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Abstract

We introduce a class of not necessarily finite state "logical” discrete event system (DES) models which
can also model the costs for events to occur. Let P and A denote two such models. Suppose that P
characterizes the valid behavior of a dynamical system and A represents certain design objectives which
specify the allowable DES behavior which is contained in the valid behavior. An optimal control problem
for P and A is how to choose the sequence of inputs to P so that the DES behavior lies in A (i.e., it is
allowable) and so that a performance index defined in terms of the costs of the events is minimized. Our
solution to this type of optimal control problem utilizes results from the theory of heuristic search to help
overcome problems with computational complexity often encountered with logical DES models. To ensure
a reduction in computational complexity over conventional techniques one must be able to specify an
admissible and monotone "heuristic function" which is used to focus the search for an optimal solution.
The problem one encounters though is that it is, in general, quite difficult to find such heuristic functions
for many applications. This is resolved here, and in fact we extend the theory of heuristic search by
showing that a metric space approach can be used to specify admissible and monotone heuristic functions in
a systematic way for several optimal control problems for a wide variety of DES applications. The results
are applied to an automated factory, an optimal parts distribution problem in flexible manufacturing
systems, and artificial intelligence planning problems.

Index Terms: Discrete Event Systems, Optimal Control, Search Algorithms

1. INTRODUCTION

We introduce a class of not necessarily finite state (or input) "logical” discrete event
system (DES) models which can also model the costs for events to occur. Let P and A
denote two such models. Suppose that P characterizes the valid behavior of a dynamical
system, some of which may exhibit undesirable properties. Furthermore, suppose that A
represents certain design objectives which specify the allowable DES behavior. The
allowable DES behavior A is specified so that it is contained in the valid DES behavior P
and it normally characterizes the acceptable DES behavior, i.e., the DES behavior with
desirable properties. As it is explained in Section 2, this use of allowable DES behavior
contained in valid DES behavior is similar to the minimal acceptable and legal languages for
a plant used for the "supervisor synthesis problems” in the language-theoretic Ramadge-
Wonham framework [36]. An optimal control problem for P and A is how to choose the
sequence of inputs to P so that: (i) the DES behavior lies in A (i.e., it is allowable) and (ii)
we minimize a performance index defined in terms of the costs for events to occur. In this
paper we focus on the formulation of several such optimal control problems and on
developing computationally efficient solutions to them. Qur results establish the first steps
towards developing the foundations for an optimal control theory for logical DES.
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As it is explained in Section 3, problems with computational complexity for logical
DES models prohibit the use of a conventional dynamic programming solution to the above
optimal control problem. The standard shortest path algorithms (e.g., Dijkstra’s, Moore's,
Ford's, and Bellman's [6]) cannot be used to solve the above optimal control problem due
to the fact that we search from a state to a set of states on an implicit graph that is possibly
infinite. It is for these reasons that we utilize a branch and bound algorithm called the "A*
algorithm" [9] that can use certain information about the plant (to be defined precisely in
Section 3) to focus the search for a solution to the optimal control problem and hence
reduce computational complexity. Note that it is possible to solve the optimal control
problem via a generalized version of Dijkstra's algorithm but this generalized Dijkstra's
algorithm is a special case of A* [6]. Moreover, in Proposition 2 it is shown that in
solving the optimal control problem, if A* operates with an admissible and monotone
heuristic function it will always visit fewer states than the generalized Dijkstra's algorithm.
Also, via Remarks 1-3 we introduce several other optimal and near-optimal control
problems that can be solved efficiently via our approach provided one can specify a
monotone heuristic function. The main conclusions from Section 3 are that A* can solve
the optimal control problems considered in this paper and it can solve them efficiently
provided that an admissible and monotone heuristic function can be specified.

The problem one encounters though is that it is, in general, quite difficult to find an
admissible and monotone heuristic function for many applications. In Section 4 we extend
the theory of heuristic search by showing that a metric space approach can be used to
specify admissible and monotone heuristic functions in a systematic way for various
optimal control problems for a wide variety of DES so that they can be solved efficiently.
Specifically, the main results of the paper are as follows: Theorem 1 provides a metric
space approach to specifying admissible and monotone heuristic functions. Theorem 2
shows that it is not necessary to use a metric to specify the heuristic function. In Theorem
3 and Remark 4 we show how to automatically specify admissible and monotone heuristic
functions for a wide class of DES that can be modelled via a set of states X such that
XCIR? (e.g. Extended Petri nets [35], Vector DES [18], and other Petri net models
[16,12,38]). In cases where it is known that the costs of the events can be specified with a
metric and all the states are isolated points we can expect computational complexity to be
further reduced. We introduce a new class of "good" heuristic functions and show in
Theorem 4 that these are admissible and monotone. Theorem 6 quantifies how good
heuristic functions can be expected to focus the search for solutions to optimal control

problems. The theoretical results in this paper are based upon and an extension of those in
[26-28,30].
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In Section 5 we apply the method in Sections 3 and results in Section 4 to three DES
applications: (i) an automated factory, (ii) an optimal part distribution problem in flexible
manufacturing systems, and (iii) artificial intelligence (AI) planning problems. In each case
we show how the results of Section 4 can be used to specify admissible and monotone
heuristic functions; then we use these in A" to solve optimal control problems for each of
the three applications. The results clearly illustrate that by using our approach to specify
the heuristic functions for A* significant computational savings can be obtained over the
generalized Dijkstra's algorithm for solving optimal control problems. Section 6 contains
the concluding remarks.

2. AN OPTIMAL CONTROL PROBLEM FOR
DISCRETE EVENT SYSTEMS

We consider DES that can be accurately modelled with
P=(X,Q,,%,x0,X) (1)
where
(i) X s the possibly infinite set of plant states,
(ii) Qis the possibly infinite set of plant inputs,
(ili) 3:QxX—X is the plant state transition function (a partial function),
(iv) x:XxX-—R¥ is the event cost function (a partial function),
(v) xpis the initial plant state, and
(vi) XypcXis the non-empty finite set of final states.
R* denotes the set of positive reals and R,=IR*U{0}. The model P is limited to
representing DES that are deterministic in the sense that for a given input there is exactly
one possible next state. A state transition can occur in a non-deterministic fashion relative
to time so asynchronous DES can be modelled. The set
E(P)={(x,x")e XxX:x'=8(q,x)} U ((x4,%0) } 2
denotes the (possibly infinite) set of events for the DES P (xq is a dummy state, and (x4,x0)
a dummy event added for convenience). The event cost function ¥(x,x") is defined for all
(x,x")e E(P); it specifies the "cost" for each event (state transition) to occur and it is
required that there exist a 8'>0 such that y(x,x")28' for all (x,x")e E(P). (For convenience
however we define %(x4,x0)=0.) Finally, we require that for each xe X, [{8(q,x):qe Q}! is
finite, i.e., that the graph of P is locally finite.

The addition of the cost for an event to occur is a new addition to the standard
automaton model P for DES. It allows for the development of a theory on the optimal
control of logical DES and the analysis of an important class of DES applications.
Intuitively, we think of "changes", i.e. state transitions that occur in the system, as having
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an associated cost. Certain events or sequences of events may then be more desirable since
they will result in a lower overall cost to be defined precisely below.

The mathematical notation in this paper is as follows: Let Z be an arbitrary set. Z*
denotes the set of all finite strings over Z including the empty string @. For any s,te Z*
such that s=zz'---z" and t=yy"..y", st denotes the concatenation of the strings s and t, and
te s is used to indicate that t is a substring of s, i.e., s=zz'---t---z". For brevity, the
notation sz~ is used to denote a string se Z* such that s=zz"--z" begins with the element
ze Z and ends with z"eZ. Let zy be a distinguished member of the set Z. The notation s,
is used to denote a string se Z* such that s=zgz'---z begins with zg and ends with ze Z.
Furthermore, sz» denotes a string se Z* such that s=zz'z"-- begins with ze Z and the end
element is not specified. The string s, denotes the string se Z* such that s=zgz'-zz"-,
i.e., a string that begins at zg, passes through z, and whose end element is not specified. A
(finite directed) cycle is a string se Z* such that s=zz'---z"z has the same first and last
element ze Z. A string se Z" is cyclic if it contains a cycle (for tze Z*, t ;€ 5), and acyclic
if it does not. Let Isl for se Z* denote the length of string se Z, i.e., the number of elements
of Z concatenated to obtain s.

