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ABSTRACT
A new solution to the linear separability problem is given. As is known, only
training sets that are linearly separable can be implemented with a single neuron, or a
single layer neural network., A new test to determine whether a given training set is
linearly separable is developed; the test is necessary and sufficient, Linear programming
techniques are employed to implement the test and analyze the problem. If the training
set is linearly separable, the weights for a neuron, or a single layer of neurons, that

correctly implement the separation of the training set are a by-product of the test.

1 INTRODUCTION

It is important to know if a classification training set is linearly separable, and if it is linearly
separable, to have an efficient technique 10 compute the weights of a neuron or a single layer neural network
to implement the set. In this way, if the classification training set is linearly separable, a single neuron or
a single layer neural network can be used instead of a multi-layer neural network, and the significant
computational effort typically associated with the training of the multi-layer neural network with the back-
propagation algorithm can be avoided. The purpose of this paper is two-fold: First, to stress that there
exist other methods besides the commonly used gradient descent procedures to test for linear separability,
namely linear programming techniques. Secondly, to present one such method which has advantages over
previous methods,

As is well known for classification training sets, a single neuron can only implement those which
are linearly separable [1-4]; the classification training set consists of input patterns and desired output values
that describe which of two possible sets the corresponding input patterns belong. Many previous methods
to determine linear separability assumed that a threshold logic gate was used in conjunction with a
switching function (that is, a function with binary inputs and binary outputs), and some of these may be
extended to real-valued functions. For instance, in [1], linear programming techniques as well as a method
based on the development of a "function wree” were presented to determine if a switching function is linearly

separable, The linear separability of a switching function is tested via the successive-elimination-of-
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variables method in [3]). In [5], to determine if a switching function was linearly separable, the switching
function is iteratively examined for invariant variable combinations and reduced accordingly. Gradient
descent methods have also been employed to determine the linear separability of a training set. The
Perceptron Convergence Theorem of [6] with its proof of convergence if the training set is linearly
separable, the least mean squares procedure of [7], and the Ho-Kashyap algorithm of [8,9] are three such
examples. A good collection of procedures to solve the linear separability problem is contained in {10).

In this paper, the linear separabilily problem is formulated as a linear programming problem,
With this, the testing of linear separability of the training set is equivalent to the determination of a feasible
solution of the linear programming problem; if a feasible solution exists, the training set is linearly
separable, and if not, the training set is not linearly separable. Compared to other methods, such as
Rosenblatt's Perceptron Convergence Theorem which only terminates if the training set is linearly
separable, the lincar programming problem has well understood terminating criterion. The linear
programming formulation also has a clear computational advantage as there are powerful methods, such as
the simplex method, to solve linear programming problems of large dimensions. In addition, by reducing
the problem to such a well studied mathematical problem, the results already developed for linear
programming can be applied to the lincar separability problem examined here. For example, if only part of
the given training set changes, the linear programming solution does not need to be recalculated from the
beginning. Also, sensitivity, or postoptimality, analysis can be used to study variations in the training set
and their effect on the linear programming solution,

The linear separability problem formulated and solved as a lincar programming problem has p
constraints and p variables, where p is the number of patterns. This is different from the earlier formulation
of [10] where the linear programming problem has p constraints and 2m variables, where m is the number
of weights. Furthermore, the approach here has the advantage of dealing directly with the test patterns
rather than with the weights, which is convenient in deciding the location of the separation surface. By
using the linear optimization function of the linear programming formulation, the choice of different
feasible solutions is possible, which results in a choice of different separating hyperplanes.

The test for the single neuron is extended to the single layer neural network; the linear separability
test for the single neuron is applied individually to each neuron in the single layer. If the test is successful
for each neuron, then the training set is linearly separable, and the weights which implement the single
layer neural network can be easily computed,

In Section 2, a single neuron and the problem of finding its weights are discussed, The problem of
linear separability is introduced in Section 3 where a new test for linear separability is developed and
formally stated in Theorem 3.2; it is also shown that the appropriate weights of the neuron are easily
obtained as a by-product of the test. In Section 4, the implementation of the linear separability test via

linear programming is described. Two examples illustrating the linear separability test for a single neuron
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are presented in Section 5. A single layer neural network is then discussed in Section 6, and the linear

separability test developed for the single neuron is extended to this case in Theorem 6.1.

