occurs at time cz,;(k) in some F, 1 s i=n, resulfmg
inT(, -, ..., ¢{ee), ..., *) = 1. Ifanother event &' € E,, ocFurs in some P, at un_le
o (k') resulting in 7y, <, ..., Pplele’), ..., ) = 0, then the index sequence a will
contain er,;(k) but not or,p(k). If (] denotes the sct.of elements thfnt make.up o, then
[oeg] © Ujlexy], so clearly for any T, the relationship holds (even if there is deadlock
in any P; or simultaneous events occurring in any number of P;}.

Theorem 3.1 states the intuitively clear fact that the timing structure can mask events an-d
hence remove the time instants at which events occur in higher levels of the hierarchy. This
means that the event rate is lower in DES at the higher levels of the HDES and higher in lower
levels of the HDES no matter what the interpretations of time are forthe P, | < i < n,

Remark 3.1. Repeated application of Theorem 3.1 to the multi-level hierarr._‘hy in Figure
2 resulis in #(Py, T,) = #G,, T,) = -~ = #G,, T,} = 0 for all T,,. This result sup-
ports the studies in [Gershwin 1989), where the author assumes that the event rates can

L 000 ao
Bc-'l

o5

o

‘.\\I
.__rl

Figure 2. Multi-Level hierarchical DES with m + 1 levels.
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be split into “‘spectra™ according to the level in the hierarchy. It also shows that in the more
general case, e.g., for Py with any admissible interpretation of time, the event rates in DES
at the higher levels are also less than or equal to the event rates at the lower levels.

Example 3.1. (Conventional Discrete Event Control System) Consider the controlled DES
shown in Figure 3. We have ¢, : E; — ot and 7, : G, = {0, 1}, and for the standard
control configuration it is most often assumed that for all e € E;. such that e = e'e (e
€ Ey), 71 (¢1(e'e)) = 1, so that each time an event occurs in Py, G, is forced to act by
having an event in G, occur (it is normally assumed that one always exists). Clearly, then
if Iy = (4, J,) is the interpretation of time for Py and Iy = (A, Jy) for G; where
Ja = Jp, then 4y = Ap1. The interpretaion of time for the plant and controller are the
same. In this way we think of specifying the interpretation of time for G, by I, and P,
via 7; and ¢,. Via Theorem 3.1, for general ¢, and 71 we see that we can expect fewer
events to occur in G, than in Py, since P; may not communicate the occurrence of an event
or G; may not recognize the communication.

Example 3.2. (Hybrid Dynamical System) Letn = 1 in Figure 1 and for P, = X, U,
Yo, 8p, Ap, Xgp) let X, = R, U, =R", Y, = R, and 1, be an admissible interpreta-
tion of time, so that P, is a model for a nonlinear discrete time system. For instance, P,
could represent a zero-order-hold followed by a nonlinear continuous time system and a
sampler. We think of G, as our DES model. For instance, G, can model any system that
can be represented by a General or Extended Petri net [Peterson 1981], and P, and G, con-
stitute a hybrid dynamical system. Theorem 3.1 shows that if the event rate for P, is the
number of state transitions per unit time, then the event rate in the higher Ievel DES model
G, will be lower no matter how the communications are defined.

Remark 3.1 and Examples 3.1 and 3.2 illustrate the generality of Theorem 3.1; the result
applies to hierarchical DES currently being studied (in additional to the work in [Gershwin
1989] the result also applies to the work in [Zhong and Wonham 1988, 1989, 1990]),the
standard discrete event control systems, and to hybrid dynamical systems. Example 3.3
(a manufacturing system) in Section 3.4 is used to further illustrate the use of Theorem 3.1,

ue U yevyY

Figure 3. Discrete event control system.
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3.3. Event Rates and Aggregation in a Class of HDES

