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ABSTRACT
A new technique using quadratic optimization is proposed to find the weights of
a single neuron, or a single-layer neural network, and extended to the multi-layer
neural network. It is proposed here to find the weights for a neuron by minimizing
a cost function that is quadratic with respect to the neuron's weights and to use
these weights as an answer for minimizing a cost function that is quadratic with
respect to the neuron's outputs. A careful error analysis of this procedure is
provided. Previous methods, such as the least mean squares algorithm which is a
gradient descent method and a precursor of the back-propagation algorithm,
iteratively find weights for the neuron which minimize the cost function directly
involving the nonlinearity of the neuron. By back-propagating the output error
through the neural network's layers, the proposed method is extended to the multi-
layer neural network. The described Quadratic Optimization Algorithm for the
multi-layer neural network tends to work best for classification problems and tends

to achieve successful results in a single iteration.

A new training method based on quadratic optimization is presented in this paper to find the
weights of a single neuron, or a single-layer neural network, and is extended to a multi-layer neural
network. Instead of minimizing a cost function that directly involves the nonlinearity of the
neuron, a function which is quadratic with respect to the neuron's weights is minimized. The
solution from this minimization problem is used as a solution for the original problem, and the
relationship between the two problems is established through a careful error analysis and an
examination of the relationship between the minima. Due to the class of nonlinear functions often
chosen for the neuron (e.g., the hyperbolic tangent function or the signum function), the error for
using the solution from the quadratic minimization as a solution for the original problem is small,
and even zero if the error from solving the quadratic minimization is zero, which is a case studied
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here. Furthermore, with the quadratic optimization procedure used to find the weights of the single
neuron, it always converges and is faster than using a gradient descent algorithm on the original
problem. By back-propagating the output error through a multi-layer neural network's hidden
layers, the proposed method is extended to the multi-layer case. The so-called Quadratic
Optimization Algorithm for the multi-layer neural network tends to work best for classification
problems and tends to achieve successful results in a single iteration.

In Section 1, the neuron considered in this paper and the problem of finding its weights,
termed here the Neuron Training Problem (N), are defined. In Section 2, the Neuron Quadratic
Optimization Problem (NQ) is defined, and its solution is used as one for Problem (N). Including
the special case of zero error, an error analysis is conducted for this usage, and the relationship
between the minima of (NQ) and those of (N) is examined. In Section 3, the single-layer neural
network and the Single-Layer Neural Network Training Problem (L) are defined. The quadratic
optimization procedure is then described for the single-layer neural network in terms of the
Problem (L) and termed the Single-Layer Neural Network Quadratic Optimization Problem (LQ).
In Section 4, the multi-layer neural network and the Multi-Layer Neural Network Training Problem
(M) are defined, and the back-propagation algorithm, one of the most common methods used to
train the muliti-layer neural network, is described. In Section 5, it is proposed to solve the Problem
(LQ) for each layer of the multi-layer neural network by back-propagating the output layer's error
to each hidden layer. The resulting procedure is termed the Quadratic Optimization Algorithm.
Finally, in Section 6, examples are given that illustrate the training procedure of this paper.

1 THE NEURON
The peuron considered here is described by

=63, w) = fw'w) 1)

where f:IR — R is the nonlinearity of the neuron, u = [uy, ..., u,J' € R™*! is the input vector,
W= [wy, .., Wyl € R™! is the weight vector, and up, = 1 is the bias input for the neuron. The
type of nonlinearity of the neuron is restricted to those functions commonly used in neuron models
(e.g., the hyperbolic tangent function or the signum function).

Assume that a training set (u(j), d(§)} for 1 £j < p consists of p pairs of input vectors and
desired output scalars, where u(j) € R™!, uy,(j) = 1, and d(j) e R for 1 <j <p. The Neuron
Training Problem (N) is defined as follows:
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min %(w)
where v (N)
%(W) =(d - ¢(U'w))'(d - $(U'w))

and where d = {d(1), ..., d(p)]' € RP*! i5 the desired output vector, U = [u(l), ..., u(p)] =
R™*P is the matrix of input vectors, and ¢(z) = {f(z;), wf@Zp)] € R with z =[zy, ..., zpl' €
RPX! The notation ¢(z) represents a map which takes a p-dimensional vector z and returns
another p-dimensional vector with element f(z;), where f is the neuron's nonlinearity. In equation
(N), %(w) is actually the sum of the squares of the error between the desired scalars and the output
of the neuron:

F(w) = %1 dG) - Fugywy?. @)
J=

If the popular gradient descent algorithm is used to solve (N), an iterative update equation
of the form

wit+1) = wi(t) - o 3EOD (3)

8wi
is applied where t denotes the iteration number of the algorithm. If the nonlinearity of the neuron is
continuously differentiable, (3) is equivalent to

wilt+1) = wi(t) + 20 %1 (AG) - yi) ) 20w @
J=

which is the update equation of the back-propagation algorithm for the output layer of the multi-
layer neural network. In general, the gradient descent algorithm does not guarantee convergence to
a global minimum due to the potential local minima entrapment {Gill8 1, Bazaraa79]. If a gradient
descent algorithm is applied to a quadratic function, it converges at a linear rate if a line search is
used to find the step length at each iteration. If a gradient descent algorithm is applied to a general
function and not a quadratic one, the algorithm is potentially very slow. In addition, at regions of
very low gradient, a gradient descent algorithm takes small orthogonal steps which resuit in a
"zigzagging" effect of the updates and slow convergence [Gill§1, Bazaraa79].