2 THE NEURON
The neuron considered here is described by

y=CZ u; W) = fww), M

where f:R — R is the nonlinearity of the neuron, u = [uy, ..., u,,]' € R™1 i the input vector, w= [wi.
oo Wpl' € R™! is the weight vector, and u,, = 1 is the bias input for the neuron. The type of nonlinear
function considered here for the neuron must satisfy three conditions stated in the next section. This is not
however a significant restriction since those nonlinearities commonly used, such as the hyperbolic tangent
and signum functions, all satisfy these conditions.

Assume that a training set {u(3), d(j)} for 1 £ j £ p consists of p pairs of input vectors and desired

output scalars, where u(j) € R™! u_(j)=1,and d(j) € R for 1 < j < p. The Neuron Training Problem
{N) is defined as follows:
A
min F(w)
w

™)
A
Fw) ={d - ¢(U'w))'(d - $(U'w})
where d = [d(1), ..., d(p)]' € RP*! is the desired output vector, U = [u(1), ..., u(p)] € R™*P is the matrix
of input vectors, and §(2) = [f(z}), ..., fz)]' € RP*! with 2 = [z, ..., z,) e RP*1, The notation ¢(z)
represents a map which takes a p-dimensional vector z and returns another p-dimensional vector with
A

elements f{z;), where f is the neuron's nonlinearity, As can be easily shown, F(W) in (N) is actually the

sum of the squares of the error between the desired output and the output of the neuron:
FW = 3 (00 - [0Gm2 @
j=1
For the neuron to accurately classify the p input patterns u(j), it must produce outputs y(j) not
necessarily equal to the given d(j) but "close enough” so that the inputs are classified in the correct set.
Next, the case when the training set can be exactly implemented via a single neuron is examined.
Since
A
F(w)=0 3
for any w, if a w exists such that
,\ Fw) =0, @
then this w minimizes F(w) and solves (N). In this case, the output of the neuron exactly maiches the
desired one.
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Theorem 2.1:
If there exists a w such that
Uw=v )]
where ¢(v) = d, then
E(w) =0, ©
Proof;
Applying the neuron's nonlinearity to both sides of (5),
o(U'w) =¢(v) =d Q)
or
d- ¢(U'w)=0. 8
Substituting (8) into (N),
Fw)=0. + ®

It is known from the theory of linear algebraic equations that (5) has a solution if and only if
rank[U":v] = rank[U"]. Next, two cases are examined: (i} when there are at least as many weights as there are

patterns and (ii) when there are more patterns than weights.

Case (i): If there are at least as many weights as there are patterns, that is m 2 p, and rank[U'] = p, then a
solution w to (5) always exists for any v. In this case, there is typically an infinite number of solutions w.

The following corollary states this result; the proof is obvious.

Corollary 2,2:
A

If rank[U'] = p < m, then there always exist w such that F(w) = 0; these w are solutions to (5).

That is, given any training set, with rank[U'] = p < m, it can always be implemented via a single neuron.

There are, in general, an infinitc number of weights w* which can accomplish this, namely, solving
A

Problem (N) such that F(w*) = 0 where w* is any solution of (5). Clearly, for a classification training set

with rank[U'] = p < m, the neuron can correctly classify the given input patterns.

Case (ii): If there are more patterns than weights, that is p > m, then there is no guarantee that rank[U':v] =
rank{U'] or that (5) will have a solution for a given v. In this case, a solution to (N) with zero error does
not necessarily exist. When the training set is a classification training set, this also implies that the set

may or may not be linearty separable.