Next we study how aggregation affects the event rates in HDES. Agai:ll we shall 'focus on
the HDES component shown in Figure 1, but note tlzat the result ea.sﬂy geflerahzes toa
fully interconnected HDES. Let E; C Ej; and ¢;' : Eg; = Cy; for all i, I i< n,denote
restrictions of ¢;. We use ¢;' maps for aggregation rather than the ¢;; if e € E;,- e € E,
then ¢; is said to ignore e (rather than mask €}. Let B; C N—{0} for j, 1 < j < n.
DEFINITION 3.2. {P; = (X', U, ¥/, &/, ¥, Xy, ¢ : 1 =j= n) satisfies the (%', #°%,
..., ®")-event aggregation property if foreach j, 1 = j < n,

(i) there exists a family of sets X; C X/, i € B; such that ‘
(a)X,-jﬂX,q-=€iforalli;ék,auqujﬂX,-j=.ﬂf‘ori€Bj; .
(b) if P; first enters a state x € Xj; for some { € By, it will take (fc?r all possnble: runs?
at least w/ > 0 state transitions before the state of B, sa'y x', is such that x E X
(i) % : Ey = Cy, where Ey; = {e € By i e = e'e, e’ € Ejjand e = (x, x') with x
€ X;, x' € X;; for some i € Bj}.

THeoREM 3.2. If {P; = (X0, U7, ¥, &/, M, X), . | = j < n} s:atisﬁe.s the (x, 3,
..., ¥")-event aggregation property and T,, = (|, r;] and |, — r{| is sufficiently large,
then

ST

j=1 L

= Gy, T,). (8

Proof: To prove the Theorem it must be shown that there exists a time interval 7, such
that (8} holds under the stated assumptions. It is first shown how to construct sEu:h a T,
Assume that a run is made in each of the P, 1 < j <= n an.d that the corresponding index
sequences are a,; € A,; the corresponding run in G, has index sequence o E'Ag]i Le_t
agi(k’) and ag (k' + 1) be two elements on some oy, € Ay such that e (k' + 1) :
ay,(k’)] is an upper bound on the time between sequential events (that actually occurre )‘
in G, for all possible runs in the P;. Let T, = (ry, 5] such thz}t |ry — rll > forgy (&
+ 1) - Otgl(k')l- Next, it is shown that this choice of T, results in the satisfaction of (8.
Assume that ¢ > 0 events occur in Gy in T, where £ = ¢, + £, + +_!’n fmd ¢ is the
number of events in Gy that occurred due to a communication from P; (if simultaneous
events occur in P; and Py, j # k, causing an event occurrence In G,,'then the event oc-
currence can be attributed to either P; or Py and counted only once in £). For each ¢;,
at least (¢; — 1)w’ events have occurred in P;, 1 < j < n. Therefore #(P;, T,) = (; -
D’ so that

Z"]{MH = D8 =t = HGy, T e
j=1

i j=1
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Clearly if any P; deadlocks it can be the case that ¢; = 0, but relationship (8) still holds.

CoroLLARY 3L If {P; = (X, U/, ¥V, &/, N, Xy), & : 1 = j < n} satisfies the (x', %,
..., ®")-event aggregation property and T, = (ry, r;] with r, = 0, then for all r, > 0,

| P, T,
2 %} = G, T,). (10)

i=1

Remark 3.2. For the multi-level HDES in Figure 2, if the (x/)-event aggregation property

holds for each successive level and T, = (ry, r;] with r; = 0, then for all r, > 0, and
forj,1 < j=<m,

HG 1) > 46,11, T, a1
m

The & a,b,-, and 7; can be viewed as maps that cause event aggregation; consequently,
Theorem 3.2, Corollary 3.1, and Remark 3.2 provide a relationship between event aggregation
and event rates for one class of HDES. If there is a high measure of aggregation at level
J (large #/), then there will be far fewer events occurring at level j + 1. This illustrates
that there is an inverse relationship between event aggregation and event rate between two
!evels of a HDES. In general, hierarchical systems researchers have observed a similar
inverse relationship between “time scale density™ (“time granularity™) and *model abstract-
ness”’ {Antsaklis et al, 1989; Saridis 1983]. The above results provide the first mathematical
validation of these researchers’ intuition about relationships between event aggregation and

event rates for a class of HDES. Example 3.3 in Section 3.4 is used to illustrate the use
of Theorem 3.2.