If the signum function is used as the neuron's nonlinearity, the gradient descent algorithm
can not be applied to (N) directly since the signum function is not differentiable. Applying the
results of [Widrow60] to solve (N), a slightly different cost function is used since the signum
function is assumed to be the neuron’s nonlinearity:

A P
F(w) = ):.1 (dG) - u(j)'w)2. )
J=
With this, the following gradient descent rule results:

wilt+1) = wit) + 20 >'51 (G) - W), ©)
F
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In [Rosenblatt62], a signum is once again assumed to be the nonlinearity of the neuron, and the
proposed update equation for the weights is

wi(t+1) = wi(t) + 2a 123:1 (d@) - fG)'w)u(). )
J=

In [Shynk90], various cost functions are described for which (7) is a gradient descent rule. These
described methods are gradient descent procedures and hence suffer the problems of all gradient
descent procedures.

2 QUADRATIC PROBLEM FORMULATION AND ANALYSIS

Since the Neuron Training Problem (N) is actually an unconstrained minimization problem,
a variety of optimization techniques exist which may be employed to solve it. Unfortunately, due
to the type of nonlinearities which are usually chosen for this problem (for example, the hyperbolic
tangent function), the surface of the function %(W) is, in general, very complicated, and finding a
w which minimizes the surface may be a very difficult task. It is proposed here that instead of
finding a w which minimizes %(W), solve the following Problem (NQ) and use the solution of
(NQ) as an answer for (N). The Neuron Quadratic Optimization Problem (NQ) is defined as
follows:

where

neén F(w)
} o
Fw)=(v-Uw)'(v - Uw)

and where v is such that ¢(v) = d. The function F(w) can be re-written as:

F(w)=w'Aw - h'w +, 8
where A=UU'e R™™ h'=2v'U'e R*™ andc:=v've RI*. $o, finding a w that
minimizes F(w) in (NQ) is equivalent to finding a w that minimizes (8).

For the general quadratic function

Gw)=w'Aw -h'w + ¢, 9)
let A € R™™ be symmetric and positive semi-definite, h'e R, andc ¢ R!*!. IfA is
positive definite and rank[A] = m, G(w) is a quadratic function which possesses only one

minimum which is the global minimum, The vector w is the minimum of G(w) if

VG(w) =0. (10)
Setting the gradient of (9) equal to zero, the vector w is the minimum of G(w) if w solves
2Aw =h. (11)
Denoting the solution to (11) as
w*=2A"h, (12)

the minimum of G(w) is given by
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Gw*) =c- ;A h. (13)
Now, applying this to the Problem (NQ),
VE(w)=0 (14)
implies that
UU'w = Uv. (15)
Note that if w satisfies
Uw =v, (16)

it always satisfies (15). However, (15) does not necessarily imply (16) unless rank[U'] = p (<
m), which is Case (i) below. If rank[U'l = m, then A = U'U is positive definite, and F(w)
possesses only one minimurr}\ which is the global minimum. The relationship between this
minimum and the minimum of F(w) is discussed in Section 2.2.

Next, the following two cases are addressed: Case (i) when there are at least as many
weights as patterns, that is m 2 p, and Case (ii) when there are more patterns than weights, that is
p > m. For Case (i) with m 2 p and rank[U'"] = p, the weights w* of the neuron can be found by
solving (16), which in this case is equivalent to solving (15) or (14). Note that such solutions as
w* always exist. Furthermore, since U'w* = v, F(w*) = (; in view of (NQ), the minimum in
this case is zero. To solve (16), many methods can be employed, and one possible solution is
given by

w¥ = Uy, (17
where U* is the pseudo-inverse of U'. Using the singular value decomposition of U', w* can be
computed. For the case of m 2 p, the singular value decomposition of U' is

cfup=[z 0] (18)
where X is a diagonal matrix of singular values, C and D are unitary matrices, and CH denotes the
Hermitan, or conjugate transpose, of C. After some manipulation, the solution is

wh = n[% ‘]c“v. (19)

The weight vector w* of (19) minimizes
v - U'wil2. (20)
Furthermore, for any other W which also minimizes (20), flw*Il, < Iiwil,.

For Case (ii) with p > m and rank[U"] = m and in view of (15), there exists a w* such that
VEF(w*) = 0, but F(w*) may not be zero since in this case U'w* # v in general. With the
solution of {(15) denoted as

w* =1 [UUT!Uv = U*v, Q1)
(NQ) is solved, and the minimum of F(w) is given in this case by
F(w*) = vl - U'U*lv, (22)
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which is not necessarily zero. There exist many ways to solve (15) and compute w* of (21) since
it is a system of linear algebraic equations, which is a problem that has been extensively studied.
For instance, the computation of w* can be performed using the conjugate gradient algorithm
[Bertsekas89], which converges in a number of steps less than or equal to the number of weights
in the neuron.

Solving (NQ) is, in general, easier than solving (N). It is proposed here to solve (NQ)
instead of (N) and to use the solution from (NQ) as an answer for (N). Intuitively speaking, if the
w* found from solving (N(g) also solves (IN) with a small error, then this validates minimizing
F(w) instead of minimizing F(w).

2.1 Error Analysis
The error for using the solution w from solving {NQ) as an answer for (N) is quantified in
this section.

Definition 2.1:
For any w, the error £ € IRP*! in Problem (NQ) is defined as
g=v-Uw, (23)
Definition 2.2:
For any w, the error £ € RPX! in Problem (N) is defined as
£=d - o(U'W). 24

A . .
The errors £ and £ are both p-dimensional vectors where

e() = v(§) - u()'w (25)
for1<j<pand
£G) = () - f(uGyw) (26)
for 1 £j <p. Furthermore,
ge=(v-Uw)(v-Uw) =Fw) 27)
and
A A o
gt =(d - ¢(U'w))(d - ¢(U'w)) = F(w). 28)

The next theorems, corollaries, and lemma address the relationship between the errors for
Problems (N) and (NQ).

Theorem 2.1:
The errors in Problems (N) and (NQ), E and g respectively, are related by
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£ = o(U'w +g) - ¢(U'w), 29)
where
£G) = fuG)'w + £()) - fu()'w) (30)
forl £j<p.
Proof:
From (23),

v=U'w +¢g,
Applying the nonlinearity f to both sides,
¢(v) =d =¢(U'w +¢).
Substituting into (24),
E=0(U'w +£) - o(UW). o

The following corollaries and theorems address the zero error case.