A string se X" is called a state trajectory or state path of P if for all successive states
xx'e s, x'=0(q,x) for some qe Q. Let

Es(P)<EP®) 3)
denote the set of all events needed to define a particular state path se X* that can be
generated by P. For some state path s=xx'x"x""--, E¢(P) is found by simply forming the
pairs (x,x), (x',x"), (x".x"),~. An input sequence ue Q" that produces a state trajectory
se X" is constructed by concatenating qe Q such that x'=5(q,x) for all xx'es. Let X,<X
then

%L (Px, Xz)cX* )]
denotes the set of all finite state trajectories s=xx'--x" of P beginning with xe X and
ending with x"e X,;. Then, for instance, % (P,xo,Xf) denotes the set of all finite length
state trajectories for P that begin with the initial state xg and end with a final state xe X¢ and
%L (P,x,X) denotes the set of all valid state trajectories for P that begin with xe X. A DES P
is said to be (x,X,)-reachable if there exists a sequence of inputs ue Q* that produces an
state trajectory s %(P,x,X;).

Intuitively, the valid behavior that the DES can exhibit which is modelled by P can be
characterized by the set of all its valid state trajectories C(P,x,X) where xe X, along with
its input sequences (it is specified with the graph of P). Let P=(X,Q,8,x.x0,X¢) specify
the valid behavior of the plant and

A=(X3,Qa,92:Xa:Xa0,Xaf) &)
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be another DES model which we think of as specifying the "allowable” behavior for the
plant P. Allowable plant behavior must also be valid plant behavior. Formally, we say that
the allowable plant behavior described by A is contained in P, denoted with A[P), if the
following conditions on A are met:

() XacX, QacQ,

(i) 85:Qa*X3—X,, 84(q,x)=08(q,x) if 8(q,x)e X5 and J,(q,X) is undefined otherwise

(iii) xa:Xa%Xa—R? is a restriction of 1:X*xX—R*,

(iv) Xa0=x0, XarCXf.
Also, let EA)CE(P) denote the set of allowable events defined as in (2), (5 is defined for
all (x,x")e E(A), and E4(A) is defined as in (3) above. In a graph-theoretic sense, A is a
partial subgraph of P. The model A, specified by the designer, represents the "allowable”
DES plant behavior which is contained in the valid DES behavior described by the given P.
It may be that entering some state, using some input, or going through some sequence of
events is undesirable. Such design objectives relating to what is "permissible” or
"desirable" plant behavior are captured with A. This formulation is similar to that used for
the "supervisor synthesis problems" in the language-theoretic Ramadge-Wonham
framework [36]. Ramadge and Wonham introduced a minimal acceptable language and
legal language and study the synthesis of supervisors so that the resulting language
controlled by the supervisor in the plant lies between the acceptable and legal languages.
Their minimal acceptable and legal languages specify what we call the allowable behavior A
which is contained in P,

To specify optimal control problems let the performance index be

I X3-R, ©)
where the cost of a state trajectory s is defined by
M) = 2 x(x,x") (7)
(x.x)eEfA)

for all xe X, and se %.(A,x,X,). By definition, J(s)=0 if s=x where xe X;. Let A describe
the allowable behavior for a plant P such that A[P] then we have:

Optimal Control Problem (OCP): Assume that A is (xo,Xaf)-reachable. Find a sequence of
inputs ue Q3 that drives the system A along an optimal state trajectory s”, ie.,
s*e % (A,x0,Xap) such that J(s*)=inf{J(s):se LA x0.Xap)}-

Since we require that ue Q} and se X3, the solutions to the OCP will achieve not only
optimal but also allowable DES behavior. There may, in general, be more than one optimal
state trajectory, i.e., the solution to the OCP is not necessarily unique. The set of optimal
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state trajectories for A, beginning at state xe X3, and ending at state x'e X, where X;CX,,
is denoted by

BHAX,X)CT(A,x,X,). ®)
In this paper we are concerned with finding only one optimal state trajectory for the OCP
and finding it in a computationally efficient manner. We shall also show how other optimal
and near-optimal control problems can also be studied in our framework.

3. SOLUTIONS TO OPTIMAL CONTROL PROBLEMS
YIA HEURISTIC SEARCH

The approach here is to use a search algorithm to successively generate candidate state
trajectories until an optimal one is found. A brute-force approach to solving this problem
may produce an algorithm whose computational complexity would prohibit solving all but
the simplest of optimal control problems. Here we use an approach which seeks to
minimize the number of state trajectories considered and hence produces a solution in a
computationally efficient manner for a wide variety of DES.

A conventional dynamic programming solution could be used for the OCP but due to
the problem of state space explosion often found using logical DES models such methods
can result in an inefficient algorithm with large memory requirements [1,40]. Often, a
branch and bound technique is chosen in such situations to produce either optimal or near-
optimal solutions (See, for instance, {6,15,17,22]). This is the approach taken here. We
use a particular class of branch and bound algorithms called "heuristic search" algorithms
[13,23] which utilize the "principle of optimality" of dynamic programming and the
advantages of branch and bound algorithms that allow certain candidate solutions (state
trajectories) to be eliminated from consideration by using information from the plant. The
particular heuristic search algorithm used here is called the "A™ algorithm" and it was
introduced in [9,10,4]. The formal properties of A* are given in [24,25,34] and are briefly
summarized below to provide the necessary background for this paper.

Note that: (i) IXl (and 1Xyl) can be infinite, (ii) the graph of P (and A) is defined
implicitly (via P and A) rather than explicitly, and (iii) we search for the shortest state path
from one state to a get of states. Hence, Dijkstra’s algorithm [6] cannot, in general, be
used to solve the OCP. It is for similar reasons that Moore's, Ford's, and Bellman's
algorithms {6] cannot be used to solve the OCP. Dijkstra's algorithm can be generalized so
that it can also operate even when (i)-(iii) hold; this "generalized Dijkstra's algorithm" is
actually a special case of the A* [6] which will be used here. In fact, below we will show
that the worst case computational complexity A* is always less than or equal to that of the
generalized Dijkstra's algorithm and that for a wide class of DES we can significantly
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reduce the amount of computations taken to solve the OCP compared with the generalized
Dijkstra’s algorithm.

Theory of the A* Algorithm

Heuristic search techniques have been applied to problems where computational
complexity of search problems is either very high or intractable. The A* algorithm is one
of the most widely used heuristic search algorithms. It utilizes information about how
promising it is that particular state paths are on an optimal state trajectory to reduce the
computational complexity. To do this, J(s*) is estimated by some easily computable
evaluation function given by

X3 >R, €]
which is defined for all se X3 such that se %(A,x,X,) where xe X, (often "F(x)" is used
[34] but we use the mathematically correct notation “F(sx)"). If s*e L *(A,x0,Xa) and
s*=s<x> then J(s*)=J(s%)+J(sxx') where J(s%)=min{J(sx):sxe L (A,xg,{x))} and
J(sxx)=min{J(sxx): sxx'€ L(A,x,Xap)}. The evaluation function f is obtained by
approximating both J(sx) and J(sxx) with appropriately defined functions. The value of
J(s) will be estimated using

gXi—R, (10)
where é(sx)=J (sx) for all sxye L(A,x0,Xa) ("é(x)" is often used in the literature). Note that
é(sx)=0 if sx=xg the initial state of A. To estimate J(sxx") the function

h:X,—»R, 11
is used with h(x)=0 if xe X,¢. The function h is called the "heuristic function” since it
provides the facility for supplying the A* algorithm with special information about the
particular search problem under consideration to focus the search of A*. The evaluation
function is chosen to be

A f(s0=g(sx)+h(x) (12)
where xe X;. The function f(s,) estimates the cost of a state path from xg to x'e Xpf that
goes through the state x.

The A™ algorithm proceeds by generating candidate state trajectories which are
characterized with two sets CCE(A) and OcE(A). The operation of finding the set
E(x)={x'e Xp:x'=8,(q,x)} is called expanding the state xe X,. For Z and Z' arbitrary sets
let ZZ' denote the replacement of Z by Z'. The A* algorithm which produces an optimal
state trajectory s*e %*(A,xo,Xaf) assuming that A, such that A[P], is (xo,Xaf)-reachable is
given by:
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The A* Algorithm:
(1) Let C={} and O={(x4.x0)}-
(2) If 101>0, then go to Step 3. If I0I=0, then exit with no solution.
(3) Choose (x,x")e O so that f(sxx') is a minimum (resolve ties arbitrarily).
Let O0O-{(x,x)}and CCU{(x,x")]}.
(4) If x'e X, then exit with sye %6¥(A,x0,Xaf), an optimal state trajectory.
(5) For each x"e &(x'):
(@) If for all xe X3, (X,x")& CUO then let O«—OU{(x',x")}.
(it) If there exists k€ X such that (X,x")e O and f(sx'x")&'(six"
then let O«0O-{(X,x")} and O«—0QU{(x',x")}.
(iii) If there exists X X, such that (x,x")e C and ?(sx-x")<i"(six")
then let Ce~C-{(x,x")} and O<0QU{(x',x"}.
(6) Go to step (2).

