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Abstract - The problem of robust stability in linear systems with parametric
uncertaintics is considered. A new methed is developed (o determine bounds on
uncertain parameters in the state-space modei of the system, so that stability is
preserved. Both continuous- and discrete-time systems are considered. Unlike

previous results, the stability bounds are derived in terms of actual parameters”

instead of their absolute values and consequently, the stable region in the parameter
space is nol nceessarily symmetric with respect to the origin; furthermore, the
uncertain parameters do not have (o be linearly independent to each other.

[. Introduction

We are imcrested in the stability of sysiems with parameter uncertainties in
the state-space model and in particular in obtaining bounds on the unccriain
parameters (o guarantee the stability of the sysiem. This problem is related 10 the
robust swbility problem of interval matrices, which has been studied by many
researchers; note that (1 contains a review of this subject including recent research
results. Using these results one can determine if a matrix with entries varying over
some interval remaing stable; such results however do not generally provide the
range of paramcters for sability, which is the problem of interest here. Most of
previous results on robust stability that provide bounds on the parameter
unccnaintics 1n the state-space mode! (o preserve stability {2-6) arc restricted to
bounds on the absolute values of the uncertain parameters; that is the
corresponding stable region in the parameter space is always symmetric with
respect (o the origin. Clearly, this may introduce conservatism in the results and
in fact, as iL1s shown later in the paper, such results can sometimes be very
conservative indeed.

Progress has been made recently in obtaining less conservative parameter
bounds for robust stability using Lyapunov approach [5,9,10]. In particular, the
bounds developed in [10] are not necessarily symmetric with respect 10 the origin
in the parameter space as in the previous results, and this reduces the conservatism
significandy. The stability bounds presented in this paper are similar to those in
[10] for continuous-time systems and independent unceriain parameters, except that
they are expressed explicitly as a set of inequalities, instead of a convex hull over 2
sct of intervals in the parameter space. This is where, however, the similarities
with {10) end. The approach taken here, which uses Lyapunov stability and
explicit inequalities, not only offers additional insight but it allows the derivation
of comresponding bounds for the discrete-time case for the first time; furthermore, as
it will be shown, these results enable us (o investigate robust stability in problems
with nonlincarly dependent uncertainties,

Consider the state-space model for continuous-time systems with perturbation E

x={A+Ex (LN
where A is a nxn real Hurwilz matrix. Assume that the perturbation matrix, E,
takes the form

m
E= z kiEi (1.2)
i=l
where Ej arc given real constant matrices and k; are real uncentain parameters. The
upper and lower bounds on kji = 1, m, are to be found such thatif k;i= 1, m are

within these bounds, the syswem in (1.1) remains stable; that is the eigenvalues of
(A + E) have negative real parts. For discrete-time systems, the state-space model

has the form

x{(k+1) = (A+E)x(k) (1.3)
with E defincd again as in (1.2). In this case, the bounds on k; are 10 be found so
tit the eigenvalues of (A + E) have magnitude less than one.,

II. Stability Bounds for Continuous and Discrete-Time Systems

Since il 1s assumed that A in (1.1) is Hurwitz, there exisis a symmetric
positive definite matrix P which is the unique solution of the Lyapunov equation
(see for example [B])

PA + ATP+ 21 = 0. Q.1

Define P; as
Py:=(E|P+PE2, i=lm 22)
Note that P; are real and symmetric (Hermitian) matrices. The following theorem
cstablishes Lhe sability constrainis on the actual uncertain parameters, k;i= 1, m.
Tt is derived using results from Lyapunov stability theory, via an approach sirmilar
to the one used in [51. Let A(X) denote any eigenvalue of matrix X, and Amax(X)
and Amin(X) the largest and smallest eigenvalues of X, respectively.
Theorem 1[9]: The system in (1.1) is asymptotically stable if

m
Tkiri<l @3
i=1
with 4; i =1, m defined by
~ [Amax(Pi) forkjz0
: ={"min(l’i) forkj<0 'S I,m 2.4)
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The significance of this theorem is that it takes into consideration the
directional information which is often available in practice, thus reducing the
conservatism found in carlier literature results. To demonstrate this, it is shown
below that the stability bound obtained here is always less than or equal to one of
the bounds propased in [5], namely