Corollary 2.2;
For any w if ¢ = 0, then E = () for the same w.
Proof:
For a particular w, if g = 0 is substituted into (29), then
£ = 0(U'w + 0) - o(U'w) = 0.
Thus, £ = 0 for the same w. ¢

Corollary 2.3:
Let the nonlinear function of the neuron be one-to-one. For any w, £ =0 if andonlyif g =

0 for the same w.
Proof:
®): IfE(j) =0 for 1 <j<p,then
£G) = 0 = fuG)'w +eG)) - fuG)w),
f(u@)'w + £(j)) = f(u)'w),
u()'w + () = u(g)'w,
ande(j)=0for1 <j<p.
(%) Use the Proof of Corollary 2.2. ¢

Theorem 2.4;
Let the nonlinear function of the neuron be one-to-one. There exists a solution w to (N)
such that £ = 0 if and only if rank[U"v] = rank{U’). Furthermore, this solution w is unique if

and only if rank[U'] = m (or equivalently, the dimension of the right null space of U is zero).
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Proof:
Using Corollary 2.3 and Definition 2.1, 2 = 0 if and only if £ = 0 or if and only if there exists a w
such that

Uw=v (16)
is satisfied. From the theory of linear algebraic equations, there exists a solution w to (16) if and
only if rank[U"v] = rank{U']. Furthermore, a solution to (16) is unique if and only if the
dimension of the right null space of U' is zero, which is true only when rank[U']=m. ¢

The following Lemma presents an important relationship between the two errors, 2@) and
g()for1 <j<p.

Lemma 2.5;

Let the nonlinearity of the neuron be continuous and differentiable. For 1 < j <p, the error
£(j) can be approximated by e)f '(u(j)'w).
Proof:
If the nonlinear function of the neuron is continuous and differentiable, the derivative of f(u(j)'w)
is given by

f'(UG)'W) = g(lll)go f(u(i)'w + ee(gi))) - f(u(i)'w).

Using Theorem 2.1, the error 20) can be approximated by e(G)f'(u()'w)for i <j<p. ¢

For the types of continuous nonlinearities often chosen for the neuron (e.g., the hyperbolic
tangent function and the sigmoid function), the slopes are small for arguments large in magnitude.
Thus, a large magnitude for €(j) can be tolerated if u(j)'w is located in these relatively flat regions

and thereby producing a small error for (N).

2.2 The Relationship Between the Solutions of (NQ) and (N)A
The relationship between the minimum of F(w) and the minima of F(w) is examined in this
section. The gradient of F(w) is

VF(w) = -2Ug. (31)
If VF(w) = 0, the weight vector w is the minimum of F(w), and
F(w) =v'g. (32)

This zero gradient can occur if Ug = 0. This can of course happen when g = 0, which was the
case studied in Section 2.1. In addition, this is satisfied if the error g is in the right null space of
U, orif
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b
_2 u()e@) =0 (33)
for 1 £k <m, where m 1s the number of welghts and p is the number of patterns.
The gradient of F(w) is R
VE(w) = -2U diag(V(p(U'w)) £ 34)
where
. Sf(ue(jwy)
Ve Gwp) = ———- (35)
3(ugGIwy)
for 1 <j<p, 1<k <m. Forthe hyperbolic tangent function,
Of(u(j .
LU _ (1 . gy Giwio?), 36)
S(u(wy)
and for the sigmoid function (f(z) = 1/(1 - %)),
of(uy . .
SO _ (g hwy) - K. 37
. S(urG)wi) .
If VF(w) = 0, the weight vector w is the minimum of F(w). This zero gradient can occur if
P of!
$ uyy TDWO 26, (38)

. . i dukG)wy)
Clearly, if ¢ = 0, then F(w) = 0.

By comparing the conditions for VF(w) = 0 and V%(w) = (), the relationship between the
minimum of F(w) and the minima of %(w) = 0 can be studied. If g =0, then g = (), as described
in Corollary 2.2. This implies F(w) = 0, %(w) =0, and the weight vector w is the minimum of
F(w) and of F(w) If Ug =0 but g = 0, then § is not necessanly zero, and the weight vector w is

the minimum of F(w) but not necessarily a minimum of F(w) The determination of whether w is

a minimum of %(w) depends on the values M Comparing (35) and (40), if M

S(ux(Hwk) S(uGIw)
£ 1, then the weight vector w is the minimum of F(w) and very close to a minimum of F(w),
Assuming that the neuron's nonlinearity is either the hyperbolic tangent function or the sigmoid
function, this can occur if uy(j)wy is large in magnitude, and hence located in either of the "flat"

regions of the neuron'’s nonlinearity.