3.4. HDES Timing Structure Design for Event Rate Reduction

Theorem 3.2 and its use above provides a characterization of how event rates are affected
by aggregation for one class of HDES. In this section we study the program of how to
fz‘esr'gn the timing structure to ensure that there is a decrease (by a some constant factor)
in the event rate between any two levels of a wide class of HDES. A reduction in event
rate is often desirable so that the processors implementing the higher level controls are

Rermitted adequate time before they must attend to the lower level systems (e.g., lake ac-
lions based on the occurrence of an event string).
Let

Sy C E, (Sy C Ep), (i2)
and let the communications be defined by

Goi = P(S) (Cy = P(Sg)). (13)
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The notation e € e’ will be used to denote the fact that e is a substring of e’ (of course,
we are abusing the notation here since e’ is not a set). Consider the case where the output
trigger is defined so that s € ¢;(e) if s € eand s € S; (8" € ¢i(e) if " € e and s’ € ).
This output trigger initiates a communication the first time an event string occurs and
1¢;(e")] = |o;(e)] if le’] = le|. Hence, if the same event string occurs twice (or more)
in some run this fact cannot be reported by this output trigger. Similar problems can exist
if we define the output trigger so that s € ¢;(e) ife = ejez, p = |&z] > 0, and s € €.
This output trigger does, however, have the interesting property that it will *forget” about
event strings in the past (depending on the choice for p). Here, we shall define the output
trigger so that

s €¢;(e) ife=esands €S, (14)

(s’ € ¥;(e) if e = e”s’ and s' € §,;). By definition, if ¢;(e) = B (Y;(e) = ®, a ““null com-
munication” occurs which cannot directly cause an event occurrence in any other DES
in the HDES (hence 7;(8, 8, -, 8) = 0 for all j). These assumptions about Cj; (Cy;) and
¢; (¢;) in (12)-(14) are only mildly restrictive, since it is possible that there can be a dif-
ferent communication representing each possible set of finite event strings that have just
occurred. Moreover, there will be no particular assumptions about the 7; maps, and the
definition for the output triggers via (14) and communications via (12)-(13) is quite prac-
tical since each component DES is allowed to communicate the fact that sequences of events
have just occurred; other DES in the HDES can then act based on such behavior.

The design of the timing structure entails choosing the proper S, and, hence, the com-
munications C,; that can occur between the various DES in the HDES. It is shown that
by restricting the choice of what communications are allowed, one can achieve a decrease
in the event rate at the higher levels of the HDES. In this way we achieve event rate reduc-
tion by restricting the manner in which the DES communicate and not by making par-
ticular assumptions about the dynamics of each component DES (as was done for Theorem
3.2). As in Section 3.2 and 3.3, we shall focus only on the HDES of Figure 1, and the
results easily generalize to fully interconnected tree-structured HDES. First, we introduce
a fundamental property of communications within the HDES:

DeriNITION 3.3. The set S, is said to be y;-admissible if for all s, 8’ € Sp; such that s =
ab, s* = cd, and b = ¢ with |[b] = |¢| = O it is the case that |[d| = v, > 0.

A similar definition can be given for the S,;. Clearly, there may not exist §,; C E:,; such
that S, is y-admissible for some given «;; but there always exists some y; > 0 such that
8, is y-admissible. Hence, for some DES one may be able to achieve more event rate
reduction than for others and y-admissibility characterizes this property. Intuitively, if the
behavior of some DES P, is such that it generates event strings which do not frequently
cause communications to other DES than ¥; is large. Next, we provide several examples

of §,; C Ey; that are y-admissible:

1. Assume that for all s € S,;, Is| = ;. If for all s € S, and all e € s where ¢ € Ej,
there does not exist s’ € Sp;, s' # §, such that e € s’ then §; is v;-admissible.



