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Introduction

In this paper, new theoretical results on polynomial and rational matrix interpolation
are briefly outlined and their application to certain Systems and Control problems is
summarized.

The use of interpolation type constraints in system and control theory is first
discussed and a number of examples are presented. With this motivation, an appropriate
formulation for polynomial matrix interpolation is introduced via its basic theorem,
Theorem 1. It is shown that this generalization, of polynomial interpolation to polynomial
matrix, is most general and it includes all other such interpolation schemes which have
appeared in the literature. The basic theorem of rational matrix interpolation is also
presented. A specialization of these results to involve characteristic values and vectors of
polynomial matrices is shown; note that the eigenvalue, eigenvector problem of a real
matrix can be seen as a special case. Equations involving polynomial and rational matrices
are of great interest in systems and control. It is shown how to solve these equations using
interpolation theory. Note that certain of these results have appeared in [1-4] and used in
[5-6] and elsewhere. Here, for the first time, the overall approach is outlined and it is
connected to interpolation conditions used by many in the system and control literature.
This is in addition to new contributions in the polynomial matrix interpolation theory. Itis
hoped that this paper will provide some insight and will demonstrate the application of the
polynomial matrix interpolation theory to the theory and practice of systems and control.

Motivation: Interpolation type constraints in Systems and Control theory

Many control system constraints and properties that are expressed in terms of
conditions on a polynomial or rational matrix R(s), can be written in an easier to handle
form in terms of R(sj), where R(Sj) is R(s) evaluated at certain (complex) valuess =sj j=
1, 2. We shall call such conditions in terms of R(sj), interpolation (type) conditions on
R(s). This is because in order to understand the exact implications of these constraints on
the structure and properties of R(s), one needs to use results from polynomial interpolation
theory. Note that although for the scalar polynomial case, interpolation is an old and very
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well studied problem, only recently polynomial matrix interpolation appears to have been
addressed in any systematic way [1-3].

Next, a number of examples from Systems and Control theory where polynomial
and polynomial matrix interpolation constraints are used, are outlined. This list is not
complete, by far.

It is known that all the uncontrollable eigenvalues of x = Ax + Bu are given by the
roots of the determinant of a greatest left divisor of the polynomial matrices sI - A and B.
An alternative, and perhaps easier to handle, form of this result is that sj is an
uncontrollable eigenvalue if and only if there exists real row vector vj such that vj(sil - A,
B] = 0 (PBH controllability test). This is a more restrictive version of the previous result
which involves left divisors, since it is not clear how to handle muitiple eigenvalues when it
is desirable to determine all uncontrollable eigenvalues. The results presented here can
readily provide the solution to this problem.

Consider an example from control design: Given the plant P(s) and a controlier
G(s), the closed loop transfer function T(s) is given by T(s) = (I + G(s)P(s))‘lG(s)P(s)
assuming a unity feedback configuration. The design problem is now to find a controller
G(s) if T(s) and P(s) are given. The method of Ragazzini (see description in [7] pp. 216-
218) handles the scalar case. In particular, for stability, all unstable poles of P(s) must be
zeros of 1 - T(s); and all unstable zeros of P(s) must be zeros of T(s) (note that T(s) is
stable). Furthermore for causality, T(s) must have as its zeros at infinity all the zeros at
infinity of P(s). Clearly, the condition 1 - T(sj) =0 where sj j =1, A are the unstable poles
of P(s) is an alternative form of the first constraint on T(s); the case of multiple poles at 5j
can be handled by differentiating. Similarly for the remaining constraints. The
corresponding multivariable stability constraints were introduced in [8] and they are: T(s) =
N(s)X(s) and X(s), [T - X(s)N(s)]D-1(s) stable where P(s) = N(s)D-1(s) a coprime
polynomial factorization. These can also be expressed as interpolation constraints,
however care should be taken when P(s) has multiple poles. Note that for a square
polynomial matrix D(s) to have a zero of determinant at some value sj, D(sjaj = 0 where aj
is a nonzero (complex) vector. While in the polynomial case d'(sj) =0 is a necessary and
sufficient condition for d(s) to have a second zero at sj , a derivative of D(s) is not
necessary in the matrix case.