3 THE SINGLE-LAYER NEURAL NETWORK
The single-layer neural network considered here is comprised of n parallel neurons each
described by
yi = fu'wj) (39
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for 1 <i<n. For the i neuron, the function R — R is the neuron's nonlinearity and is
restricted to those commonly used in neuron models, u = [uy, ..., uy)' € R™*! is the input
VECIOr, Wj*= [Wyj, ..., Wn;]' € R™X! is the weight vector, and u,, = 1 is the bias input for the
neuron.
Assume that a training set consisting of p pairs of input vectors and desired output vectors
{u@), dG)} for 1 <j < p is given, where u(G) € R™!, u () = 1, and dG) = [dy (), ..., d )] €
R"™! for 1 <j<p. The output of the single-layer neural network is described by
Y = d(U'W) (40)
where Y = [y, ..., yp]' € RP*" is the matrix of the neural network's outputs, y; = [y;(1), ...,
yi(p)I'e RPX! for 1 <i < n are the vectors of a particular neuron's output, U = [u(1), ..., u(p)]' €
R™*P is the matrix of input vectors, W = [wy, ..., w,] € R™*" is the matrix of weight vectors,
and ©(Z) = [¢(zy), ..., §(zy)] € RP*® with Z = [zy, ..., z,) € RP*". The notation ®(Z)
represents a map which takes a matrix Z with elements z;; and returns another matrix of the same
size with elements f(z;;), where f is the neuron's nonlinearity.
e Singl Neur rk Trainin (L) is defined as follows:
min F(W)
where W L
%(W) = tr((D - (U'W))'(D - D(U'W)))
and where "tr" is the trace of a square matrix, D = [dy, ..., d,] € RP*" is the matrix of desired
outputs, and d; = [d;(1), ..., di(p)]'s RP*! for 1 <i < n are the desired output vectors. With n =
1, (L) reduces to (N). In equation (L), %(W) is actually a sum of the squares of the error between
the individual desired output elements and the outputs of the neurons:
n
BW)= 3 3 (@) - fuGym)? @D
k=1 j=1
Since Problem (L), like Problem (N), is actually an unconstrained minimization problem, a variety
of optimization techniques exist which may be employed to solve it. Due to the type I?f nonlinear
functions which are usually chosen for the neurons, the surface of the function F(W) is, in
general, very complicated, and finding a W which minimizes the surface may be a very difficult
task. The iterative training methods discussed in the previous section for the neuron can be
extended to find the weights for a single-layer neural network, and the problems encountered for
these methods unfortunately carry over to the training of the single-layer neurat network.
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3.1 The Single-Layer Neural Network Quadratic Optimizatign Problem
It is proposed here that instead of finding a W which minimizes F(W), solve the following

Problem (LQ) and use the solution of (LQ) as an answer for (L). The Single-Laver Neural
N rk i imization lem (LQ) is defined as follows:
P FCW)
where } LQ
F(W)=tr({V - UW)(V -UW))

and where ®(V) =D, V = [vy, ..., v} € RP*™, v, = [v;(1), ..., vi(p)l'e RP*! for 1 <i<n, and
fivigh =diG) for 1 €i<n,1<j<p. Withn=1, (LQ) reduces to (NQ). The function F(W) can
be re-written as:
F(W) = gwi'Awi - hy'w; + ¢ (42)

i=1
where A =UU'e R™" h;'=2v;U'e R*™ and ¢;=v;v;e R for 1 <i<n. Thus,
with A symmetric and positive definite, F(W) is the sum of quadratics. The solving of (LQ) can
be accomplished in many ways including either minimizing the n quadratics of (42) or finding a W
that solves

UU'W =UV. (43)
Either way, the previous results for the single neuron are still applicable, but the appropriate
changes due to the increased sizes of d and w to D and W, respectively, need to be performed.

4 THE MULTI-LAYER NEURAL NETWORK
The multi-layer neura] petwork considered here consists of many layers of parallel neurons
connected in a feedforward manner. Defining the symbol #k as the number of neurons in the kth
layer, the output of the K layer is described by
Y¥ = oukwk) (44)
where Y& = [y¥, .., y 5] € RP¥ s the matrix of outputs, y¥ = [y¥(1), ..., yX@)I' ¢ RP ! is
the vector of outputs for the i'® neuron, U¥ = [u¥(1), ..., uk(p)] e RW&-D+1XP j¢ the matrix of

input vectors, uk(j) = [yk1 Gy, ..., y#(kk’_ll)(j), 17 e R*K&-D+DX1 45 the vector of inputs for the ji

input pattern and is equal to the outputs from the previous layer plus the bias of one for the last
term, Wk = [W\O(pk), veos W\O(#k,k)] e RUK-D+x#K 5 the matrix of weight vectors,

#k-1+1)x1 PXD i< the

w’i‘ . [wllfi, cry w#(k—lk) +1,i]' e R is the vector of weights, and ®(Z) ¢ R
same as defined previously for the single-layer neural network. Using Ul=U, the output of the
first hidden laver is described by

Yl =oulwh, (45)
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With U2 = (Y1 1] ¢ RP**1+D yhere 1 € RP*, the output of the second hidden layer is
described by

Y? = oUW, (46)
Continuing this inductive process, each successive layer is defined appropriately until the desired
number of layers is reached. The last layer is called the gutput layer and is described by

Y? = ®(U2W?) 47
where the superscript "o" denotes "output”.
The Multi-Laver Neural Network Training Problem (M) is defined as follows:
min %(W 1., Wo
TS wl, wo M)

%(W 1, Wo)=tr((D-Y°)D -Y9?)

and where "tr" is the trace of a square matrix, (W1, ..., W9) are the weight matrices of all the
layers of the multi-layer neural network, D = [dy, ..., d,]' € IRP*" is the desired output matrix,
and Y? is the output of the output layer of the multi-layer neural network. In relation to the
previous training problem (L), the input matrix U is not directly in (M) since the input is "buried”
Rencar.h the hidden layers. If there are no hidden layers, then (M) reduces to (L). In equation (M),
F(W1, ..., W) is actually the sum of the squares of the error between the individual desired

output elements and the outputs of the neurons in the output layer:

n
BOWL, ., WO = 3 5 () - Y20 48)
k=1j=1
One method to solve (M) is the back-propagation algorithm {Rumelhart86], whigh is a
constant-step-size, gradient-descent algorithm that minimizes the least-squares cost function F(WE,
..., W), The sigmoid function is often considered to be the nonlinear function of the neurons
(ie., f(z) = 1/(1 + &) and has the property that f'(z) = f(z)(1 - f(z)). Here, the hyperbolic tangent
function, f(z) = tanh(z), is used as the neuron'’s nonlinearity, and f'(z) = 1 - f(z)z. The weights of
the neural network are adjusted after every gpoch (i.e., one pass of the training set) by the
constant-step-size gradient-descent rule: .
th:i(t"'l) = wll:i(t) -o 88711‘. . (49)
1