The contents of C and O change at different stages of the algorithm but it is always the
case that there does not exist (x1,x2)e CUO and (x3,x%)e CUO such that x2=x4 and x1#x3,
Let the set of state trajectories of A, investigated by A*, be denoted by %(A,C,0). Each
state path sxe % (A,C,0) begins with xg, the initial state, and has an end state x'e X, such
that (-,x")e CUO. For s,s'e X}, let s¢—ss' denote the operation of replacing s by ss'. To
find sy'e L (A,C,0) from C and O choose (x,x')e CUO and let s=xx’. Repeat the
following steps until x4 is encountered: (a) Find (x!,x2)e CUQ with x2=x where s=x--,
(b) Let s<—x!s, and go to (a). The A* algorithm above is nearly the same as that originally
given in [9] except for clarity the "pointers" (events) are included explicitly in the algorithm
via O and C.

A* is said to be complete since it terminates with a solution. A heuristic function fl(x)
is said to be admissible if 0<h(x)<I(sk) for all xe X, such that sh-e 0*(A,x,Xa). Let
A*(ﬁ(x)) denote an A* algorithm which uses fl(x) as its heuristic function. If ﬁ(x) is
admissible then A*(ﬁ(x)) is said to be admissible since it is guaranteed to find an optimal
state trajectory when one exists, i.e., when A is (x0,Xaf)-reachable. A heuristic f12 is said
to be more informed than by if both are admissible and hp(x)>h1(x) for all xe X5-Xar. If
heuristic ﬁz is more informed than h; then A*(hy) is said to be more informed than A*(hy).
An algorithm A*(h)) is said to dominate A*(hy) if every state expanded by A*(hy) is also
expanded by A*(h2). If A*(hy) is more informed than A*(h1), then A*(hy) dominates
A*(ﬁl). For all states xe X, expanded by A*, f (sx)<I(s*) for sye L(A,C,0) and
s*e %*(A,x0,Xap). Every state xe X, such that (-,x)e O and f(s,)<I(s*) for sxe L(A,C,0)
and s*e C*(A,xg,Xap) will be expanded before termination by A*.
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A heuristic function h(x) is said to be monotone if ﬁ(x)Sx(x,x')+ﬁ(x’) for all
(x,x")e E(A). A heuristic function h(x) is said to be consistent (equivalent to being
monotone) if A(x)<I(skx)+A(x') for all (x,x")e E(A) where shye L*(Axx). If h(x) is a
monotone heuristic function then: (i) A*(h(x)) finds optimal paths to all expanded states,
ie., g(s)=J(s?) for all xe X, with (-x)e C, sxe T(A,C,0), and ske T*(A,xq,x), (i) The
f(sx) values for the sequence of states expanded by A*(ﬁ(x)) are non-decreasing, and (iii)
The necessary condition for expanding state x is h(x)<I(s*)-J(s}) while the sufficient
condition is A(x)<J(s*)-J(s¥) for ste T*(A,xg,x) and s*e L*(A,x0,Xaf). An algorithm
A*(hy) is said to largely dominate A*(hy) if every state expanded by A*(hy) is also
expanded by A*(ﬁl), except perhaps some states xe X, for which ﬁl(x)=ﬁ2(x)=J(s*)-
J(s%)=J(s%>). If ha(x)>h(x) for all xe X, and i (x) and fip(x) are monotone, then A*(hy)
largely dominates A*(h;). The real utility of knowing that fi(x) is monotone lies in the fact
that states are expanded at most once. This implies that the A* algorithm can be simplified
by removing Step 5, part (iii) since events (pointers) will never be taken from C and placed
in O. Finally, note that if IXI is finite we can allow y%(x,x")=0 for any (x,x")e E(A) and all
of the theory listed above for the A* algorithm is still valid. All of the above properties
were proven in the DES-theoretic framework established here but the proofs are omitted in
the interest of space and the reader is referred to [34] for the main ideas.

Efficient Solutions to Optimal Control Problems for DES

In this Section we show that our adapted A* algorithm produces efficient solutions to
the OCP and other optimal control problems. The following Proposition follows
immediately from the above discussion.

Proposition 1: If h(x) is admissible then A*(h(x)) provides a solution to the OCP.

For a worst case analysis of the complexity of A* used to solve the OCP in [20] the
authors assumes as a basic operation the expansion of a state and that f(sy) is easy to
compute. Let Xo={xe X:f(s,)<I(s*), sx€ %(A,C,0), s*e L*(A,x0,Xar)}. No more than
IXel states, where IXI<IXI, will be expanded at termination. If i(x) is only admissible (and
not monotone) then it is possible that A* expands O(2F) (where r=IXel) states in the worst
case since for each state expanded every other state that is expanded by termination could
also be expanded. If h(x) is known to be monotone then each state is only expanded once
so A* has complexity O(Xl) in the worst case. In general, if it is assumed that visiting a
state is the basic operation then if h(x) is monotone, A* runs in O(IX,l2) steps in the worst
case. (We shall use this latter characterization of computational complexity to compare A™
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to other conventional algorithms.) It is also important to note that the computational
complexity of A* is optimized relative to a certain class of algorithms that are "equally
informed" about the plant and return an optimal solution [2]. In fact, if fi(x) for A* is
monotone, then A* uses the most effective scheme of any admissible algorithm for utilizing
the heuristic information provided by h(x) [2]. The following Proposition follows
immediately from the above discussions.

Proposition 2: If fi(x) is monotone and IXI is finite then the complexity of A*(h(x)) is
O(IXel2) and the complexity of the generalized Dijkstra's algorithm is O(IXI2) where
IXel<IXI,

Proposition 2 indicates that: (i) A* should always be chosen over the generalized
Dijkstra's algorithm to solve the shortest state to set problem - provided that a monotone
fi(x) can be found, and (ii) if a monotone fi(x) can be found then IXI-iXll or the size of fi(x)
for all xe X,, quantifies the computational savings of A* over the generalized Dijkstra's
algorithm. Roughly speaking, the larger that i(x) can be chosen (still maintaining
monotonicity) the fewer states A* will have to expand to find an optimal trajectory. Results
have in fact shown that for a wide class of graphs, if fi(x) is monotone then A* far
outperforms the generalized Dijkstra's algorithm. For instance, in the case where h(x) is
monotone it has been shown that for a wide class of randomly generated "Euclidean
graphs" A* operates with an average complexity of O(IXI) [37]. Similar results on the
reduction of search complexity obtained with A* over the generalized Dijkstra's algorithm
are provided in [5]. The following three remarks show it is possible to efficiently solve
other optimal control problems via heuristic search.

Remark 1: In [30] the authors showed that a minimum-inputievent cost control problem
(costs for the inputs are allowed) and a minimum-time control problem (synchronicity was
assumed) could be solved efficiently via the above techniques provided a monotone h(x)
can be specified.

Remark 2: Assume that there exists some special cycle in X, (€.g., minimum average cost
cycle, minimum cost cycle) and name it s;. Let Xar={x:xe sz} and use A* to find an
optimal state trajectory to Xjaf (if one exists). The result is a solution to an optimal
stabilization problem with polynomial complexity provided that we can specify h(x) so that
it is monotone [32].



K. M. Passino and P. J. Antsaklis, "Solutions to Optimal Control Problems for Discrete Event Systems,”

Control Systems Technical Report #70, Dept. of Electrical Engineering, Univ. of Notre Dame, July 1990. 1

Remark 3: Let A describe the allowable behavior for & plant P such that A[P] and assume
that A is (x(,Xaf)-reachable. Find a sequence of inputs ue Q3 that drives the system A

along a near-optimal (&-optimal) state trajectory s, i.e., s€ &L (A,x0,Xaf) such that
J(s)<(1+€)J(s*) where J(s*)=inf(J(s):s€ T(A,x0,Xa)} and £20. A solution to this near-
optimal control problem is provided in [29] where if £ is very small and h(x) is e-monotone
(h(x)<(1+e)y(x,x")+h(x") for all (x,x")e E(A)) the complexity of the algorithm may be
satisfactory for special problems. However, the complexity of the algorithm used to solve
this problem was exponential in the worst case.