The state feedback eigenvalue assignment problem has a rather natural formulation
in terms of interpolation type constraints; similarly the output feedback problem{4-6].

More recently, stability constraints in the H*® formulation of the optimal control
problem have been expressed in terms of interpolation type constraints[9-11]. It is rather
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interesting that [9-10] discuss a "directional” approach which is in the same spirit of the
approach we take here (and in [1-7]).

The above are just a few of the many examples of the strong presence of
interpolation type conditions in the systems and control literature; this is because they
represent a convenient way to handle certain types of constraints. However, a closer look
reveals that the relationships between conditions on R(sj) and properties of the matrix R(s)
are not clear at all and this needs to be explained. Only in this way one can take full
advantage of the method and develop new approaches to handle control problems. Our
research on matrix interpolation and its applications attempts to address this need.

Results from Polynomial Matrix Interpolation Theory

In the following some of the basic results of the polynomial and rational matrix
interpolation theory are outlined. Note that this method, in addition to offering a systematic
approach to solve certain system control problems, perhaps more importantly, it is a
completely new theory developed from the bottom up and it opens a new field of study.

Basi m of Polvnomial Matrix In lati
The basic theorem of polynomial interpolation can be stated as follows: Given 2
distinct complex points sj j=1, £ and 2 complex values bj there exists a unique (2-1th
degree polynomial q(s) for which
asp=bj j=1,2 (1)
A generalization of this result to polynomial matrices is as follows:

Let S(s) :=blk diag [ 1, s, ..., sdi]' where dj i =1, m are non-negative integers; let
aj#0and bj denote (mx1) and (px1) complex vectors respectively and sj complex scalars.
Theorem 1: Given (sj, aj, bj) j = 1, 2 and nonnegative integers dj with £ = ¥ dj + m such
that the square (2 dj + m)x£ matrix

54 = [S(s1) a1,..., S(sp)ag] @
has full rank, there exists a unique (pxm) polynomial matrix Q(s), with ith column degree
equal to dj, i =1, m for which

QGspaj=bj j=1,2 3)

It should be noted that when p = m = 1 and dj = 2-1 this theorem reduces to the
polynomial interpolation theorem. To see this, note that in this case the nonzero scalars aj j
=1, 2, can be taken to be equal to 1, in which case Sy is exactly the well known
Vandermonde matrix which is nonsingular if and only if sj are distinct.
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Proof: Since the column degrees of Q(s) are dj, Q(s) can be written as

Q(s) = QS(s) C))
where Q(px(2dj + m)) contains the coefficients of the polynomial entries. Substituting in
(3), Q must satisfy

QSp =By (5)
where Bp = [by, ..., bp]. Since S is nonsingular, Q and therefore Q(s) are uniquely
determined. a

Example 1: Let Q(s) be 1x2 (=pxm) and let .£ = 3 interpolation points be specified: {(s5, ajs
bj)j=1,2, 3} ={(L[1 0, 0), (Of-1, 11, 0), (1, [0, 1], 1)}. Q(s) is uniquely
specified when d] and d) are chosen so that £(=3) = Xdj +m=(d] +d2) + 20rd] +d?
=1 and §3 has full rank. Clearly the resulting Q(s) depends on the particular choice for the
column degrees dj and different combinations of di will result to different matrices Q(s):

(i) Letdi =1, and d2 = 0. Then S(s) = blk diag[[1,s]',1] and (5) becomes:
1-10

QS3=Q[-1 0 0]=[0,0, 1]
011

from which Q = [1, 1, 1] and Q(s) = QS(s) = [s+1, 1].
(ii) Let d1 =0, d2 = 1. Then S(s) = blk diag[1, [1, s]] and (2.5) gives Q = [0, 0, 1] from
which Q(s) = [0, s], clearly different from (i) above. O

Note that alternative polynomial bases, other than [1, s, s2, ...]', which might offer
computational advantages in determining Q(s) from interpolation equations (5) can of
course be used (and they have); for example, Tschebyscheff polynomials.