After some manipulation of the partial derivative term, the back-propagation algorithm's rule for

changing the weights of the multi-layer neural network is given by

P
w,lfi(t+1) = w,‘fi(t) +0Q 21 Sli‘(i) ykl‘ll(j) (50)
=
where Bli‘(j) is known as the delta term. If the ki layer is the output layer, then
896G) = [di) - 3G {1 - ¥3G)*1. 1)
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For the hidden layers,
i#k+1)
S =2 810w (1-y{7. (52)
I=

5 THE QUADRATIC OPTIMIZATION ALGORITHM

In this section, the Multi-Layer Neural Network Training Problem (M) is solved by
applying the solution of Problem (LQ) to each layer. The technique proposed here is based on the
back-propagation algorithm, in which the propagation of the output error of the multi-layer neural
network is used to form a desired output for each layer and hence to form a quadratic weight cost
function at each layer. The solution of Problem (L.Q) for each layer is then used as a solution for
Problem (M). Several implementation considerations are discussed as well as the advantages and
disadvantages of using this approach.

Instead of solving the Problem (M) using the back-propagation algorithm, it is proposed
here to solve the Problem (LQ) for each layer of the multi-layer neural network and use this
solution as one for (M). In solving (LQ) for the single-layer neural network, the desired output is
known, and thus a matrix V can be found such that (V) = D. In solving (LQ) for the kih layer of
the multi-layer neural network, the matrix V¥ needs to be found such that

@(vk) = DK (53)
where V¥ = [v&, v#kk] e RP¥¥E yk.= [v]i‘(l), v]i‘(p)]' e RP*!, and f(v¥(j)) =dli‘(i) for 1 <
i<#k,1<j<p.

Assuming that all weights in the hidden layers have initial values, there is no problem in
directly applying the methodology described for the single-layer neural network to the output layer.
A matrix V© can be chosen such that ®(V®) = D, and Problem (LQ) can be applied to find the
weights of the output layer. Unfortunately, there do not exist desired outputs D¥ for the hidden
layers, but by using the back-propagation of the output error, an approximation of these values can
be obtained; the algorithm proposed here back-propagates the error between the desired output and
the actual output of the neural network to all of the hidden layers to form an approximated desired
output for each layer.

First, the errors at the output of each layer are defined. The error between the desired
output and actual output for the i neuron of the k! layer is given by

e = dk) - Y56, (54)
where 1 <i<#k, 1 £j < p, and the error for the i neuron of the output layer is the quantity

£2G) = dij) - y20). (55)
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where 1 £i<n, 1 £j<p. Next, in comparing the delta terms of (51) and (52) of the back-
propagation algorithm, the error for the i neuron of the k' layer (not equal to the output layer)
can be viewed as

Ako) — 2 8k+1(]) wk+1 (56)
Combining (54) and (56), the desired output for the i i" neuron of the k™ layer can be viewed as
g D
i =y + 3 8KG) whiL, (57)
h=1
Using (57), the matrix VK can be chosen such that
. . H(k+1) .
(5 =ykH + 3 351G whil, (58)
h=1

where 1 <i<#k,1<j<p. With VX, Problem (LQ) can be solved to find the weights of the kb
layer. Since the hyperbolic tangent function is one-to-one and is assumed to be the nonlinear
function of each neuron, v'i‘(]') can be formed by applying the inverse of the function to both sides
of (58). Thus, by back-propagating the error through the multi-layer neural network, a quadratic
problem is formulated for each layer, and the results for the Problem (LQ) in relation to the
Problem (L) are applicable here for each layer. This method does not guarantee convergence, but
does tend to give good results with a fast computation time.

In implementing this quadratic optimization procedure for a multi-layer neural network,
several observations are useful. First, in practice, limiting the neural network to two layers
provides adequate results. Second, since a quadratic function is minimized for each layer, the
hidden layer should be adjusted first, and then the output layer can be updated using the newly
found values for the hidden layer's weights. Third, when a one-to-one function is the hidden
layer's nonlinearity and when the values v}(j) are found by inverting the one-to-one function, care
must be taken to insure that d%(j) lies in the range of the function. For instance, if the hyperbolic
tangent function is the nonlinearity for the hidden layer, its range is (-1, 1) and hence d}(j) e (-1,

1). To insure this, the output laycrs weights need to be first initialized to small values around

2

zero, for instance wi ] Next, when computing the desired output for the hidden layer,

 [47 #1 71
if the right-hand side of (58) is not in the range of the hidden layer's nonlinearity, the weights of

the output layer can be scaled to insure this: if wr= max{wizh forl<i<#l+1land 1<h<#2}>

1/#1, then (58) is modified to
2

1 %2 2
fiv;) =y; o) + E O — - (59)
#lw

forl1<i<#l+1and1<j<p. If the right-hand side of (59) is still not in the range of the hidden
layer's nonlinearity, the output layer's weights can continue to be scaled by 1/#1 until this occurs.
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Fourth, in practice, the weights for the output layer tend to be large in magnitude, which is
attributed to the fitting of the mapping between U? and V2 with the linear equation
vlutw? = ulvi (60)

To aid in avoiding the computational inaccuracies which may occur due to the large magnitudes of
W2, it is suggested to choose v2(j) < 0.5 for 1 <i<#2 and 1 <j <p. This can be accomplished
by scaling the desired outputs appropriately. This also aids in insuring that d}(i) is properly
valued. With these observations, the Quadratic Optimization Algorithm used in practice to train a
multi-layer neural network is as follows:

1) Given D, find V2 such that v(j) < 0.5 for 1 Si<#2and 1 <j<p.

2) Initialize W1 and W2 with magnitudes less than 1/#1.

3) Test F(W1, W2). If small enough, then stop.

4) Find V! using either (58) or (59).