284 KEVIN M. PASSINO AND PANOS J. ANTSAKLIS

2. K for all s € 5, there exists e € E,; and s, such that s = es; and |s;| = 4; — 1, and
there does not exist s’ € 5,;, s* # s, such that e € s', then 5, is y;-admissible (similarly
for s = sye). And more generally:

3. If for all 5 € S; there exists s, 5, such that s = 585, §5;] = 1, and s3] =2 v; — I,
and there does not exist ' € S,;, ' # s, such that s, € s, then Sp; is y-admissible.

It is important to note that for a given S,; that might be chosen in the design of a timing
structure it is not difficult to test whether §,; is v;-admissible for some +y; (of course, this
may be computationally intensive).

TuEOREM 3.2. If S, is y;-admissible for all i, 1 < i < n, and the output triggers are given
by (14}, then

3 #(Pi’.T“)} = HG, T,) for all T,. (13
i=1 7'

Proof. Consider the case of n = 1; the case for all n follows immediately in a manner
similar to that in the proof of Theorem 3.2. Clearly the relationship holds when no events
have occurred in G;. Assume that an event occurs in Gy, i.e., that e € E;, is a sequence
of events in P, such that 7,(¢,(e)) = 1. It must be the case then that there exists 5 € ¢ (e}
such that s’ € §,,. Let e’ be an event string such that ee’ € E;,. By - -admissibility and
assuming that an output trigger defined via (14) is utilized, there does not exist s’ € Spi
such that s’ € ¢ (ee’) unless {e'] = v,. Therefore, 7,(¢;(ee’)) = O so long as |e’| <
11, and, hence, #(Py, T,) = v,#(G,, T,) and the relationship (15) holds.

Theorem 3.3 shows that if each S, fori, 1 =< i < n, is y,-admissible then there results
a special type of aggregation between (wo levels of a HDES so that event rate reduction
can be obtained. It is important that this aggregation is achieved via conditions on the com-
munications and not on the structure of the P;, 1 < i < n. Of course, for a given set
of lower level P; one may be able to achieve lower event rates than for another set of P;;
Theorem 3.3 shows how to design the communications in the timing structure to achieve
event rate reducticn for a given set of P,.

Remark 3.3. For a conventional discrete event control system as in Example 3.1, Theorem
3.3 shows the conditions under which G, will be guaranteed to have to generate a new
control action only after at least v; events have occurred in P,. For the hybrid dynamical
system of Example 3.2, -y;-admissibility places restrictions on how the higher level G, can
abserve state trajectories in P; to ensure that G; will act more slowly that P,.

Example 3.3 (Manufacturing System) A simple manufacturing system will be used to il-
lustrate the results from Sections 3.2, 3.3, and 3.4. We consider a manufacturing system
which consists of a machine that can process parts of two types, one at a time. The machine
outputs each type part into a particular output bin and the machine can be idle. Let X =
{MI, M,, M;, OUT,, OUT;,} be the set of states, where MI means “machine idle”, M;
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means the machine is busy processing part type {, and OUT; means that the machine out-
puts part type i. Let U = {u,, u;}, where u; means input part type { into the machine.
Let Y = {ys, Yu, Y24}, Where y, indicates that the machine is busy processing a part of
either type, and y;4 indicates that the machine is done processing a part of type i. The
transition function & and the output function A for the manufacturing system are specified
via the bottom of Figure 4. We let X, = {MI} and consider P, = (X, U, ¥, &, A, Xp)
to be our plant.

There is a higher level mechanism which forces the alternate processing of one part of
type 1 and then two parts of type 2. This device is pictured in the top of Figure 4 and
will be referred to as G;. We have G, = (X,, U, Y, 8,, A, Xop) and X, = {x,, 2 X3},
Uy =Y - {»} ¥, = U, and X5, = {x)}. Also, initially the input to the plant is u,.
Notice that G, completely ignores output y,, as it is unimportant in coordinating the alter-
nation of processing. (Hence, the inputs and outputs are not connected in a conventional
manner where in Gy, §;(», x) must be defined for all u.)