The relation between (4) and an alternative, also commonly used representation of
Q(s), is now shown, namely:

Q(s) = Qd Sd(s) ()
where S4(s) :=[I, ..., Isd]' an m(d+1)xm matrix with d = max(d;) i=1, m. Notice that
3(s) = K8d(s) where K ((Xdj + m) x m(d + 1)) describes the appropriate interchanges of
rows in Sq (s) needed to extract S(s). Representation (6) can be used in matrix
interpolation as the following corollary shows:

Corollary 1: Given (sj, aj, bj) j = 1, X and nonnegative integer d with £ =m(d+1) such
that the m(d+1)x2 matrix Sq¢ = [Sd{(s1) 21,-.., Sd(s£)a¢] has full rank, there exists a
unique (pxm) polynomial matrix Q(s) with highest polynomial entry degree d which
satisfms (3).
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Example 2 Let Q(s) be 1x2 ( = pxm), d = 1 and let the £ = m(d+1) = 4 interpolation points
(sj, aj, bj) be as follows: let the first 3 be the same as in Example 1 and the fourth be (2, [0,

1]', 1). The equation Q4 Sd¢ = B$ now becomes
1-10 0

1
stu=Qd!_°1 5 o 5}[0,0, 1,11=B2

0012
from which Qq = (1, 1, 1, 0] and Q(s) = Qg Sd(s) = [ s+1, 1] as in Example 2.1 (i). If the
fourth interpolation point is taken to be equal to (2, [0, 17", 2) then Bp = [0, 0, 1, 2] while
Sde remains the same. Then Q4 ={0, 0, 0, 1] and Q(s) = Q¢S4(s) = [ 0, s] as in Example
1(ii). O

Interpolation constraints of the form

Qzk)=Qk k=1,q @
have also appeared in the literature. These conditions are but a special case of {3). In fact
for each k, (7) represents m special conditions of the form (3). To see this, consider (3)
and blocks of m interpolation points where sj=2] i=1,mwithaj=¢j, sm+i=22 i=1,
m with am-+j = ej and so on, where the entries of ej are zero except the ith entry which is 1;
then Q1 of (7) above is Q1 = [by, ..., bm], Q2 = [bm+1, ..., b2m} and so on. In this case
sj are not distinct but the value is repeated m times. A simple comparison of the
constraints (7) to the polynomial constraints (1) seems to suggest that this is an attempt to
directly generalize the scalar results to the matrix case. As in the polynomial case, zk k =
1, q therefore should perhaps be distinct for Q(s) to be uniquely determined. Indeed this is
the case as the following corollary shows:

Corollary 2: Given (zk, Qk) k = 1, q with q = d + 1, and Qk (pxm), such that the
m(d+1)xmq matrix Sdk: = [Sd(z1),..., Sd(zk)] has full rank, there exists a unique (pxm)
polynomial matrix Q(s) with highest polynomial entry degree d which satisfies (7).

Example 3 Let Q(s) be 1x2 (=pxm), d = 1 and let the q = d+1 = 2 interpolation points be

(zk, Rk k=1,2}=((0, [1, 1]), (1, [2, 1D}. In view of Q(s) = QdS(s), Qd[Sd(z1),
Sd(z2)] = [R1, R2] or

from which Q4 ={1, 1, 1, 0] and Q(s) = Q4Sd(s) = [s+1, 1] as in Examples 1 and 2. 0O
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Characteristic Values and Vectors
If a complex number z satisfies q(z) = 0, where g(s) is a polynomial, then z is a
root of q(s). In view of this, let us apply the basic matrix interpolation Theorem 2.1 with
bj = 0; that is the pxm matrix Q(s) must satisfy
Q(spaj=0 j=1,2R ®3)

Definition 1: A complex scalar sj is a characteristic value of Q(s) if it is a zero of an
invariant polynomial of Q(s). The mx1 complex vector aj which satisfies Q(sj)aj = 0 is the

corresponding characteristic vector of Q(s).