5) Find W! by solving UlU'W1 = ylv1,

6) Find U2 for the new weights W1,

7) Find W2 by solving U2U2'W2 = U2v2,

8) Goto 3).

In applying the Quadratic Optimization Algorithm to various problems, several advantages
and disadvantages are evident. First, finding the weights of a multi-layer neural network via the
quadratic optimization approach described here tends to work well for classification problems in
that the desired outputs are achieved and the generalization behavior of the neural network is
aocu;ate. The algorithm also tends to converge to a solution in a single step achieving a small value
for (W1, W2) and then to slowly vary around this value with more iterations. Thus, it is
recommended to use the Quadratic Optimization Algorithm for a single iteration on classification
problems.

Both of these properties are attributed to the finding of the weights via steps 5) and 7) of
the algorithm. To achieve this type of performance, the choice of the number of hidden layer
neurons is important. Since the overall mapping between the input patterns and the desired output
patterns is accomplished via the solving of the linear system of equations in step 7), the number of
hidden layer neurons needs to be large enough such that this linear approximation in the output
layer succeeds. Clearly, the choice of #1 is problem dependent. Thus, the choice of the number of
hidden layer neurons is a design consideration and is dependent on the particular desired mapping
of the training set. Furthermore, the initial values for the weights of the neural network are more
important as the number of hidden layer neurons is reduced towards the level where the Quadratic
Optimization Algorithm is unable to achieve the desired training set mapping. These properties of
the algorithm are illustrated in Example 6.2.
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Disadvantages of using the Quadratic Optimization Algorithm to train a multi-layer neural
network are outlined next. First, the algorithm may not work well for non-classification problems
in that the desired outputs may be approximately achieved but the generalization behavior of the
neural network may be inaccurate. This behavior is attributed to the finding of the output layer's
weights by the solving of the linear system of equations in step 7). Thus, it is suggested to restrict
the use of the Quadratic Optimization Algorithm to classification problems. Secondly, in applying
the algorithm, all of the training patterns need to be known and no values for the weights from
previous iterations are saved. Thus, this quadratic optimization training procedure may not work
for on-line learning. Thirdly, the algorithm also requires the solving of two linear systems of
equations when there are two layers of weights: one in step 5) with m equations and m unknowns,
and the other in step 7) with #1 + 1 equations and #1 + 1 unknowns. If these numbers are large,
the solving of the linear systems may become burdensome, although there do exist many ways for
solving such systems. Finally, the values for the output layer weights may be large, which is a
potential disadvantage if implementation of the neural network is desired. This behavior is also
artributed to the final calculation step of the algorithm, which attempts to form the desired mapping
with the solving of a linear system of equations to the find the weights of the neural network's
output layer.

Examples 6.2 to 6.7 in the following section illustrate these observations and some of the
advantages and disadvantages of using the Quadratic Optimization Algorithm to train a multi-layer
neural network.

6 EXAMPLES
Example 6.1:

As shown in Figure 1, a 5x5 retina is shown with four different letters. The input patterns
generated for these letters consist of either a 1 (black) or a -1 (white) and are formed by copying
the elements of the retina matrix row-wise into a vector such that U € R26*4 is the input matrix.
The desired scalars associated with the input patterns for T and H are assigned a 0.9, and those
associated with the input patterns for E and N are assigned a -0.9 such that d € R**!, It is desired
to learn this mapping using a single neuron trained with the quadratic optimization approach of
Section 3. With the hyperbolic tangent as the neuron's nonlinearity, the vector v € R**! has
elements v(j) = atanh(d(j)) for 1 <j <p:

v =[1.4722 14722 -1.4722 -1.47227.
Applying Theorem 2.4, rank[U'] = 4. So, there exists a solution w € R26%1 ¢4 (N) such that é =
0. Using the singular value decomposition of U', the w is computed via (19):
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0.2236
-0.1304
-0.1304
-0.1304

0.2236
-0.3261
-0.8992

0.5498

0.0000

0.3541
-0.3261

0.5730

w= 02236

0.5730

0.3541
-0.3261

0.0000

0.5498
-0.8992

0.3541
-0.3261
-0.6802
-0.1304
-0.6802
-0.3261

0.2236

and

y=[09 09 -09 -09]'=d.
Actually, since p < m, any set of desired outputs can be realized by a single neuron. In fact, for
the given 5x5 retina, all 26 letters of the alphabet can be represented and any division of the letters

can be accomplished via a single neuron. Using the quadratic optimization method presented here,
this division can be immediately determined by solving a linear system of equations.

E H

Figure 1 Retina patterns for the letters T, H, E, and N.
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Example 6.2:
In this example, a comparison of the Quadratic Optimization Algorithm and the back-
propagation algorithm for the training of a multi-layer neural network is presented for an extended

XOR training set, where
-1 -1
-1 1
1 -1
U=11
2 2
2 02
2 -2
2 2

RSxB

Pk ik pid ok el ik pemid st

and
d=[0.1 -0.1 -0.1 0.1 0.1 -0.1 -0.1 0.1} « R¥1

Both the Quadratic Optimization Algorithm and the back-propagation algorithm are implemented in
MATLAB on a Macintosh SE using programs that are not optimized. Steps 5) and 7) of the
algorithm are solved using the psuedo-inverse function call for MATLAB. Using a two-layer
neural network with the hyperbolic tangent function as the nonlinearity for both the hidden layer
neurons and the output layer neuron, the number of hidden layer neurons is changed.