m
Z] Ik G (Py) < 1
1=

where G0, () denotes the largest singular value; see also Example 1.
Since P; is 2 Hermitian matrix, Oinax(Pi) = max[ Ik, A € A(P;)). Hence for
Aj defined in (2.2), we have Dl € Smax(P;)- Therelore,

m m m
Tkidig }_‘,l Myl 41 z;l kil Grpax(Py-
= =

2.12)

i=l

In other word.g. if (2.12) is satisfied, then (2.3) is satisfied. That is, the stability
bound found in Theorem 1 is always less conservative than the one in (2.12).
Clearly the reason the new stability bound is less conservative is that it takes the
directional information into consideration. This can be explained by the fact that
as a parameter varies in different directions, it affects the system stability
differendy. This can be casily shown using, for example, the root locus technique
where it is well known that, for different signs of the parameter, the root locus is
completely different; that is the effect of a single parameter k in A on fts
cigenvalues can be completely different for the same Iid and oppasite sign. Any
muumrorewhichigmmesisnmboundwhemmﬁvehlypical cases.

Furthermore, from the stability conditions (2.3), if for some kj we have

kj A;S0, (2.13)
then such oncertain will not affect the system siability, This is
because for k; that satisfy (2.13),

“m

m
Trihis Skidi,
o g
and thercfore the subility criteria in (2.3) becomes

m
. ?_‘,:Ji Ai<L 2.19)
i=lj

In (2.14} the conservatism is further reduced since there are fewer parameters 10
be considered, Fmﬂrmnore.iflhelowerbounds.anO)ofmeabsoluuvaluuof
such k;

)

lkjl Z 8, 2.15)

are known, then the uncertainties in kj can be actually used in offsetting the

destabilizing effect of other uncertain parameters. This is formalized in the
corollary below:

Corollary 1(9): Assume there exist kj which satisfy (2.13) and (2.15) for some .
Then the system in (1.1) is stable if

m
Xk i<l + Taj il
i=li#j j

(2.16)

Theorem 1 gives a stability region in the parameter space and this region is
defined by the inequality in (2.3). From this inequality, it can be seen that the
stability bound on one uncertain parameter is also dependent on the size of the
uncertainties in other parameters. From (2.3), if there is 2 large uncertainty in one
of the parameters, then in general we cannot allow large uncertainties in the rest of
the uncertain parameters. The size of A{ can be viewed as a weighting factor which
decides to what degree the parameter k; can vary. Clearly, any method which gives
a single stability bound for all uncerain pammeters, will introduce significant
conservatism.

Example 1 Letm = 2 with A, Ej and E; given as:
32 -1 .1 1
A‘[:o] E"[oo] Ez=| 0o}
The cigenvalues of P; defined in (2.2) are

A(Py) = (-1,0) and A(Pg) = {1,0)
and therefore the stability bounds given by (2.14) are:
for

kay<1 kj> 0,ka>0

¥ ki, ko for k1> 0, ka <0

ka-kj <1 for ki< 0,k2>0

ky > -1 for ki< 0,k <0
The corresponding stability bound obtained in (5] is

kgl + kol < 1 for any kj, k2

and the actual stability bound in this case is k2 - k; < 2. Note that the stability
rcgion obuained using the new method is open to infinity.



Example 2 Let m = 2 with A, Ej and E3 given as:

-3-2 S5
=[37] =m-[P4] m-
Also assume that k| has a lower bound, k; 2 2. The eigenvalues of P are
APy) = {-2, -2)and M(P2) = (3. 3),

therefore, from (2.4), A} = -2 and A = 3. Note that since Ajk; < 0, k; will not
affect the sysiem swability. By Corollary 1, the stability bound is

kodz <1+ 2*2=5,0r

k2 < 513,
This example shows that some uncentainties not only do not destabilize the
system, but also play a role of offsetting the destabilizing effect of other
unceriaintics, Here the presence of the uncertainty, k, acwally increases the
stability bound of k2 from k2 < 1/3 10 kg < 5/3, where k2 < 1/3 is the swbility
bound obtained without taking k; into consideration,

The above results were derived for continuous-time linear systems. A similar
approach can be used for discrete-lime linear systems with parametric uncertainties
in the state-space model (1.3). This is bricfly discussed below and corresponding
results for the discrete-time case are outlined. .

Define the Lyapunov function as V(x) = xTPx, where P is the solution of the
Lyapunov equation for discrete-time system (sce for example [8]).