Q(s) may have repeated characteristic values so sj typically has an algebraic and a
geometric multiplicity defined below for Q(s) nonsingular; it is straightforward to extend
the definitions to a general pxm Q(s). In the case of a real matrix A, if some of the
eigenvalues are repeated one may have to use generalized eigenvectors. Here we also
define generalized characteristic vectors of Q(s). In the results below, only characteristic
vectors which satisfy relation (8), which does not contain derivatives of Q(s), are
considered for simplicity and clarity. The general results are not included here; as perhaps
expected, they involve derivatives of Q(s){1].

Let Q(s) be an (mxm) nonsingular matrix. If sj is a zero of IQ(s)l repeated nj times,
define nj to be the algebraic multiplicity of sj; define also the geomerric multiplicity of sj as
the quantity (m - rank QGsi))-

Theorem 2: There exist a complex scalar sj and A!j linearly independent (mx1) vectors ajj
with i = 1, 2j which satisfy

Q(s)) ajj =0 )
if and only if sj is a zero of IQ(s)l with algebraic multiplicity (=nj 2 ,l!j and geometric
multiplicity (=(m - rankQ(sj)) 2 4;.

The complex values sj and vectors ajj are characteristic values and vectors of Q(s).
In the case when £ = 1, the theorem simply states that sj is a zero of IQ(s)! if and only if
rankQ(sj) < m, an obvious and well known result. The conditions of Theorem 2 imply
certain structure for the Smith form of Q(s). In particular (9) implies that the Smith form of
Q(s) has factors (s - $j), raised to some power, in 2j locations on the diagonal[1].
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In the following, matrices Q(s) with given characteristic values and vectors sj and
ajj are characterized.

Theorem 3: Let n = deglQ(s)l. There exist ¢ distinct scalars Sj and (mx1) nonzero vectors
(4]

aiji=1,4j j=1, o with ) £j=nand ajj i = 1, 2 linearly independent which satisfy (9) if
1

and only if the zeros of IQ(s)l have ¢ distinct values sj j =1, o, each with algebraic
multiplicity nj = 2j and geometric multiplicity (m - rank Q(sj)) = 4;.

Note that the independence condition on the mx1 vectors ajj implies that 2 j <m, that
is no characteristic value is repeated more that m times in Theorem 3; derivatives must be
used if sjis repeated more than m times[1]. The following corollary of Theorem 3
formalizes the most familiar case:

Corollary 3: Let n = deg IQ(s)l. There exist n distinct complex scalars sj and (mx1)
nonzero vectors aj j = 1, n which satisfy (8) if and only if the zeros of IQ(s)l have n distinct
values s;.

Rational Matrix Interpolation :
The polynomial matrix interpolation Theorem 1 directly leads to rational matrix

interpolation theorem:

Theorem 4: Assume that (sj, ¢j, b)) j=1, 2 cj# 0 with £ = ¥ dj + m and a polynomial
matrix D(s) with | D(sj) | # 0 are given, such that the S ¢ matrix in (2) with aj=[ D(sj)]‘1 Cj
has full rank. There exists a unique rational matrix H(s) of the form H(s) = N(s)D(s)-1,
where the polynomial matrix N(s) has column degrees degci[N(s)] = dj, for which

H(sj) ¢j =bj j=1, 4 (10)

Rational matrix interpolation results can be directly derived from corresponding
polynomial matrix interpolation results. All results of polynomial matrix interpolation can
therefore be extended to the rational matrix case. Notice that if D(s), in Theorem 4, is taken
to be I, Theorem 1 is obtained. One could also use the results of Corollary 1 and 2 to
obtain alternative rational matrix interpolation results.
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Solutions of Polynomial and Rational Matrix Equations

Consider the equation
M(s)L(s) = Q(s) (11)
where L(s) (txm) and Q(s) (kxm) are given polynomial matrices. The polynomial matrix
interpolation theory developed above will now be used to solve this equation and determine
the polynomial matrix solations M(s) (kxt).