M. A. Sartori and P. J. Antsaklis, "A New Test for Linear Separability and Solution of the Classification
Problem,” Technical Report # 90-10-02, Dept. of Electrical Engineering, University of Notre Dame,
October 1990. 5

In this paper, given that the training set is a classification training set, a test for the linear
separability of the set is developed, and the necessary weights to correctly classify the set via a single

neuron are a by-product of the test; this test is the subject of the next section.

3 THE TEST FOR LINEAR SEPARABILITY
To perform the linear separability test, let there be more patterns than weights, that is p > m.

After the linear separability test has been successfully completed, the solution w to (N) can be easily

computed.
Definition 3.1;

A training set {u(j}.d(j)} for 1 < j < p consisting of p pairs of input veciors and desired cutput
scalars is called a classification training set if and only if the input vectors are considered to be in one of

two distinct sets, say T or F,

Depending on the particular nonlinearity of the neuron, the distinction between the sets T and F
can be specified in different manners. If the hyperbolic tangent function or signum function is used, then

the distinction between the sets T and F can be defined as:

ifu(j} € Tthen d(j) > 0
{ ifu(j) « F then d(j) < 0 (10)

If the sigmoid function, f(x) = 1/(1 + &%), is used, then the distinction between T and F can be defined as:
{ if u(j) € T then d(j) > 0.5
if u(j) € F then d(j)} < 0.5

However, by appropriately scaling and shifting the sigmoid 1o 2f(x) - 1, the distinction between T and F

(11)

described by (11) can be given by (10). The linear separability test developed here does not depend on the
particular nonlinearity used for the ncuron; the goal of training the neuron is to classify the input of the
neuron as being in one class or the other. In the following, the distinction described by (10) is used.

Let the classification training set {u(j),d(3)} for 1 < j < p, denoted herein as (U, d), be given. As
above, U = [u(1), ..., u(p)] « R™P and d = [d(1), ..., d(p)] « RP*L.

Definition 3.2:
A classification training sct (U, d) is linearly separable if and only if there exists a hyperplane

E ini =0Q. (12)

i=1

that separates the input vectors belonging 1o the set T from those belonging to the set F.

It is known that there exists a hyperplane that separates the input vectors belonging to the set T

from those belonging to the set F if and only if
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uy(Dwy +up(wy + ...+ u,(Dw, (<or>) 0 d(I)(<or>)0
(2w + up(Qwy + ... + 0 (2w, (<or>)0  and d(2)(<or>)0 (13)
uy(p)wq + up(p)wo + ... + U (P)Wp, (< 0r >) 0 dp)(<or>)0

is satisfied where (< or >) is appropriately assigned according 1o (U, d). It is clear that a classification
training set is linearly separable if and only if (13) is satisfied. If a w can be found which satisfies (13),
then this w is the weight vector which can be used to implement the neuron. Thus, (13) describes the
necessary and sufficient conditions for the linearty separability of the classification training set. However,
this does not necessarily imply that f(u(j)'w)} cquals the desired vector d(j) from the training set.
Next, the conditions and nomenclature for the linear separability test are developed. Consider a
single neuron described by (1} with the following restrictions on its nonlinearity:
@ f-z)=-),
(i) f(z)>0ifand onlyifz>0,and
(iii) f(z)<Oifandonly ifz<0.
These conditions imply that the graph of the ncuron's nonlincarity lies only in the first and third quadrants
and is symmetric about the origin. The conditions also place no restrictions on the input set (e.g., the
input set does not need to be binary). Given the desired output vector d, construct a diagonal matrix E e
RP*P with diagonal elements
&;j = signum(d()), (14)
that is ej; = 1 if d(j) > 0 and ¢;; = -1 if d(j) < 0 for 1 < j < p and with the rest of the elements in E being
zero. The matrix is denoted as E = E(d) and has the properties that E = E' and EE = 1. Writing the left hand
side of (13} as the product U'w and pre-multiplying by E, the following is obtained:

Uw>0 (15)
where U'= EU' ¢ RP*™ and 0= [0, ..., 0] « RP*!; note that d = Ed > 0 with d « RP*! by the
definition of E.