The training results for the two algorithms are compared in terms of the success of training
the neural network for the desired classification, the values for the cost function F, and the number
of floating point operations, which is a function call in MATLAB. The muiti-layer neural network

is initialized to weights in the interval [ o #1] and first trained using the Quadratic Optimization

Algorithm. Next, the same initial neural network is trained using the back-propagation algorithm
until the same value for F is achieved. (Note that at each iteration step of the back-propagation
algorithm the gradient of (50) is not computed and is 1nstead approximated usmgAa single training
pattern.) These results are shown in Table 1. The value F(t) denotes the value of 1-“-(W1 w?) after
t iterations of the training procedure. The value "flops” indicates the number of floating point
operations as counted by MATLARB for the t iterations. For the cases of 4 and S hidden layer
neurons, the back-propagation trained r}\eural network did not classify the input set correctly, and
the training was continued until a lower F was achieved. The resulting neural networks classified
the input patterns correctly, and the results for the extended training using the back-propagation
algorithm are shown in Table 2. The values for t and flops are for the total training t}me. To
illustrate the convergence of the back-propagation algorithm, the intermediate values of F for the
neural network with 5 hidden layer neurons are plotted in Figure 2. As was described in the
previous section, the multi-layer neural network trained with the Quadratic Optimization Algorithm
requires enough hidden layer neurons such that the solution to the linear system of equations in
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Table 1 Comparing the Quadratic Optimization Algorithm
and the back-propagation algorithm.

A Quadratic Ogtimizalion Back-Propfgation
#1 F(0) I t F(t) flops t F(t) flops
6 0.1063] 1 0.0212 132024] 1244 0.0208 1442790
5 0.1189] 1 0.0244 10256fF 1169 0.0240 1158168
4 0.1330] 1 0.0246 820 427 0.0240 351273

0.18

Table 2 Continuing training with the back-propagation algorithm.,

s |

t

A
E(t)

flops

5
4

1729
1006

0.0093
0.0096

1713385
476024

0.16
0.14

0.12

0.1
0.08
0.06

0.04

0.02F

0

200

400 600

800

1000

1200 1400 1600 1800

A
Figure 2 Plot of F for the back-propagation algorithm.
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step 7) is able to correctly approximate the desired mapping of the training set. For #1 = 2 and #1
=3, the Quadratic Optimization Algorithm was unable to find values for the weights such that the
desired mapping was achieved, while the back-propagation algorithm was able to successfully find
such weights.

To illustrate some of the observations that are made at the end of Section 5, the weights and
the outputs of a neural network found via the Quadratic Optimization Algorithm are presented. For
the neural network with 5 hidden layer neurons, the output layer weights found using the Quadratic
Optimization Algorithm for 1 iteration are

10.7469
53.1767

w2 = 49.9710
16.5357
21.8128

0.5822

and those found using the back-propagation algorithm for 1729 iterations are

-0.3481
0.3337

w2 = 0.0400
0.0223
0.0016
0.1508

As described previously, the weights for the output layer may be large, and they are for this case.
However, in the simulations using the training sets of the other examples, these values may be
several orders of magnitude larger than the ones for this extended XOR example.

As another comparison for the neural network with 5 hidden layer neurons, the outputs of
the neural network found using the Quadratic Optimization Algorithm for 1 iteration are

0.0079
-0.0256
-0.0554

y = 0.0170

0.1238
-0.1056
-0.0906

0.1233

and those found using the back-propagation algorithm for 1729 iterations are

0.0531
-0.0802
-0.0789

y= 00514

0.1526
-0.0809
-0.0783

0.1165



M. A. Sartori and P. J. Antsaklis, "Neural Network Training via Quadratic Optimization,” Technical
Report #90-05-01, Dept. of Electrical and Computer Engineering, University of Notre Dame, May 1990.
Revised April 1991.

21

where the magnitude of the desired output is 0.1. Clearly, the neural network trained with the
Quadratic Optimization Algorithm did not achieve the desired neural network outputs but did
achieve the desired mapping for the classification training set. For this reason, it is recommended
that the Quadratic Optimization Algorithm be used for classification problems and not for general
function approximation problems. However, even though the exact desired outputs may not be
achieved using the Quadratic Optimization Algorithm, the resulting neural network does have
desirable generalization properties for classification training sets as illustrated in the following
examples.

Example 6.3;

In a square of size [0, 8] x [0, 8], consider a circle of radius 2 centered at (4, 4). Let the
input patterns be points inside the square. If the input pattern lies inside the circle, the
corresponding desired output is 1, and if the input pattern lies outside the circle, the corresponding
desired output is -1. Thus, U € R3*P and d € RPX!. The training patterns are taken as points
evenly spaced over the square; a new pattern occurs every 1.0 steps in a direction parallel to an axis
for a total of p = 81 training patterns with 13 inside the circle and 68 outside the circle such that U
e R3*¥ andd e R81X! 1p Figure 3, the training patterns are indicated with the appropriate
desired output, as well as the circle for reference. A two-layer neural network is provided with #1
= 15. The hyperbolic tangent function is used as the nonlinearity for the hidden layer's neurons,
and the signum function is used as the nonlinearity for the output layer's neurons. The neural
network is trained with the Quadratic Optimization Algorithm. The algorithm is implemented in
MATLAB on a Sun Sparc Station using a program that is not optimized. Steps 5) and 7) of the
algorithm are solved using the psuedo- inversc function call for MATLAB. Since the signum is the
output layer's nonlinearity, the vector v2 is chosen such that v2(]) 0. l(d(])) for1<j< 81 The

weights for the neural network are chosen at random in the interval [-—, ] 5, 1 5] such that F(O)

0.9711. After applying thﬁ Quadratic Optimization Algorithm for one iteration requiring 835467
floating point operations, F(1) = 0.1536 and the training set is correctly classified. To test the
generalization ability of the result, the neural network is probed with inputs occurring at a 0.5
interval, most of which were not used in the training set. The resulting output is plotted in Figure
4. Clearly, the neural network has generalized well over the input space.
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Figure 4 Testing the trained neural network of Example 6.3.
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Example 6.4:

The same circular area as in Example 6.3 except with a smaller number of training patterns
is used for this example. The training patterns occur at 2.0 intervals across the square for a total of
p = 25 training patterns with 5 inside the circle and 20 outside the circle and are depicted in Figure
5. Thus, U e R¥2 and d € R®*!, A two-layer neural network is provided with #1 = 17. The
hyperbolic tangent function is used as the nonlinearity for the hidden layer's neurons, and the
signum function is used as the nonlinearity for the output layer's neurons. The neural network is
trained with the Quadratic Optimization Algorithm, which is implemented in MATLAB on a Sun as
described in Example 6.3. Since the signum function is the output layer's nonlinearity, the vector
v2 is chosen such that v20) =0. l(d(])) for1 <j< 25 The weights for the neural network are

chosen at random in the interval {-— 17, 1.J,] such that F(O) 0.1888. After applymg the Quadratic

Optimization Algorithm for one iteration requiring 213638 floating point operations, F(l) = 0.0332
and the training set is correctly classified. To test the generalization ability of the result, the neural
network is probed with inputs occurring at a 0.5 interval. The resulting output is plotted in Figure
6. Once again, the trained neural network generalizes well over the input space.

Figure 5 Training set for Example 6.4.
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Figure 6 Testing the trained neural network of Example 6.4.

Example 6.5;

The same circular area as in Examples 6.3 and 6.4 except with randomly placed patterns is
used for this example. The 289 training patterns are chosen at random with a uniform distribution
over the {0, 8] x [0, 8] square region and are depicted in Figure 7. Thus, U € R3*289 gnd d e
R29%1 4 two-layer neural network is provided with #1 = 30. The hyperbolic tangent function is
used as the nonlinearity for the hidden layer's neurons, and the signum function is used as the
nonlinearity for the output layer's neurons. The neural network is trained with the Quadratic
Optimization Algorithm, which is implemented in MATLAB on a Sun as described in Example
6.3. Since the signum function is the output layer's nonlinearity, the vector vZ is chosen such that
V2(i) =0.1(d(j)) for 1 <j < 289. The weights for the neural network are chosen at random in the

. A
interval [-31—0, 516] such that F(0) = 3.7221. After applying the Quadratic Optimization Algorithm for

one iteration requiring 14725850 floating point operations, %( 1) = 0.3472 and the training set is
almost arbitrarily correctly classified. To test the generalization ability of the result, the neural
network is probed with 1089 randomly chosen patterns. The resulting output is displayed in
Figure 8. Once again, the trained neural network clearly generalizes weil over the input space.
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Figure 8 Testing the trained neural network of Example 6.5.
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Example 6.6:

A variation of the previous three examples is presented here. Instead of a single circle in
the [0, 8] x [0, 8] square, two circles centered at (2, 2) and (6, 6) and each with a radius of 1 are
placed in the square such that an XOR-type classification problem results. Shown in Figure 9, the
training patterns are placed at 1.0 intervals across the square, and U ¢ R3*81 and d € R8IX!, A
two-layer neural network is provided with #1 = 30. Once again, the hyperbolic tangent function is
used as the nonlinearity for the hidden layer's neurons, and the signum function is the used as the
nonlinearity for the output layer's neurons. The neural network is trained with the Quadratic
Optimization Algorithm, which is implemented in MATLAB on a Sun as described in Example
6.3. The vector v? is chosen such that v2(j) = 0.1¢d(j)) for 1 < j < 81. The weights for the neural

31—0, 31—0] such that F(0) = 0.7050. After applying the

guadratic Optimization Algorithm for one iteration requiring 1943422 floating point operations,
F(1) = 0.1040 and the training set is correctly classified. To test the generalization ability of the

network are chosen at random in the interval [-

result, the neural network is probed with inputs occurring at a 0.5 interval. The resulting output is
plotted in Figure 10, and the trained neural network once again generalizes well over the input
space for a classification problem.

Figure 9 Training set for Example 6.6.
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Figure 10 Testing the trained neural network of Example 6.6.

Example 6.7:

The reproduction of a sinusoid with amplitude 0.5 over one period is desired for this
example. Sampling (0.5)sin(k) for k = 0, 2n/8, ..., 2%, the input matrix U e R2%% and the
desired vector d € R9*! are formed. The training set is shown in Figure 11. A two-layer neural
network is provided with #1 = 5. The hyperbolic tangent function is used as the nonlinearity for
the hidden layer neurons, and the linear function is the nonlinearity for the output layer neurons.
The neural network is trained with the Quadratic Optimization Algorithm, which is implemented in
MATLAB on a Macintosh SE as described in Example 6.2. The vector v? is chosen such that

2(]) =d(j) forl <j J <£9. The weights for the neural network are chosen at random in the interval
[ -] such that F(O) = 1.3388. After applying the Quadratlc Optimization Algorithm for one

iteration requiring 10720 floating point operations, F(l) = 9.4942¢-06 and the training set is
correctly classified. To test the generalization ability of the result, the neural network is probed
with different input values for k, where now k = 0, 21/25, ..., 2. The resulting output is plotted
in Figure 12 along with the sinusoid, and the trained neural network generalizes well over the input
space even though the desired mapping is not a classification problem.
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Figure 12 Testing the trained neural network of Example 6.7.
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7 CONCLUDING REMARKS

A new method based on the minimization of a quadratic function is presented for the
training of a single neuron, a single-layer neural network, and a muiti-layer neural network. An
examination and error analysis is provided when the new quadratic optimization procedure is
applied to a single neuron. These results can be immediately applied to the single-layer neural
network case, but not for the multi-layer neural network case since there do not exist known
desired outputs for the neural network's hidden layers. By using the concept of back-propagating
the output error to the hidden layers, desired outputs are approximated for the hidden layers, and
the results for the single-layer neural network are applied to each of the hidden layers. The training
of a multi-layer neural network via the described Quadratic Optimization Algorithm tends to work
best for classification problems and tends to achieve good results in a single iteration.

The results reported in this paper also appear in [Sartori91].
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