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Abstract 
We utilize a class of not necessarily fmite state "logical" discrete event system 

(DES) models which can also model the costs for events to occur. Let P and A 
denote two such models. Suppose that P characterizes the valid behavior of a 
dynamical system and A represents certain design objectives which specify the 
allowable DES behavior which is "contained in" the valid behavior. An optimal 
conwool problem for P and A is how to choose the sequence of inputs to P so that 
the DES behavior lies in A (i.e., it is allowable) and so that a performance index 
defined in terms of the costs of the events is minimized. Here we provide two 
solutions to an optimal stabilizationproblem, i.e. how to find a sequ nce of inputs 
that results in an optimal state trajectory which cycles in a pre-spec.lied set. The 
results here are based on those in [11,131. 

1. INTRODUCTION 
Recently there have been investigations into the foundations of the 

optimal control of DES. Extensions to the theory of heuristic search 
in [11,13] showed that the A* algorithm [4] can be adapted to provide 
a computationally efficient method to find solutions to several optimal 
control problems for DES. These results were applied to various 
manufacturing and planning system problems in [9-111. In [12] the 
authors developed a heuristic search approach to find solutions to 
various near-optimal control problems for DES. The results in 
[11,13] have been extended and applied to flexible ma iufacturing 
systems and other examples in [14]. In this paper we show that the 
approach in [14] can be extended to solve optimal stabilization 
problems. 

2. AN OPTIMAL STABILIZATION PROBLEM FOR 
DISCRETE EVENT SYSTEMS 
We consider DES that can be accurately modelled with 

P=(X,Q,G,X,xo&) (1) 
where (i) X is the possibly infinite set of plant states, (ii) Q is the 
possibly infinite set of plant inputs, (iii) 6:QxX+X is the plant state 
transition function, (iv) x:XxX+IR+ is the event cost function, (v) xo 
is the initial plant state, and (vi) XfcX is the non-empty finite set of 
f i n d  srutes. E?+ denotes the set of positive reals and R+=IR+U [ 0). 
The set 

denotes the (possibly infinite) set of events for the DES P (xd is a 
dummy state, and (Xd,XO) a dummy event added for convenience). 
The event cost function x(x,x') is defined for all (x,x')EE(P); it 
specifies the "cost" for each event (state transition) to occur and it is 
required that there exist a 650  such that ~ ( x , x ' ) ? G '  for all 
(x,x')E E(P). Finally, we require that for each XE X, I( G(q,x):qE Q)I 
is finite. The mathematical notation in this paper is as follows: Let Z 
be an arbitrary set. Z* denotes the set of all finite strings over Z 
including the empty string 0. For any s,tE Z* such that S=ZZ'-.Z'' 

and t=yy'-my", st denotes the concatenation of the strings s and t, and 
tE s is used to indicate that t is a substring of s, i.e., s=zz'-t-d'. A 
(finite directed) cycle is a string SE Z* such that S=ZZ'-~Z"Z has the 
same f i t  and last element ZE Z. A string SE Z* is cyclic if it contains 

E(P)=( (X,X')E XxX:X'=G(q,X)) U ((Xd,XO)) (2) 
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a cycle (for t& Z*, tzzE SI, and acyclic if it does not. 
A string S E  X* is called a state trajectory or stute path of P if for all 

successive states XX'E s, x'=6(q,x) for some qE Q. Let E,(P)cE(P) 
denote the set of all events needed to define a particular state path 
SEX* that can be generated by P. For some state path s=xx'x"x"'-, 
E S P )  is found by simply forming the pairs (x,x'), (x',~' '),  
(x",x"'),-. An input sequence UE Q* that produces a state trajectory 
SEX* is constructed by concatenating qE Q such that x'=6(q,x) for a l l  
X X ' E  s. A set X z C  X is said to be invariant if for all XE Xz,  
B(q,x)E Xz for all qe Q. Let X,cX then 

denotes the set of all state trajectories s=xx'-x" of P beginning with 
XE X and ending with X"E X,. Let X,cX then 

will be used to denote the set of all state trajectories s=s's" of P with 
S'E X (P,x,Xz) and s" a (finite) cycle where for each XE s", XE Xz. 
Then, for instance, Xs(P,xo,Xf) denotes the set of all state trajectories 
of P that begin with the initial state xo and end in a cycle whose 
elements are all contained in Xf. A plant P is said to be (x&)- 

srubilizable if there exists a sequence of inputs UE Q* that produces an 
state trajectory SE XS(P,x,Xz). 

There are other ways to define (x,Xz)-stabilizability. For instance 
we could have said that P is (x,X,)-stabilizable if there exists a 
sequence of inputs UE Q* that produces an state trajectory s=s'sc 

where sc is a cycle that contains at least one element of X,. For other 
studies of stability and stabilizability of logical DES see, for instance, 
[I  ,7,8,151. 