Suppose we let 7y : C,; = {0, 1}, Gy = E, and ¢,(ee) = e for all ee € E’;l such
that e = (QUT;, MI) for i = 1, 2 (otherwise, ¢ (ee) = B so that no event occurs in G,).
If the manufacturing system operates asynchronously (synchronously) then the coordina-
tion mechanism will operate asynchronously (with a general synchronous interpretation
of time). Via Theorem 3.1, #P,, T,) = }(G,, T,) for all T,. In particular we see that
since event strings ending with (M1, M;) and (M;, OUT;) for i = I, 2 are masked, a
greater number of events will occur in the plant P, {lower level system) than in the con-
troller G, (higher level system). Hence, for this simple manufacturing system the event
rate at the higher level is lower no matier what the interpretation of time in P, is. Also,

Figure 4. Model of a manufacturing system.
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notice that if we choose By = {1, 2}, and X;, = {M;, OUT;} for i € B, then E,, = E,,,
E,, C E,, (given via Definition 3.3), and if we use the input trigger ¢'; : E;, = {0, 1},
a restriction of ¢;, and initial state as defined above, the conditions of Theorem 3.2 are
satisfied with 7' = 2, so #(P), T,)/2 + 1 = #G,, T,,) for the proper T, and all 7,. Hence,
via Theorem 3.2 we find an inverse relationship between even aggregation and event rate
for this simple manufacturing system.

Next, we show how Theorem 3.3 applies to this manufacturing system. Suppose that
the same models for the manufacturing system and its controller are used but with a dif-
ferent interconnecting timing structure. In particular, using the approach of this section
to specify the timing structure, we let §,, = {MI, M;)(M,, OUT,)}(CUT,, MI), (MI,
M;)(M;, OUT;)(0UT,, MD)}, Gy = P(S,), 71 : €y — {0, 1}, and ¢, be defined as in
(14). Notice that 5;, is 3-admissible (case (1) above) so that #(#), T,)/3 = KG,, T,) for
all T,. We see that Theorem 3.3 can be used to produce a tighter bound on the number
of events that occur in G,; hence, the design of the timing structure via the Theorem 3.3
results in the guarantee of an even lower event rate in G;.

4, Conclusions

We have provided a mathematical representation of the advancement of time in DES via
index sets, index sequences, and interpretations of time. We discussed how deadlock and
simultaneous events are characterized in our framework. In our main results we showed
that the interpretaticns of time atong with a timing structure provide a framework to study
principles of the advancement of time for HDES. It was shown that for a wide class of
HDES the event rate is higher for DES at the lower levels of the hierarchy than at the
higher levels of the hierarchy. Our results support the assumptions in {Gershwin 1989] that
the levels of an HDES have different event rates, with lower rates at higher levels, and
show how similar timing characteristics also hold for asynchronous systems (and other system
that have any admissible interpretation of time). Relationships between event rate and event
aggregation were shown, We defined a measure for event aggregation and showed that a
high amount of event aggregation will result in a much lower event rate at higher levels
in a certain class of HDES, while a low amount of event aggregation will result in higher
event rates. In order to study how aggregation effects event rates in more general HDES
we studied how to design the timing structure to achieve event rate reduction. It was shown
that if the communications between the various DES in the HDES satisfy a certain admis-
sibility condition then there will be a decrease in the event raie. Hence, we showed that
one only needs to restrict the interconnections in the HDES to achieve event rate reduc-
tion. The results were illustrated via several important application areas, including a manufac-
turing system and hybrid dynamical systems.