4. THE HEURISTIC FUNCTION

It is clear that it is very important to be able to specify an h(x) that is monotone;
otherwise the complexity of A* can become exponential in the worst case for finding
solutions to the above optimal control problems. Unfortunately it is not easy to specify
monotone heuristic functions for a wide class of applications; hence the use of A* has been
somewhat limited to special situations. This problem is resolved here by showing that a
metric space approach provides a method to specify monotone (and hence admissible)
heuristic functions for a very wide class of DES applications.

There has been extensive work on the problem of how to automatically generate
heuristics for an arbitrary problem. In [3,7,8,33] the authors introduced respectively the
related "problem similarity”, "auxiliary problem", and "relaxed model" approaches to the
generation of heuristics. The main deficiencies of these approaches is that they provided no
way to systematically produce similar and auxiliary problems or relaxed models.
Furthermore, in [39] it was proven that the approach in [7] can be computationally
inefficient. Approaches similar to these have also been used in Operations Research
[17,11]. As an extension to Pearl's (and the others) work the authors in [14] suggest a
method for modelling a problem that will always lead to the derivation of a set of
"simplified" sub-problems from which admissible and monotone heuristics can be derived
algorithmically for the original problem. Their algorithm uses a problem decomposition
algorithm to obtain the sub-problems and then uses exhaustive search to find the minimal
cost optimal path in each sub-problem. From this, a heuristic which is admissible and
monotone is generated. The problem with this approach is the reliance on an exhaustive
search. While Irani and Yoo have found computationally efficient solutions to several
specific simple problems, the approach of decomposing the problem to generate heuristics
was not proven to be computationally efficient in general. Recently, it has been shown that
for a class of "Vector DES", a linear integer programming approach can be used to specify
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the heuristic function for A* [19]. Unfortunately, there do not currently exist
computationally efficient techniques to solve the linear integer programming problem.

Specifying The Heuristic Function: A Metric Space Approach

In our metric space approach to specifying the heuristic function there is no need to
perform a search or use a mechanical decomposition procedure to find the heuristic. In this
way we do not defeat the main purpose of using the A* algorithm - to reduce the
computational complexity of search. We will, however, require for some of the results
below that the DES is modelled with certain DES models which have a "numerical state
space”, i.e. that XcR". In this way we exploit the structure of the state space to obtain
efficient solutions to optimal control problems.

Let Z be an arbitrary non-empty set and let p:ZxZ— R where p has the following

properties: (i) p(x,y)20 for all x,ye Z and p(x,y)=0 iff x=y, (ii) p(x,y)=p(y.x) for all
x,yeZ, and (iii) p(x,y)<p(x,2)+p(z.y) for all x,y,ze Z (triangle inequality). The function
p is called a metric on Z and {Z;p} is a metric space. Let ze Z and define
d(z,Z)=inf{p(z,z'): Z€ Z}. The value of d(z,Z) is called the distance between point z and
set Z. Recall that if x,ye R", x=[x] x3 - xXplt, y=[y1 y2 - ynlt, and 1<p<eo, then
pp(x,y)=[231=llxi-yill’]”p, Poo(X,y)=max {|x1-y1LIx2-y2l, ... Jxp-ynl}, and pq (discrete
metric) where pg(x,y)=0 if x=y and p4(x,y)=1 if xy, are all valid metrics on R"[21]. We
shall frequently use these metrics in the following results and in Section 5.

The first theorem says that if the heuristic function is chosen to be the distance between
a point x and a set Xar as defined in a metric space and the metric satisfies a certain
constraint then it will be both admissible and monotone.

Theorem 1: For the DES P and A[P] if ﬁ(x)=inf{p(x,xf):xfe Xaf} and p is a metric on X,
with p(x,x)<y(x,x") for all (x,x")e E(A) then ﬁ(x) is admissible and monotone.

Proof: For admissibility let szx e % (A,X,X3f) where ke X, and let xx'esgx" be two
successive states on szx". From the triangle inequality, p(x,x")<p(x,x)+p(x',x"). Using
repeated applications of the triangle inequality along sz~ we know that if t=szx"

PRX") £ Y Pp(xX) (13)
(xx)eE(A)
and with the assumption that p(x,x" )<y (x,x") for all (x,x")eE(A)
2Ppxx) € X x(xx). (14)

(xx)e E(A) (xx)e E(A)
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Since this is true for any state path it is true for optimal ones also. Let six"€ %*(A,%,Xar)
(we need only consider cases where one exists). Then,

0<pEx) < Y x(&xX) = J(skx) (15)

{(x.x)eE(A)

where t=six". So, by the definition of fi(x) we have 0<h(X)<J(skx") for all ke X, and
S3xre L*(A,%,Xar) which guarantees the admissibility of ﬁ(x). For monotonicity let
six"€ L(A,X,Xaf) where e X, and let xx'e szx" be two successive states on szx". Notice
that for the sequence of states xe X, expanded, the state at which the inf is achieved in
ﬁ(x)=inf {p(x,xf):xge Xar} may change. Let xp denote the state at which the inf is achieved
for x and x; the one for x'. By the triangle inequality, p(x,%)<p (x,x")+p(x",X%p). But by
the definition of h(x) we know that p(x,xp)Sp(x,xp). It follows that p(x,xp)<
p{x,x")+p(x',xp). By the definition of ﬁ(x) we have ﬁ(x)Sp(x,x')+ﬁ(x') and since
p(x,x" )<y (x,x), ﬁ(x)Sx(x,x‘)+ﬁ(x') for all x,x'e X, such that xx'e s where
s€ L(A,x,X5f) which guarantees the monotonicity of h(x).m

Note that in the proof of Theorem 1 we could have just chosen to prove that the heuristic
function was monotone because this automatically implies that the admissibility condition is
true.

Remark 4: In [29] the authors use this same metric space approach to provide the first
results on the automatic specification of fi(x) for a near optimal control problem (first
results for automatic specification of "semi-admissible" heuristics [34]). The result is the
same as for Theorem 1 except it is required that p(x,x")<(1+&)x(x,x") for all (x,x")e E(A)
to get e-monotonicity and hence e-optimality (See Remark 3).

It is, however, not necessary to use the metric space notion of distance for the heuristic
function as Theorem 2 shows.

Theorem 2: Let 0:X3%xX,— 1R and suppose that 8(x,x")<y(x,x") for all (x,x")e E(A). For
the DES P and A[P] there exist heuristic functions h(x)=inf (8(x,x"):x'e Xaf} such that @ is
not a metric on X,, that are admissible and monotone.

Proof: Suppose that 8(x,x")=0 for all x,x'e X,. Then 6 is not a metric but when 0 is
used in the heuristic function we have h(x)=0 for all xe X, which is clearly an admissible
and monotone heuristic function. Also, if h(x)<h'(x) for all xe X, where h'(x) satisfies
the conditions of Theorem 4, ﬁ(x) is admissible but not necessarily monotone. B
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Theorems 1 and 2 place the statements made in the theory of heuristic search about
“distance” between points, and between points and sets in a precise mathematical setting
and also clarify the relationship between monotonicity and the triangle inequality which has
only, in the past, been loosely referred to [9,34].

Theorem 1 can make it easier to specify h(x) because for many problems the conditions
of Theorem 1 are easier to test than the admissibility and monotonicity conditions.
Theorem 1 does not however make the task of specifying ﬁ(x) entirely simple; h(x) still
must be chosen so that the constraint p(x,x")<x(x,x') is met for all (x,x)e E(A) and one
must, in fact, be able to specify a metric p on X;. Theorem 3 and the following

discussions show several ways to overcome these difficulties.

Let p be any metric on X and
pa(xx)=pLEX) (16)
1+p(x,x")
where
B=inf{x(x,x"):(x,x)e E(A)). (17)

Let pp be a bounded metric on X, for (x,x")e E(A), i.e., for all (x,x")e E(A) there exists
G>0 such that pp(x,x)<6. Let pc be a metric on X and assume that pe(x,x)=yx(x,x’) for
all (x,x")e E(A) for some v>0. Let pp be a metric on X, such that pB(x,x‘)--B if x#x' and
pp(x,x")=0 if x=x' for all (x,x")e E(A).

Theorem 3: For the DES P and A[P] the heuristic functions:
(1) hi=inf(paxxpxee Xa)  (2) ho(x)=inf{(B/o)pp(x,xp):xre Xaf}
(3) haCo=inf{ (1A)pc(xxp):xpe Xar}  (4) ha(x)=inf (pp(x,xp):xpe Xaf)

are all admissible and monotone.