Let P=(X,Q,G,X,xO,Xf) specify the valid behavior of the plant and 

be another DES model which we think of as specifying the 
"allowable" behavior for the plant P. Allowable plant behavior must 
also be valid plant behavior. Formally, we say that the allowable plant 
behavior described by A is contained in P, denoted with A[P], if the 
following conditions on A are met: (i) XaCX, QaCQ, (ii) 
Ga:QaXXa+Xa, Ga(q,X)=G(q,x) if 8(q,X)E Xa and G,(q,x) is undefined 
otherwise, (iii) Xa:XaXXa+R+ is a restriction of X:XXX+R+, (iv) 
xao=xo, XafcXf. Also, let E(A)cE(P) denote the set of allowable 
events defined as in (2), Xa is defined for all (x,x')E E(A), and E,(A) 
is defined as above. It may be that entering some state, dsing some 
input, or going through some sequence of events is undesi-able. Such 
design objectives relating to what is "permissible" or "desirable" plant 
behavior are captured with A. This formulation is similar to that used 
for the "supervisor synthesis problems" in the language-theoretic 
Ramadge-Wonham framework [16]. 

x (P,X,X,)CX* (3) 

XS(P,X,XZ)CX* (4) 

A=(Xa,Qa,Ga,Xarxao,Xaf) ( 5 )  

To specify optimal conaol problems let the pef$omnce index be 
J:x;+IR+ (6) 
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where the cost of a state trajectory is defined by 
J(s) = c x ( x , x ' )  (7) 

(x,x')E E,@) 

for all XE Xa and SE X(A,x,Xa). By definition, J(s)=O if s=x where 
XE Xa. Let A describe the allowable behavior for a plant P such that 
A[P] then we have: 

l b  QDtimal Stabilization Problem (OSP): Assume that Xaf is an 
invariant set for A and that A is (x0,X'af)-stabilizable where X'afcXaf. 
Find UEQ; that drives A along an optimal state trajectory s*, i.e., 
s*E Xs(A.xo,X'af) such that J(s*)=inf( J(s):sE Xs(A,xO,X'af)). 

Here, we focus on the case where X'af is composed of states that 
form a single cycle. It is not required that X'af be an invariant set. 
Since we require that UE a and SE X:, the solutions to the OSP will 
achieve not only optimal but also allowable DES behavior. There 
may, in general, be more than one optimal state trajectory, i.e., the 
solution to the OSP is not necessarily unique. The set of optimal state 
trajectories for A, beginning at state XE Xa, and ending i i  a cycle in 
X,, where XzCXa, is denoted by 

X*s(A,x,Xz)cX (A,x,Xz). (8) 
In this paper we are concerned with finding only one optimal state 
trajectory for the OSP and finding it in a computationally efficient 
manner. 

3. SOLUTIONS TO THE OPTIMAL STABILIZATION 
PROBLEM 
First, it is important to examine the constraints on the OSP to 

determine what type of solution is sought. Consider the case where 
X'aFXaf ,  S*E Xs(A,xO,Xaf) is a solution to the OSP, and S*=S'S" 

where s" is a cycle in Xaf. Ultimately, the state of P will cycle on s" at 
a cost of J(s") per cycle; hence it is of primary importance o minimize 
J(s"). The minimization of J(s's") or even J(s') is of secondary 
importance (this treatment of the definition of optimality is similar to 
that in [6] where the authors consider systems with an infinite time 
horizon). It is for these reasons that we choose to split the OSP into 
two problems: (i) finding an optimal cost cycle of all those in Xaf, and 
(ii) finding a optimal cost path from xo to that cycle. We use the 
following approach: 

(1) Pick some optimal cost cycle SE in Xaf. 

(3) Assume that A is (xO,X',f) stabilizable and use the adapted A* 
algorithm in [14] to find an optimal path from xo to Xaf and 
name it si. 

and s i  to obtain a solution to the OSP. 

(2) Let x p ( x : x €  SE,. 

(4) Combine 
Note also that some desired cycle may be known for some DES 

applications then Steps (1) and (2) can be avoided. In this paper we 
briefly describe two solutions to the OSP which both rely on the 
results in [14]. 

: First, notice that several kth shortest 
paths methods [3] can be adapted to find the cycle SE in Xaf. For 
instance, Dantzig's algorithm will not escape Xaf since it is invariant 
and hence will result in a shortest cycle s: in Xaf (one that minimizes 
the sum of the costs along the arcs in the cycle traversing it just once). 

Dantzig's algorithm has complexity O(lX&) where X& is normally 
relatively small. From the results in [14] Step (3) will have quadratic 
complexity in the worst case so via kth shortest path methods the 
overall complexity is polynomial. It is for this reason that using kth 
shortest path methods in conjunction with the A* approach developed 
in [ 141 provides a practical solution procedure for the OSP. 

Next we show how a minimum ratio 
method [3] can be used in conjunction with A* to find a solution to an 
OSP. Assume that for each XE Xaf there exists s X X ' ~  X(A,x,(x')) for 
all X'E Xaf .  Let m=l((x,x'):x'=6(q,x) and XE Xaf)l .  Use Karp's 
algorithm (complexity O(mlXa$)) [3,5] to find the minimum average 
cost cycle in Xaf and name it SE. (Karp's algorithm is also used in [2] 
to compute eigenvalues and critical circuits.) Let Xf=( XXE SE) and 
use A* to find an optimal state trajectory to Xaf .  The result is a 
solution to an OSP with polynomial complexity. 

Note that the meaning of "optimal" with our two solution 
approaches is different (i.e., Xar  may be different depending on 
which approach is used). For both cases there are many application 
areas. For instance, for the kth shortest path method the resulting 
could represent a processing cycle in a manufacturing system that 
takes a minimum number of steps while s t  could represent the steps 
that must be taken to reach the processing cycle so that resource 
consumption is minimized. For the minimum ratio method the 
resulting s,* could represent the processing cycle that is completed in 
minimum average time and st  could represent the steps taken to reach 
SE in a minimum amount of time. 
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