ATPA.P+2i=0 (219)
Then it can be shown that
AY = V(x{k+1)) - Vx&))

7.5 -1.5
-1.5 1.5

= kT[E kiP; + T kikjFij - 1]x (220
i W
where P; is defined as
Pi=(E|PA + ATPED2, i=l,..m @.21)
ad
Fij = E| PEY2. @22)

Note that AV in (2.20) has a similar form as its countespart, dV/dt, in the case of
continuous-time systems and a similar approach can be used here to derive the
stability bounds. The following result which is applicable to the discrete-time
system (1.3) is Lhe counterpart of Theorem 1 and it can be proved in a similar way:
Theorem 2[9]: The system in (1.3) is asympintically stable if

Zki i+ _f,'kikjfijc: 1 2.23)
] [N
with A; defined in (2.4), P; defined in (2.21) above and f; defined as,
.. _J*max(Fij) forkk;z0
fi ={1min(Fa,-) for ki'kj <o hi=hm (224

Exampie 3 Let the nominal discrete-time system be
xest)=[3 %] x0

e=a[ 7] vl 5]

Then from (2.21) 10 (2.24), we have
P = diag(8/3,8/3), P, = diag(-4/3, 4/3), P2 = -P|,F11 =Fp2=P3, Flz=Fy; =
Pr.di= -4/3k2 = 43, f11 =f22 = 4/3, and f12 = f3
= -4/3. Applying (2.23), the stability constraint on kj and k2 is

(k2 - k)2 + (k2 - ki) < 34
or equivalently

ky-ky <12

kz - kl > 32
Interestingly, this stability region, derived by applying the new stability bound, is
exactly the same as the actual one; of course in other examples this may not be the
case,

III. Systems with Nonlinearly Dependent Uncertain Parameters

It is shown in the following how the above resulis can be used 1 solve more
complicated problems in robust stability of dynamic systems. Consider the
foilowing problem: given the uncenain system

x = (A + E(f))x. G

and
m
E(r) = Z K(NE; (3.2)
i=1
where Ae R g Hurwitz, ki(r) i = 1,m are given continuous funclions of re R,
and E;e RV i = |,m are given constant matrices, determine the stability region ¥
< R such that for re ¥, (3.1) remaing stable.

Note that here the uncertain parameters are functions of onc parameter r.
Similar approach can be taken when they depend on more than one parameters,
however this will not be discussed in this note. It is can be easily shown that for
the morc complicated perturbation matrix E(r) in (3.2), Theorem 1 still holds and
the corresponding stability constraints are, in this case,

3.3

]=
Inequality (3.3} serves as a starting point in the siability analysis of sysiem (3.1)
and (3.2). It is significant because it enables us to swudy the effect of r on the
system swability. Such problems can not be solved dircaily by using cxisting
methods since the uncerain parameters ki(e) arc, in general, nonlinearty dependent
1o each other viar,

There are two possible methods to obtain the stability region ¥. One is an
analytical method by which the bounds for r are explicitly derived from 3.3
However, this is not always possible due 10 the arbiwrariness of the functions E(r)
and ki(r). The other method is a graphical approach where with the help of

m
T kDA<l
1

m
compuler software packages, such as Matlab, we can easily plot f{r) = PRAGEY
=1

as a function of r and therefore determine the stability region Y, which is the
region that satsfies {{r) < 1.
Exampled Consider the stability of the system

([ § 3]+ w0l b ¢Texol ) 1]

wherg the system matrix is affected by the uncentainty r through the nonlinear
functions ki{r) = ¢f and k3(r) = s, By Theorem 1, we first calculate the

cigenvalucs of P; defined in (2.1)
A(P1) = (-1,0) and A(P2) = (1,0}

and then the swability bounds given by (3.3) can be found as:
k<1 for ki(r}> 0, ka(n) > 0
¥ ki(e), ka(n) for ki(}> 0,ka(r) < 0
kan) -k <1 for kiff)< 0. k2N >0
ky{r) > -1 for ki< 0, k2 <0

Sub.sl.iluling k1(r) = e and k3(D) = in the above incqualitics, the equivalent
stabilily constrins in 1erms of r are
f<l for > 0,350

and by simple manipulation the stable region for the uncertainty r is found 10 be

- < 1 < |, which is rather close to the ¢xact stability bound, - <r < 1,25,
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Figure 1: Example 1, suability bounds of ky and k2.