Equation (15) capsulizes the linear separability conditions for the neuron given a particular

classification training set since the information in d needed for classification is incorporated in E.

Lemma 3.1;
Given (U, d), define E = E(d) and let ﬁ' = EU'. The classification training set (U, d) is linearly

separable if and only if there exists a w which satisfies (15).

Given the classification training set (U, d), define E = E(d) as above. Let rank[U'} = m so that UU'

is nonsingular. Define
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M= (EU)(U'E) = UU" (16)
where M & RP*P and U* = (UU"Y 'U € R™* is the pseudo-inverse of U'. The test for linear separability

is presented in the next theorem,

Thegrem 3.2:

The classification training set (U, d) is lincarly separable if and only if there exists a v e RPH

which satisfies

Mv>0andv >0, an
Furthermore, if the set is linearly separable, the weight vector of the neuron can be computed by
w= I~J+; (18)

The proof of Theorem 3.2 is based on the following lemma. Assume that the classification
training set (U, d} is given, and let E = E{d) and G =EU.

Lemma 3.3:

lj'w >0 and ; >0 (19
where w = I}v for some I? e R™P and v ¢ RP*! .y = ¢(v) and ;: Ey, if and only if

Mv>0andv >0 (20)
where M= U'UE « R™P and ¥ = Ev.
Proof:
(») Let (19) be true. Then

Uw= U0y = (UUE)EY) = My @1

since EE = I; so U'w > 0 implies Mv > 0. Note that Ed(v) = 6(Ev) = 6(v) in view of condition (i) for
the neuron's nonlinearity; ¢(v) = y now implies that E¢(v) = Ey = ;, that is ¢(\7 )= ; . With ; >0,
conditions (ii) and (iii) imply that v > 0,

(¢) Let (20} be true. Clearly, 1\71 \7 > 0 implies that ﬁ'w > 0 in view of the definitions of lﬁ and ;
Similarly, as above, in view of conditions (ii) and (iii), v>0 implies that ¢(; }>0. In view of
assumption (i), ¢(;) =E¢(v). With ¢(v) =y, ¢(\7)=Ey=;; Lherefore; >0. ¢

In the proof of Lemma 3.3, note that ; = Ey > 0 where E = E(d) implies that y and d have exactly
the same sign for the corresponding elements. Next, using Lemma 3.3, the proof for Theorem 3.2 is

given.

Proof:
(#») Assume that (U, d) is linearly separable, that is (15) is satisfied for some w (Lemma 3.1); note that Ed
> 0. Define
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v:=U'w and y = ¢(v). (22)
In general, y #d. However, y and d have the same sign in each enry (E(d) = E(¥)) and Ey > 0 as is now
shown:
¥ =Ey = E¢(v) = 6(EV) @3)
because of condition (i). Also,
O(EV) = 9(EU'W) = $(U'w), @)

that is, y = ¢(U'w). Since U'w > 0, in view of conditions (ii) and (iii), y = ¢(U'w) > 0. So,
l~J'w>0and;>0
where w satisfies U'w = v and y = ¢(v). In view of Lemma 3.3, this implies that
My>0andv >0
where 1\7[ = EU'(U+E) = ﬁﬁ+ and v = Ev. Note that w = ﬂ+; = U+EEV = U+v satisfies U'w = v exactly
because of the way v was defined.
(¢) Assume there exists a ; which satisfies
Mv>0 and v> 0.
Let v=Ev and define y = ¢(v), ; =Ey, and w= U"v. In view of Lemma 3.3,
fJ‘w >0 and ; >0
is true, which implies that U and d are lincarly separable in view of Lemma 3.1.
If (U, d) is linearly separable and, hence, (17) is satisfied, w = U v = U*EEv = U*v is an