In a “time scale hierarchy’” — what we have been using here — the initition that event
rates are higher for lower levels in the hierarchy has been verified here for a class of HDES,
but the results here are relative to this paraticular type of hierarchy. If one defines a hier-
archy relative to, for instance, the functional architecture of a system [Antsaklis et al.
1989], then clearly at the higher levels of the functional architecture there may be systems
that are operating at higher rates than at the lower levels of the functional architecture.
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It may take a rearrangement of the system components to place the sysiem in a time scale
hierarchy so that our results apply.

Acknowledgment

The authors would like to thank the reviewers for their helpful comments.

References

1.5. Albus, A.J. Barbera, and R.N. Nagel, “Theory and practice of hierarchical control,” in Proc. 23nd fEEE
COMPCON, 981, pp. 19-39.

P.J. Antsaklis, K.M, Passino, and S.]. Wang, **Towards intelligent autonomous control systems: architecture and
fundamental issues,” J. Intell. Robotic Syst., Vol. 1, pp. 315-342, 1989.

S.B. Gershwin, “Hicrarchical flow control: a framework for scheduling and planning discrete events in manufac-
\uring systems,” Proc. JEEE, Vol 77, No. 1, pp. 195-209, 1989.

LE. Knight and K.M. Passino, “Decidability for a temporal logic used in discrete event system analysis,” [ns.
J. Contrel, Vol. 52, No. 6, pp. 1489-1506, 1990.

M. Mesarovic, D, Macko, and Y. Takahara, Theory of Hierarchical Multileve! Systems, Academic Press: New
York, 1970,

K.M. Passino, Analysis and Synthesis of Discrete Event Regulator Systems, Ph.D. Dissertation, Dept, of Elec-
trical Eng., University of Notre Dame, Notre Dame, IN, 1989,

K.M. Passino and PI. Antsaklis, “Fault detection and identification in an intelligent restructurable contreller,”
J. lmell. Robotic Syst., Vol. 1, pp. 145-161, 1988.

¥.M. Passino and P.J. Antsaklis, “Relationships between event rates and aggregation in hierarchical discrete event
systems.” in Proc. Allerton Conf. on Communications, Control, and Computing, Univ. of Illincis, Champaign-
Urbana, pp. 475484, Oct. 1990. (See also K.M. Passino and P.J. Anisakiis, ““Timing characteristics of discreie
event systems,” Control Systems Technical Note #68, Univ. of Notre Dame, Dept, of Electrical Engineering, 1989.)

K.M. Passino and P.J. Amsaklis, “Timing characteristics of hierarchical discrete event systems,” in Proc. Amer.
Control Conf,, Boston, MA, pp. 2917-2922, 1951.

J.L. Peterson, Perri Net Theory and the Modeling of Systems, Prentice Hall: Englewood CLffs, NJ, 1981

P.J. Ramadge, W. M. Wonham, “Supervisory control of a class of discrete event processes,” SiAM J. Conirol
Optim., Vol. 25, No. 1, 1987.

M.K. Sain, Introduction of Algebraic System Theory, Academic Press: New York, 1981

G.N. Saridis, “Intelligent robot control,” {EEE Trans, Auwomat. Conirol, Vol. AC-18, pp. 547-556, 1983,

K.P. Valavanis, A Mathematical Formulation for the Analytical Design of Intelligent Machines, Ph.D. Disserta-
tion, Dept. of Electrical and Computer Eng., Rensselaer Polylechnic Inst., Troy, NY, 1986.

H. Zhong and W.M. Wonham, *‘On the hierarchical control of discrete-event system,” in Proc. 1988 Conf. of
Inf. Sciences and Systems, Princeton, NJ, 1988.

H. Zhong and W.M. Wonham, “Hierarchical control of discrete event systems: computation and examples,” in
Proc. Alterion Conf. on Communicasion, Control, and Computing, Univ. of lllinois, Urbana, 1989,

H. Zhong and W.M. Wonham, “‘On the consistency o hieracchical supervision in discrete-cvent syslems,” IEEE
Trans. Automat, Control, Vol. 35, Ne. 10, pp. 1125-1134, 1990.