Proof: Due to the fact that there exists §'>0 such that x(x,x")28' for all (x,x")e E(A),
B>0; hence it is easy to show that p,, (B/0)pb. (1/¥)Pc, and pg are all metrics on Xa. For
(1), pa(x,x")<y(x,x") for all (x,x")e E(A) since pa(x,x")<P and B<y(x,x") for all
(x,x)eE(A). For (2), since 1<(1/B)yx(x,x") and (1/0)pp(x,x")<1 for all (x,x")e E(A) we
know that (B/o)pp(x,x")<y(x,x) for all (x,x")e E(A). Clearly for (3),
(1/pe(x,x)<x (x,x) and for (4) pp(x,x")<P for all (x,x)e E(A). With this, the result
follows immediately from Theorem 1. B

To choose hy(x) determine B and specify any metric p on Xj; using (16) and Theorem
3, ﬁl(x) will be admissible and monotone. To choose ﬁz(x) pick a bounded metric pp on
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X, and determine o; using Theorem 3, fiy(x) will be admissible and monotone. For h3(x) it
must be the case that the costs are in a special form then ﬁ3(x) will be admissible and
monotone. For hy(x), pp can be specified for any Xj; hence this choice will always be
admissible and monotone (See Theorem 5 below also).

Notice that for each of the techniques in order to specify h(x) it is necessary to be able
to specify a metric on X,. In general, this may not be an easy task but as the next Remark
and the following comments explain there are a wide variety of DES for which it is easy to
specify a metric on Xj.

Remark 5: There is a wide class of DES whose state space can be modelled in terms of
XcR" e.g., X comprised of n-tuples of natural numbers or integers. As evidence of this
fact we turn to the many applications of the theory of Petri nets [35] (e.g. General or
Extended Petri nets), the use of such models in DES-theoretic research [16,12,38], and
other related "Vector DES models" [18].

Theorem 3 says that there is no difficulty in specifying h(x) for all DES that can be
modelled with P in (1) provided a valid metric p on X, can be specified. Remark 4
indicates that there exists many DES that can be modelled as having a state space XCR™;
hence there is no trouble specifying an admissible and monotone heuristic for the wide
class of DES with XCIR" because there exist many metrics on R" (e.g., pp, pd, and p..)
and any metric on R" is also a metric on X, where XcR". Note that for particular DES
applications many results similar to Theorem 3 exist since for pp and p one can weight the
various terms in the sum and max respectively; hence one has flexibility in specifying the
heuristic function when this metric space approach is used.

Good Heuristic Functions

Theorems 1 and 3 provide an automatic procedure to specify h(x) for a wide class of
DES; the use of such ﬁ(x) will allow A* to produce solutions to optimal control problems
in a computationally efficient manner. Next we seek to show how to make ﬁ(x) large so
that even more computational savings can be obtained, i.e. fewer states will be expanded in
finding the optimal state trajectory.

Consider the DES model P'=(X,Q,8,x',x0,X¢) defined as in (1) except 1 X*X—- R,
where ' is a metric on X, i.e. the costs for the events are characterized by a metric. Also,
in terms of the metric space {X,y'} every xe X is assumed to be an isolated point. Notice
that, in general, we are requiring that ' be defined on some (x,x") such that (x,x")e E(A).
The allowable behavior A'=(X;,Q4,04,%'a,Xa0,.Xaf) such that A'[P'] as in (5). Wecall a
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heuristic function good if h(x)=inf{y'(x,x):xs€ Xaf} for all xe X,. The motivation for our
definition of this new class of heuristic functions lies in the desire to choose ﬁ(x) as large as
possible to get efficient search.

Theorem 4: For the DES P' and A'[P] if h(x) is good then f(x) is admissible and
monotone.

Proof: Since every xe X is an isolated point there exists a §'>0 such that y'(x,y)=d'
for every x,ye X such that x#y. Since A* prunes cycles it will not repeatedly investigate
any single (x,x")e E(A") with x=x' and %'(x,x")=0; hence if ﬁ(x) is good then A*(ﬁ(x)) is
complete. By Theorem 1, h(x) is admissible and monotone. ®

This indicates that if we have a plant P' without costs for the events or a plant where it is
not known how to specify the costs then Theorem 4 offers a method to assign the costs so
that an efficient search for a solution to several optimal control problems is possible. In
fact, for any P such that all the costs are equal (or where this can be assumed) the following
result provides an admissible and monotone heuristic function.

Theorem 5: If x'(x,x")=ypa(x,x") for all (x,x")e E(A) for some y>0 then hx)=
inf{y'(x,xg):xse X4¢) is an admissible and monotone heuristic function for finding the
solution to the OCP in the case where the costs are all equal to some Y where Y>0.

Proof: Even though y'(x,x)=0 when x=x" such self-loops will be pruned by A* so it
does not matter that ' doesn't precisely model the fact that all the costs are equal. The
(x,x")e E(A) such that y(x,x")#y cannot be on any optimal state trajectory. The result
follows directly from Theorem 4 since ' is a metric. B

Theorem 35 is quite useful in practice since often a solution is sought which will
minimize the length of the input sequence. Theorems 4 and 5 illustrate how information
from the plant (the knowledge that the costs were modelled with a metric) is used to focus
A"'s search for an optimal solution. This is further quantified by showing that if a good
heuristic function h(x) is used we can expect A*(h(x)) to more narrowly focus its search.

Theorem 6: For the DES P' and A'[P] if ﬁ(x)=inf{x'(x,xf):xfe Xt} for all xe X, then
lh(x)-h(x")l<y'(x,x") for all (x,x")e E(A").
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Proof: From monotonicity ﬁ(x)Sx'(x,x')+ﬁ(x‘) for all (x,x")e E(A"). Also, with a
simple rearrangement, -x’(x',x)sﬁ(x)-ﬁ(x')Sx'(x,x'). Since %' is a metric, X'(x,x")=
x'(x',x) for all x,x'e X, so we have [h(x)-h(x")I<y'(x,x") for all (x,x)e E(A").®

We see that if the heuristic function is monotone then the estimate of the remaining cost
at the next state cannot be too much smaller than the estimate of the remaining cost at the
current state. This tends to guarantee that we have good heuristic information (large h(x))
so fewer states will be expanded. If %' is a metric which specifies the costs for the events
and is used to guide the search then it is also the case that the estimate of the remaining cost
at the next state cannot be too much larger than the estimate of the remaining cost at the
current state. This tends to guarantee that A* will not get side-tracked too much from
finding an optimal solution. |

Theorems 4-6 support the results in [37] where the authors show that if the costs can be
defined by a metric then A* has average complexity O(IXl) for a wide class of randomly
generated graphs and thus, on the average, far outperforms conventional algorithms in
solving the shortest path from state to set problem. We see that when the heuristic function
is based on a metric that is used to specify the costs of the events for the plant P' then
enough information from the plant is used so that we are guaranteed to get an admissible
and monotone heuristic function and hence optimal control problems can be solved
efficiently.

5. DISCRETE EVENT SYSTEM APPLICATIONS

In this Section we apply the method in Section 3 and results in Section 4 to three DES
applications: (i) an automated factory, (ii) an optimal part distribution problem in flexible
manufacturing systems, and (it) artificial intelligence (AI) planning problems. In each case
we specify the model P for the problem, the allowable behavior A, and state the particular
OCP. Then, using the results of Section 4 we specify admissible and monotone heuristic
functions so that A* can find solutions to the OCPs in a computationally efficient manner.
A" and the generalized Dijkstra's algorithm were implemented and ran to compare the
complexity of the two algorithms. For all cases in the three examples A* using a heuristic
function chosen via the results in Section 4 significantly outperformed the generalized
Dijkstra's algorithm.

Automated Factory Example
This first example is used to clarify (i) how the A* algorithm operates to find optimal
state trajectories, and (ii) how the results of Section 4 can be used to specify a wide variety
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of heuristics for a simple route-planning problem. Consider an automated factory where
there is a vehicle which is given the task of delivering parts to various locations in the
factory while minimizing the distance it travels on a grid. Some "master controller"
provides the vehicle with its task description which consists of:

(i) A set of positions of machines in the factory that need parts,

(ii) A map of the factory floor containing the locations of walls, pillars, etc.

The vehicle is to develop a plan of how to get from its starting position to the closest
machine to which it is to deliver parts without colliding with the walls, pillars, etc. This is
a standard route-planning problem which has been studied in many areas.