appropriate weight vector for the neuron since it satisfies (15). +

For a particular solution ; of (1M andw= ﬁ+;, the actual output of the neuron is given by:
¥ = 0(U'UTV) = $(EMY). 25)
In general, y # d. However, the corresponding elements of y and d have the same sign, and, as shown in the
proof of Theorem 3.2, the neuron with the appropriate set of weights will classify the training set correctly.
Clearly, if the nonlinearity is the signum function and the training set is linearly separable, y = d; so, if w
= ﬁ+; is used with the signum function, y = d. If the same w is used with a different nonlinearity, y #d
may be the case, but clearly the training set is classified correctly. This is illustrated in Example 5.1.

In the next section, performing the linear separability test via linear programming is discussed.

4 LINEAR SEPARABILITY VIA LINEAR PROGRAMMING
In this section, linear programming methods are employed to determine the existence of a ; such
that (17) is satisfied. The lincar programming formulation of intercst here is:
minimize c'x
subject to Ax=bh {LP)

x20
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where A € RP*P, x € RP*! ¢ ¢ RP*!, and b e RP*!. In order to implement the linear separability test

via linear programming, (17) must be in the form of (LP). The following lemma aids in this.

Lemmad.1;
There exists a v such that
Mv>0andv >0, an
if and only if there exists a ; such that
Mv>gandv 21 (26}
where 6>0,7>0,8= [0, .., 0)' e RP*! and t=1[1, ., 1] ¢ RP*1.

Proof:
(#) Clearly, if (17} is true for some ;, then there exist positive numbers ¢ and t such that (26) is true for
the same v ; note that in some cases ¢ and © may be small numbers.

(¢) If (26) is true for some :' then (17} is true since ¢ and T are both positive. 4

With Lemma 4.1, the lincar separability test of Theorem 3.2 can be implemented with linear
programming. Choose a vector g = [g, ...,0)]" & RP*! such that 6 > 0 and choose another vector 1=

[1, ..., 7]’ € RP*! such that t > 0. Then, solving

~

minimize c'v
subject to Mv > g 27)
vt

ensures that Mv > 0 and v > 0. Actually, via Lemma 4.2 in the following Section 4,1, ¢ and T are not

restricted to be small in magnitude as is suggested by Lemma 4,1, Using the standard linear programming
A
manipulation of converting lower-bounded variables to nonnegative variables, a new variable is defined: v =
A

v -1 and v20is equivalent to x 2 0 of (LP). Rewriting (27), the linear programming problem becomes:

minimize c'(; - 1)
subject 1o My -1)2(@-M 1) ©28)
v-1)20

Comparing (28) to (LP), A = 1\71 X= (; -17),and b = (g - M 7). The choice of the vector ¢ is left to
the particular implementation.

Applying linear programming to solve (28), the determination of the existence of a ; which
satisfies (17) is accomplished. If a; can not be found that satisfies (28), that is a feasible solution to (28)
does not exist, then the training set is not lincarly scparable. If a v can be found that satisfies (28}, then the

training set is linearly separable, and the weights that implement the neuron are given by (18).
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4.1 Discussion

In this section, the solutions determined via linear programming are examined in three respects.
First, it is shown that ¢ and T can be chosen arbitrarily (¢ > 0, T > 0). Secondly, with the choice of ¢
arbitrary, the magnitudes of the individual elements of the output vector y can be arbitrarily bounded from
below, which implies an increase in the robustness of the output. Thirdly, with the choice of ¢ in the
optimization function unrestricted, particular feasible solutions can be chosen over others.

First, via Lemma 4.2, it is shown that & and © can be chosen arbitrarily.

Lemma 4.2;
There exists a v such that
Mv2gandv 21, (26)
where ¢ > 0 and t > 0 if and only if there exists a 3 such that
My2nandy 24 29)
where N =6yY>0, L =1y >0,y>0, 0= [, .. N € RP*! and p= . .., pI' ¢ RP*L.