First consider the left hand side of equation (11). Let M(s) := Mg + ... + M;s!
where r is a non-negative integer, and let d; := degi[L(s)] i=1, m. If 6(3) = M(s)L(s),
then degci[é(s)] = d; + 1. According to the basic polynomial matrix interpolation Theorem
2.1, the matrix é(s) can be uniquely specified using ¥ (dj+r) + m = Y dj + m(r+1)
interpolation points. Therefore consider £ interpolation points (sj, aj, by) j = 1, & where

2 =73 dj + m@r+1) (12}
and such'that the theorem assumptions are satisfied; that is, if S¢(s) := blk diag[1, s, ...,
sditr])', the (T dj + m(r+1))x2 matrix Srp := [S¢(s1) a1,..., Se(s2)ag] has full rank. Note
that for distinct sj, Sr¢ will have full column rank for almost any set of nonzero a; (this can
be formally shown). Now in view of Theorem 1 Q(s) which satisfies

Q(spaj =b; (13)
is uniquely specified given these £ interpolation points (sj, aj, b;). '{'o solve (11), these
interpolation points must be appropriately chosen so that the equation Q(s) (= M(s)L(s)) =
Q(s) is satisfied:

Write (11) as

MLy(s) = Q(s) (14)
where M := [Mp, .., My] (kxt(r+1)) and L(s) :=[L(s), ..., S'L(s)] (t(r+1)xm). Lets=s;
and postmultiply (14) by a;j = 1, 2. Define

bj:= Q(Sj)aj j=1,24 (15)
and combine the equations to obtain
MLy =By (16)

where Lig := [L¢(s1) a1,..., L(sp)ap] (t(r+1)x8) and By := [by, ..., bpl(kxL).

Theorem 3: Given L(s), Q(s) in (11), let dj := degg;{L(s)] i = 1, m and select r to satisfy

degci[Q(s)] £dj+r i=1,m a7
Then a solution M(s) of degree r exists if and only if a solution M of (16) does exist;
furthermore, M(s) = M[L, s, ..., sTI]'.
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9
It is not difficult to show that solving (16) is equivalent to solving
M(spcj=b; j=1,2 (18)
where
¢j:=L(sjaj, bj :=Q(spaj j=1,2 (19)
In view now of Corollary 1, the matrices M(s) which satisfy (18) are obtained by solving
MSp =By 20)

where S = {S(51) c1,..., S(s2)cp] (t{r+1)xR), with S(s) :=[I, sl, ..., sTI]' (t(r+1)xt)
and By := [by, ..., bg] (kx2); M(s) is then M(s) = M[L s, ..., s'I] where M (kxt(r+1))
satisfies (20). Solving (20) is an alternative to solving (16).

Theorem 5 shows that there is a one-to-one mapping between the solutions of
degree r of the polynomial matrix equation (11) and the solutions of the linear system of
equations (16) (or of (20)). In other words, using (16) (or (20)), we can characterize all
solutions of degree r of (11). Note that the conditions (17) of the theorem are not
restrictive as they are necessary conditions for a solution M(s) in (11) of degree r to exist;
that is, all solutions of M(s)L(s) = Q(s) of any degree can be found using Theorem 5. Also
note that no assumptions were made regarding the polynomial matrices in (11), that is
Theorem 3 is valid for any matrices L(s), Q(s) of appropriate dimensions. Solving (16) (or
(20)) is equivalent to solving (11) for solutions M(s) of degree <r. When applying this
approach, it is not necessary to determine in advance a lower bound for r; it suffices to use
a large enough r. Theorem 5 provides the theoretical guarantee that in this way all solutions
of (11) can be obtained. Searching for solutions is straightforward in view of the
availability of computer software packages to solve linear system of equations. Even when
an exact solution does not exist, it can be approximated using, for example, least squares.