We begin by modelling the vehicle with the model P=(X,Q,3,%,%0,Xf) where,

(1) X=N2, xp=[x] x2]t and x41=[x"1 x'2]t are the current and next states,

(i) Q={qn,qs.9e-Qw }» (Qn-move north, qe-move south, ge-move east, gy-move west)
(iii) 8(qn,xk)=xk+[0 11%, 8(qs,xi)=xk-[0 114, 8(qe,xKk)=xk+[1 0]%, 8(qw.xx)=xk-[1 O],
(iv) x(xXkXk+1)=1 for all xk41=5(q.xK),

(v) xg=[0 0]t, and Xs=N2.

We suppose that the map (See Figure 1), which consists of the positions of walls
(shaded regions) and the machines which need parts, is generated by the master controller
and communicated to the vehicle. In terms of our formulation the map specifies the
allowable DES behavior and hence we characterize it with A such that A[P] as follows:
From Figure 1, let Xp<X be given by Xp={[0 3]¢, {1 31%, (1 11¢, [3 3]¢, [3 2]¢, [3 114,
[4 1]%, [5 134, [6 114 [62]% [631¢, (7 3]% (8314 [93]% [103], [8 0], [8 1],
[9 1], [10 1]}, and X,<X be given by Xo={xxe X:xj<0}. The sets Xy, and X, specify
the positions of the walls and pillars. With this and the positions of the two machines we
specify the allowable behavior as A=(X3,Qa,82,Xa,Xa0-Xaf) Where

(1) Xa=(X-Xp)-Xo, Qa=Q, and

(ii) Xa0=x0, and Xar={{4 21", [5 2]'}.

The functions 3, and ¥, can easily be obtained from these definitions. The solution to the
OCP for this problem will be a sequence of moves by the vehicle that will result in it
delivering parts to the nearest machine in the least number of moves (i.e., the minimum
distance on the grid). This example was first studied in [28].

Next we discuss how the A* algorithm constructs an optimal state trajectory from Xxg to
Xar. Clearly A is (xg,Xaf)-reachable so we know that A* will be able to find a solution. It
is easy to specify a heuristic function. We use pp with p=1 and
ﬁ](Xk)=min[p1(Xk,Xf)ZXfE Xar}; via Theorem 4 since p1(Xk,Xk+1)=%(Xk,Xk+1) for all
(Xx.xx+1)€ E(A), ﬁl(x) is good and hence admissible and monotone. The use of the "air
distance” pp with p=2, or p. would also result in good heuristic functions
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ﬁg(xﬂ:min{pg(xk,xf}:xfe Xaf} and ﬁn{xﬂumin{p.,(xk,xf}:xfe Xar} but for congested
factories where the robot stays on a grid of tracks hj(xk) is a better heuristic as it is shown
for our example in Figure 1. Next, we explain how the A* algorithm operates.

% . 4 3 = % % L] * N
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Figure 1. Automated Factory Floor

First consider hy(xj)=min p1(xXk,Xp):xpe Xar). Since hy(xy) is monotone, Step 5 (ii)
can be removed from A*. At the end of the first iteration of A* (at Step 6) O=(([0 0]t,
[0 11Y, ([0 0], [10]Y} and C=((xq, [00]Y)}. At the end of iteration 7, O={([2 2],
[2 319, ([2 01, [21]Y, ([2 01, [30]Y)) (assuming that for ties at Step 3 the order of
states expanded was [0 OJt, [1 07¢, [0 115, [0 2]¢, [1 2]4, [2 2]t [2 O]Y. For iteration 8, Step
3, the values of  for each of the three pointers in O are 8, 6, and 6 respectively. Assume
that we choose to expand [2 1]t At Step 5, £E([2 11H)=([2 2]') and there exists
([1 2],[2 2]Ye C; since f for ([2 1]%,[2 2]Y) is not less than f for ([1 2]4[2 2]t we see
that Step 5 (iii) will not be executed and hence at the end of iteration 8, O={([2 2],
[2 31Y, ([2 014, [30]Y). Next, A* expands [3 0], [4 O], [5 0]t, [2 3]¢ and [6 O]t
(Note that at iteration 11, hy(xi) measures machine 2 as closer than machine 1.) By the
end of iteration 13, A* will expand only states on the optimal path, so it expands [2 4],
[3 4], [4 4]4, and [4 3]t then it finds that [4 2]'e X4f so it terminates. The optimal
trajectory is found by tracing back through pointers in C.

With hy (xg), A* expanded 17 states in finding the optimal path which is: [0 O]t, [0 1]t
[0 214, [1 2]%, [2 2%, {2 3], [2 4], [3 4]¢, [4 4T, [4 3]%, [4 2]t. Clearly, another optimal
path would be for the vehicle to navigate south rather than north around the pillar at [1 1]%
When A* is used with ho(xy) the operation is similar but 18 states are expanded ([7 O]tis
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also expanded); hence hy(xy) is a better heuristic. Moreover, if the generalized Dijkstra's
algorithm is used many more states are expanded. For instance, (7 1]t, [7 2]%, [2 5]*, and
[0 4]t are expanded. In all, to solve the same OCP, the generalized Dijkstra’s algorithm
will expand at least 32 states before finding an optimal path. We see that A* using either
monotone ﬁl(xk) and ﬁz(xk) performs significantly better than the generalized Dijkstra's
algorithm even for this simple example.

Optimal Parts Distribution Problem in Flexible Manufacturing Systems

A Flexible Manufacturing System (FMS) that is composed of a set of identical
machines connected by a transportation system is described by a directed graph (M,T)
where M={1,2, ..., N} represents a set of machines numbered with ie M and TCMx*M is
the set of transportation tracks between the machines. We assume that (M, T) is strongly
connected, i.e., that for any ie M there exists a path from i to every other je M. This
ensures that no machine is isolated from any other machine in the FMS. Each machine has
a queue which holds parts that can be processed by any machine in the system (with proper
set-up). Let the number of parts in the queue of machine ie M be given by x;=0. Thereisa
robotic transporter that travels on the tracks represented by (i,j)e T and moves parts
between the queues of various machines. The robot can transfer parts from any ie M to
any other je M on any path between i and j (it is assumed that the robot knows the path to
take, if not A* could be used to find it). The robot can transfer no more than e N-{0)
parts at one time between two machines. It is assumed that the robot knows the initial
distribution of parts, the graph (M,T), and we wish to find the sequence of inputs to the
robot of the form "move o («<P) parts from machine i to machine j" that will achieve an
even distribution of parts in the FMS. In this way, we ensure that every machine in the
FMS is fully utilized. It is assumed that no new parts arrive from outside the FMS and that
no parts are processed by the machines while the redistribution takes place. Our example is
similar to the "load balancing problem” in Computer Science except that we require that a
minimum number of parts be moved to achieve an even distribution. Next, we specify the
model P in (1) of this FMS.

Let X=NN denote the set of states and xg=[x] X2 - xN]! and Xk4+1=[x'1 X3 - X'NI¢
denote the current and next state respectively. Let Q=[u%:oce N-{0}} be the set of inputs

where u% denotes the command to the robot to move o parts from machine i to machine j.
The state transition function is given by d(uff,xk)=[x1 x2 - xj-@ -+ Xj+a - xN]t, the
event cost function by ¥ (xk,Xk+1)=0, and xo=[x01 x02 - XoNJt. The set Xg characterizes
the state (or states) for which we consider the the parts in the FMS to be at an even
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distribution. Let int(x) denote the integer part of x (e.g. int(3.14)=3) and "mod" denote

modulo. Let
L=in { "O'J and Le=[2x0’}nod N.

The value of L represents the amount of parts each machine would have if the parts could
be evenly distributed and L, represents the number of extra parts that we seek to, for
instance, distribute across the first L machines. With this intent we let X=[%; X2 -+ XN]*
where xj=L+1 for i, i<L, and Xj=L for j, Le<j<N (other states where the parts are
considered to be evenly distributed can be specified in a similar manner - an example of this
is given below). We often let Xar=(X}, hence f(sy) is easy to compute. Also note that for
each xe X there are at most aN next states which will clearly be much less than IXI.