Now let's consider the rational matrix equation:

M(s)L(s) = Q(s) 21)
where L(s) (txm) and Q(s) (kxm) are given rational matrices. The polynomial matrix
interpolation theory developed above will now be used to solve this equation and determine
the rational matrix solutions M(s) (kxt). Let M = D-1(s)N(s), a polynomial fraction form
of M(s) to be determined; then equation (21) can be written as:

L(s)
[N(s) D(S)][ }
- Q(s)

Let s = sj and postmultiply by aj j = 1, £ with aj and £ chosen properly (see below). Let
cj:=[L(sj),,-QspTaj j=1,2 (23)

=0 22)
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The problem now is to find a polynomial matrix [N(s) D(s)] which satisfies

[NGj) D(splcj=0 j=1,4 24
which is a polynomial interpolation problem that can be solved using the approaches
proposed above. In fact (24) is of the form of (18). The question really is how to select aj
j=1,2and & so that by solving (24) all solutions to (21) are obtained:
Note that instead of solving (22) one could equivalently solve [N(s) D(s)][Lp(s)' -Qp(s)T
= 0, where {Lp(s)' -Qp(s)T is a polynomial numerator of [L(s)' -Q(s)]"; so the problem
to be solved is now (11), a polynomial matrix equation, where L(s} = [Lp(s)' -Qp{s)T" and
Q(s) = 0. Therefore, Theorem 5 does apply and all solutions [N(s) D(s)] of degree r can be
determined by solving (16) or (18) which in this case is (24) above.
Note that restrictions can be easily imposed to guarantee that D-}(s) exists and that M(s) =
D-1(s)N(s) is proper. The existence of solutions of (21) and their causality depends on the
given rational matrices L(s) and Q(s) (see for example [12]). Our approach here will find a
proper rational matrix of order r when such solution exists. Additional interpolation type
constraints can be added so the solution satisfies additional specifications.

References

[11  P.J. Antsaklis, "Polynomial Matrix Characterization Using Characteristic Values and Vectors",
Publ. No. 80/18, Dept. of Electr. Engr., Imperial College, London, July 1980.

(21 P.J. Antsaklis, "Polynomial Matrix Interpolation in Control Equations: The Diophatine Equation”,
Proc, of the 1983 Conf. on Info, Sciences and Systems, pp. 873-878, The Johns Hopkms
University, March 1983.

[31 P.J. Antsaklis and R.L. Lopez, "Control Design Using Polynomial Matrix Interpolation”, Proc, of

Mﬂ@mmmﬂmﬂsp_m pp 621-622, Las Vegas Nevada, Dec. 12-14 1984
[4] P.J. Antsaklis, New M. Itiv: m An

Ph.D. Dissertation, Brown University, 1976.
[5] P.J. Antsaklis and W. A. Wolovich, "Arbitrary Pole Placement Using Linear Output Feedback

Compensation”, Int._J, Control, Vol. 25, pp. 915-925, 1977.

(61 R.Lopez, Multivariable Control Design_via Polvnomial Interpolation Methods, M.S.E.E. Thesis,
Dept. of Electr. Engr., University of Notre Dame, May 1984.

[71  G.F. Franklin, J.D. Powell and M.L. Workman, Digital Control of Dynamic Systems, 2nd Edition,

Addison-Wesley Publishing Company, Reading, MA, 1990,

(81 P.J. Antsaklis and M.K. Sain, "Unity Feedback Compensation of Unstable Plants”, Proc, of the
20th IEEE Conf, on Decision and Control, pp. 305-308, San Diego, CA, Dec. 1981,

[91 H. Kimura, "Directional Interpolation Approach to H™ -Optimization and Robust Stabilization”,
IEEE Transactions on Automatic Control, Vol. AC-32, No. 12, pp.1085-1093, December 1987,

{(10] U. Shaked, "The Structure of Inner Matrices that Satisfy Multiple Directional Interpolation
Requirements”, [EEE T ions on mati ntrol, Vol. AC-34, No. 12, pp. 1293-1296,
December 1989,

[11} B.-C. Chang and J. B. Pearson, Jr., "Optimal Disturbance Reduction in Linear Multivariable
Systems”, JEEE Transactions on Automatic Control, Vol. AC-29, No, 10, pp. 880-887, October
1984,

(12) Z. Gao and P.J. Antsaklis, "On Stable Solutions of the Cne and Two Sided Model Matching

Problems”, IEEE Transactions on Automatic Control, Vol. AC-34, No. 9, pp. 978-982, September
1989.