We let A=P, i.e., all valid DES behavior is allowable, but note that our solution will
work for any allowable behavior A so long as A is (xg,Xaf)-reachable. This is very
important since it shows that if the robot is informed that some machine or transportation
track is out of order, the robot can still evenly distribute the load for the remaining
machines that are still appropriately connected to the FMS. It is in this sense that our
solution is "fault tolerant",

The OCP for this optimal parts distribution problem involves finding a sequence of
inputs u to the robot which will result in it moving the least number of parts to achieve an

even dlstnbutlon, i.e., xxe Xzf. By Proposition 1, if we can find an h(xk) that is
admissible then A* will solve the OCP (possibly inefficiently). Here, we show that the
metric space approach developed in Section 4 can be used to specify a monotone h(xy) (and
hence admissible) so that the OCP can be solved efficiently. First, consider using the
metric pp with p=1. Notice that pj(xy,Xk+1)=2 for all (xk,Xk+1)€ E(A). Hence, by
Theorems 3 and 1, ﬁl(xk)=(1/2)p1(xk,i) (x defined above) is admissible and monotone so
we get an efficient solution to the OCP. Theorems 4 and 6 offer another possibility.
Consider the metric po.. Notice that po(Xk,Xk+1)=0 for all (X, Xk+1)€ E(A), all xke X are
isolated points, and hence ﬁw(xk)=p°°(xk,i) (x defined above) is a good heuristic function.
By Theorem 4 it is admissible and monotone.

Consider the FMS with 3, 4, and 6 machines and track topologies shown in Figure 2.
For the 3-machine FMS in Figure 2 let B=1 and xg=[10 0 4]%; then L=4 and L¢=2 and we
choose Xar={[5 5 4]t}. A*(h1(xx)) and A*(h(xy)) both expand 5 states and result in a
optimal state trajectory of cost 5 (i.e., 5 parts is the minimum number of parts that must be
moved to achieve a even distribution). The generalized Dijkstra's algorithm expands 36
states to find a solution. If we let xg=[11 3 2]t then L=5 and L¢=1. If we choose



K. M. Passino and P. J. Antsaklis, "Solutions to Optimal Control Problems for Discrete Event Systems,”

Control Systems Technical Report #70, Dept. of Electrical Engineering, Univ. of Notre Dame, July 1990. 2

Xar={[6 5 5]}, A*(ﬁl(xk)) and A*(ﬁm(xk)) both expand 11 states and result in a optimal
state trajectory of cost 5. The generalized Dijkstra's algorithm expands 51 states to find a
solution; hence we see that for the 3-machine FMS A* using the heuristic functions
specified via the results of Section 4 far outperforms the generalized Dijkstra's algorithm,

1 2 1

1 HE

3 2 4

[[] -Machine
—» - Transportation Track
Figure 2. Example Flexible Manufacturing System Topologies

For the 4-machine FMS in Figure 2 let B=1 and x¢=[0 5 2 6]t so that L=3 and L.=1.
Choose Xar={[4 3 3 31, [33 3 4]t}. A*(h;(x)) and A*(heo(x)) expand 38 and 53 states
respectively and result in a optimal state trajectory of cost 6 that ends in [3 3 3 4]t. The
generalized Dijkstra's algorithm expands 141 states to find a solution to the OCP for the 4-
machine FMS.

For the 6-machine FMS in Figure 2 let B=1 and xo=[4 0 1 2 0 5]* so that L=2 and
Le=0. Let Xp={[222222]t}. A*(hi(xy)) expands 82 and results in a optimal state
trajectory of cost 6. The generalized Dijkstra's algorithm expanded 798 states to produce
the same solution.

Note that if we had allowed B>1 for the above examples then the computational savings
obtained by using A* over the generalized Dijkstra's algorithm would even be more
pronounced. This is the case since A* would exploit the fact that the robot could move
multiple parts so that an even distribution could be achieved quicker. For the generalized
Dijkstra's algorithm large B will drastically increase the number of states it visits in finding
an optimal state trajectory. Also note that for large N and total number of parts initially in
the FMS, for many FMS track topologies the OCP can easily become too difficult to solve
via any method due to combinatorial explosion. We have, however, illustrated that for
typical FMS systems the A* algorithm, with the appropriate heuristic function, can solve
the optimal parts distribution problem efficiently - and with significantly fewer
computations than conventional techniques.
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Artificial Intelligence Planning Problems

Several fundamental relationships between Al planning systems and control systems
have recently been identified in [31]. Here we show that a class of Al planning problems
falls into our DES theoretic framework and that the results of Section 4 provide a method to
specify heuristic functions so that OCPs can be solved efficiently for Al planning
problems. The A* algorithm has already been used for the solution to many Al planning
problems such as tic-tac-toe, the 8 and 15 puzzle, etc. [34]. The extensions to the theory of
heuristic search in this paper allow for a wider variety of such problems to be studied. For
instance, in [27] the authors showed that the metric space approach could be used to
specify the standard heuristic functions for the 8-puzzle and discovered several new
heuristics for this problem that also work for the more general N-puzzle. In [26] heuristic
functions were specified for a "triangle and peg” problem and a simple robotics problem
("blocks world"). Here we study the Missionaries and Cannibals Problem as in [26], an
Al planning problem for which there currently exist no admissible and monotone heuristic
functions. In this way we illustrate that the results of Section 4 facilitate the discovery of
new heuristics.

The problem statement is as follows: Three missionaries and three cannibals are trying
to cross a north-south river by crossing from east to west. As their only means of
navigation, they have a small boat, which can hold one or two people. If the cannibals
outnumber the missionaries on either side of the river, the missionaries will be eaten; this is
to be avoided. Find a way to get them all across the river which minimizes the number of
boat trips taken.

First we model this problem with the DES model P. Let X=N6 and x,=[x x2 - xg]
and xx+1=[x"1 x'2 - X'6]* denote the current and next state respectively. Let x1 (x4) and
x3 (xg) denote the number of cannibals and missionaries on the east (west) side of the river
respectively. Let "E" and "W" denote the east and west side of the river respectively. Let
"C" and "M" denote cannibals and missionaries. Let Q={q;:i=1,2, ..., 10} where q1=2 C
W—E (move 2 cannibals from the west side of the river to the east side of the river); q2=2
C E-W; q3=1 C WoE; q4=1 C E5W,; q5=1 C IM W—E (move 1 cannibal and 1
missionary from the west side of the river to the east side of the river); gg=1 C IM E-W;
q7=IM E—=W,; qg=1 M E—>W; qo=2 M E—-W, q190=2 M W—E. Of course the boat moves
in the indicated direction also. For the state transition function we have 8(qp,[3 13 00 0]Y
= [103210] the other cases are defined similarly. Let % (xk.Xx+1)=1 for all
(Xk.Xkx+1)EE(P), x0=[3 13 00 0]t, and X=([0 00 3 1 3]t}.
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Notice that we have not represented the part of the problem which states that "the
cannibals cannot outnumber the missionaries”. We will consider this to be included in the
design objectives using the allowable behavior A such that A[P]. Let Xp={xke X: x1>X3
or x4>xg} and X;=X-Xp, Qa=Q, and the definition of A follows immediately. The OCP
for the missionaries and cannibals problem is to find the minimum length sequence of
inputs (loads of passengers) that will result in all persons on the west side of the river.

Currently, there does not exist any monotone h(x) for this problem. We now show
that the results of Section 4 allow for the specification of several such fi(x). First consider
pp where p=2 and notice that P2(xk,Xk+1)SV10 and x(xg,Xk+1)=1 for all (Xk,Xk+1)€ E(A)
so by Theorems 3 and 1 h(x})=(1/NT0)p2(xi,%) where x=[0 0 0 3 1 3]t is an admissible
and monotone heuristic function. Also notice that peo(Xk,Xk+1)<2 so by Theorems 3 and 1
ﬁ(xk}=(112)pw(xk,i) where x=[0 0 0 3 1 3]t is an admissible and monotone heuristic
function. When these heuristic functions are used with A* to find the solution to the OCP,
the minimum length sequence of inputs found was: g, 48, 92, 43, 99 45, 99 93, 92, 48
qeé- The solution involves 11 boat trips, the minimum number of trips needed to solve the
problem.

These Al planning problems serve to illustrate that certain Al systems, where there is an
inherent feedback, are amenable to analytical study with DES theoretic techniques. This
provides a new application area for the DES control community.

6. CONCLUSIONS

We showed how to adapt the A* algorithm for the efficient solution of several optimal
control problems for a wide class of DES. It was shown that for the class of DES
modelled by P as defined in (1), Theorem 1 offers a method to specify admissible and
monotone heuristic functions. In the case where XCIR™ (e.g. for Extended Petri nets), via
Theorem 3 and Remark 4 we showed that our metric space approach can be used to
automatically specify admissible and monotone heuristic functions. It was shown that if
this heuristic function is subsequently used by A*, it would, in a computationally efficient
manner return a solution to a variety of optimal control problems for a wide class of DES.
We showed via Theorems 4-6 that if the costs of the events could be modelled with a metric
then further computational savings can be expected. We applied the results to an automated
factory, an optimal parts distribution problem in flexible manufacturing systems, and an Al
planning problem. In each case we showed that our main results in Section 4 provided a
technique to automatically specify an admissible and monotone h(x) and that when A* uses
this ﬁ(x) there is a significant reduction in the complexity of finding solutions to the OCPs.
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Our results help to set the foundation for the development of a complete theory of optimal
control for DES.

Acknowledgment: The authors gratefully acknowledge the partial support of the Jet Propulsion Laboratory.

References
(1] Bellman R., Dynamic Programming, Princeton Univ, Press, NJ, 1957.

[2] Dechter R., Pearl J., "Generalized Best-First Search Strategies and the Optimality of A*", Journal of the
ACM, Vol. 32, No. 3, pp. 505-536, July 1985.

(3] Gaschnig J., "A Problem Similarity Approach to Devising Heuristics", Proc. 6th IJCAI, pp. 301-307,
Aug. 20-23, Tokyo 1979.

[4) Gelperin D., "On the Optimality of A*", Antificial Intelligence, Vol. 8, pp. 69-76, 1977.

[5] Golden B.L., Ball M., "Shortest Paths with Euclidean Distances: An Explanatory Model", Networks,
Vol. 8, pp. 297-314, 1978.

[6] Gondran M., Minoux M., Graphs and Algorithms, Wiley, NY, 1984.

[7} Guida G., Somalvico M., "Semantics in Problem Representation and Search”, Inf, Proc, Letters, Vol. 5,
No. 5, pp. 141-145, 1976.

[8] Guida G., Somalvico M., "A Method for Computing Heuristics in Problem Solving”, Information
Sciences, Vol. 19, pp. 251-259, 1979,

{91 Hart P.E., Nilsson N.J., Raphael B.,"A Formal Basis for the Heuristic Determination of Minimum

Cost Paths", JEEE Trans, on Svstems Science and Cybemetics, Vol. $SC-4, No. 2, pp. 100-107, July
1968.

[10] Hart P.E., Nilsson N.J., Raphael B.,"Correction to: A Formal Basis for the Heuristic Determination of
Minimum Cost Paths", SIGART Newsletter Vol. 37, pp. 28-29, 1972.

[11] Held M., Karp R.M., "The Traveling Salesman Problem and Minimum Spanning Trees”, Operations
Research, Vol. 18, pp. 1138-1162, 1970.

[12] Holloway L.E., Krogh B.H., "Synthesis of Feedback Control Logic for a Class of Controlled Petri
Nets", IEEE Trans. on Automatic Control, Vol. 35, No. 5, pp. 514-523, May 1990.

[13] Ibaraki T., "Branch and Bound Procedure and State-Space Representation of Combinatorial
Optimization Problems", Information and Control, Vol. 36, No. 1, pp. 1-27, Jan. 1978.

[14] Irani K.B., Yoo S.I., "A Methodology for Solving Problems: Problem Modelling and Heuristic
Generation”, IEEE Trans. on Pattern Anal. and Mach. Int., Vol. 10, No. 5, pp. 676-686, Sept. 1988.

[15] Karp R.M., Held M., "Finite-State Processes and Dynamic Programming”, SIAM J. Applied
Mathematics, Vol. 15, No. 3, pp. 693-718, May 1967.



K. M. Passino and P. J. Antsaklis, "Solutions to Optimal Control Problems for Discrete Event Systems,”
Control Systems Technical Report #70, Dept. of Electrical Engineering, Univ. of Notre Dame, July 1990. 26

[16) Krogh B.H., "Controlled Petri Nets and Maximally Permissive Feedback Logic”, Proc. of the Allerton
Conf. on Communication, Control, and Computing, Univ. of Illinois, pp. 317-326, Oct. 1987

[17] Lawler E.L., Wood D.E., "Branch and Bound Methods: A Survey", Operations Research, Vol. 14, No.
4, pp. 699-719, July-Aug. 1966.

[18] Li Y., Wonham W.M., "A State-Variable Approach to the Modelling and Control of Discrete-Event
Systems", Proc. of the 26th Allerton Conf. on Communication, Control, and Computing, pp. 1140-
1149, Univ. of Illinois at Champaign-Urbana, pp. 1140-1149, Sept. 1988.

[19] Li Y., Wonham W.M., "A* Algorithm for Vector Discrete-Event Systems”, Systems Control Group
Technical Note 891006, Oct. 1989,

[20] Martelli A., "On the Search Complexity of Admissible Search Algorithms", Artificial Intelligence,
Vol. 8, pp. 1-13, 1977.

[21] Michel A.N., Herget C.J., Mathematical Foundations jn Engineering and Science: Algebra and
Analysis, Prentice-Hall, NJ, 1981,

[22) Morin T.L., Marsten T.L., "Branch and Bound Strategies for Dynamic Programming”, Operations
Res,, Vol. 24, No. 4, pp. 611-627, July-Aung. 1976.

[23] Nau D.S., Kumar V., Kanal L., "General Branch and Bound and Its Relation to A¥ and AO*",

Artificial Intelligence, Vol. 23, pp. 20-58, 1984.
[24] Nilsson N.J., Problem-Solving Methods in Artificial Intelligence, McGraw-Hill, NY, 1971,
[25] Nilsson N.J., Principles of Artificial Intelligence, Tioga, NY, 1980.

[26] Passino K.M., Antsaklis P.J., "Antificial Intelligence Planning Problems in a Petri Net Framework",
Proc. of the American Control Conf., pp. 626-631, Atlanta GA, June 1988.

[27] Passino K.M., Antsaklis P.J., "Planning Via Heuristic Search in a Petri Net Framework", Proc. of the
Third IEEE Int. Symp. on Intelligent Control, pp. 350-355, Arlington VA, August 1988.

[28] Passino K.M., Analysis and Synthesis of Discrete Event Regulator Systemg, Ph.D. Dissertation,
Dept. of Electrical and Computer Eng., Univ. of Notre Dame, April 1989.

[29] Passino K.M., Antsaklis P.J., "Near-Optimal Control of Discrete Event Systems”, Proc. of the
Allerton Conf, on Communication, Control, and Computing, pp. 915-924, Univ, of Illinois, Sept.
1989.

[30] Passino K.M., Antsaklis P.J., "On the Optimal Control of Discrete Event Systems", Proc. of the
Conference on Decision and Control, Tampa, Florida, pp. 2713-2718, Dec. 1989,

[31] Passino K.M., Antsaklis P.J., "A System and Control Theoretic Perspective on Artificial Intelligence
Planning Systems", Applied Artificial Intelligence, Vol. 3, No. 1, pp. 1-32, 1989.

[32] Passino K.M., Antsaklis P.J., "Optimal Stabilization of Discrete Event Systems”, To appear in the
Proc. of the IEEE Conf. on Dec. and Control, Hawaii, Dec. 1990.

[33] Pearl J., "On the Discovery and Generation of Certain Heuristics”, The Al Magazine, Vol. 4, No. 1,
pp. 23-33, 1983.



K. M. Passino and P. J. Antsaklis, "Solutions to Optimal Control Problems for Discrete Event Systems,”
Control Systems Technical Report #70, Dept. of Electrical Engineering, Univ. of Notre Dame, July 1990. 27

[34] Pearl J., Heuristics: Intelligent Search Strategies for Computer Problem Solving, Addison-Wesley,
Reading, Mass., 1984,

[35] Peterson J.L., Petri Net Theory and the Modeling of Systems, Prentice Hall, NJ, 1981.

{36) Ramadge P.J., Wonham W_.M., "Supervisory Control of a Class of Discrete Event Processes”, SIAM
L. Control and Optimization, Vol. 25, No. 1, pp. 206-230, Jan. 1987.

[37] Sedgewick R., Vitter J.S., "Shortest Paths in Euclidean Graphs”, Algorithmica, Vol. 1, pp. 31-48,
1986.

[38] Ushio T., "Maximally Permissive Feedback and Modular Control Synthesis in Petri Nets with
External Input Places”, IEEE Trans, on Antomatic Control, Vol. 35, No. 7, pp. 844-848, July 1990.

(39] Valtorta M., "A Result on the Computational Complexity of Heuristic Estimates for the A"
Algorithm”, Information Sciences, Vol. 34, pp. 47-59, 1984.

[40] White D.J., Dynamic Programming, Holden-Day, San Francisco CA, 1969,