Furthermore, the weights w = U v and w= U v are related by

x

w=wY. (30}
Proof:
(») Assume that (26) is true. Mulnplymg all of (26) by v>0,
M v‘y >gyand vy 2 17. 31
Letting : = ;y,
ﬁ:zg_an_andv:zz_y:u, (32)

(¢) Clearly, the reverse is true by multiplying (29) by 1/y fory> 0.

Furthermore,w U v=U vy=wy. ¢

Thus, by scaling ¢ and 1 by an arbitrary ¥ > 0, both v and w are also scaled by v. If there exists a
; such that (26) is true for a particular & and T, then there exists a; such that (26} is true for any ¢ and 1.
With respect to solving (27} using linear programming, the choice of ¢ and 1 is not important; if the
training set is linearly separable, then there exists a v such that (26) is true for arbitrary o and 1. In terms
of the separating hyperplane described by w, the choice of ¥ does not move the hyperplane but merely
scales the weights by ¥, which increascs the robustness of the output of the neuron as is shown next.

Secondly, the significance of the choice of ¢ and its relation to the neuron's output are examined.
As stated in (25), the output of the neuron is given by

y = $(EMV).
In view of (27), the magnitude of the individual elements can be bounded from below by:
Ey = 6(Mv) 2 $(0). (33)
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Thus, the choice of ¢ bounds the output y. With the choice of o arbitrarily large, the magnitude of the
elements of y can be forced to be arbitrarily large by increasing the robustness of the neuron’s output.
Thirdly, with the formulation of the linear separability test of (17) as the linear programming
problem of (27), the choice of different feasible solutions is possible via the vector ¢ in the linear
optimization function. Since the jﬂ'I element of v & RP*! corresponds direcily to the jlh pattern of the
training set and since v is closely related to the output of the neuron, the manipulation of ¢ causes certain
feasible solutions to be chosen over others. For instance, if all the elements of the output need to be
bounded from below by the same value, as with g of (33), but the magnitudes of certain elements need to
be smaller than others, this can be accomplished through the choice of c; if the magnitude of the desired
output y(j} needs to be as small as possible compared to the magnitudes of the other patterns, choose the

element c; of ¢ larger than the other components of ¢. As another example, if the magnitude of the desired

output y(j} needs to be as large as possible compared to the magnitudes of the other patterns, choose the
element G of ¢ smaller than the other components of ¢. This is illustrated in Example 5.2. These types of
choices of feasible solutions arc not possible with the linear programming formulation of {10}, as is
discussed next.

4.2 Relation to Previous Linear Programming Formulation
Clearly, with Lemma 3.1, the linear separability problem can be solved by implementing (15)
with linear programming (LP). Defining two new variables w* and w™ in the standard linear programming
manipulation such that
w=w"-w €0

and using Lemma 4.1, the linear programming formulation of (15) is

“"+
minimize ¢

w

B Ll +
subject to [U-U1 [“’] >a (35)
w

[w’f] -,
w
Comparing (35) to (LP), A = [ﬁ' -I~J'], x=[w" W', and b =g The variables in this formulation are w"*
and w’ , and it is not clear how to appropriately sclect ¢ in the optimization function to stress certain
patterns over other ones, which was accomplished with the previous linear programming formulation; it is
not easy to manipulate the physical variables of the problem by selecting parameters in (35). In previous
formulations [10], it is suggested that ¢ be set 10 zero; the existence of a feasible scolution is of main
interest with this formulation.

Comparing (27) and (35}, both require p constraints, but (27) has p variables while (35) has 2m

variables. Furthermore, the optimization function is not utilized in (35) but is utilized in (27). As
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discussed previously, with the use of the optimization function in (27), the choice of feasible solutions is

possible, and hence the choice of the placement of the separating hyperplane is possible.

5 EXAMPLES
xample 5.1:
In [11], the following input and cutput training patterns are shown to be linearly separable but to
cause local minima entrapment for a gradient descent algorithm; in fact, this example was used to illustrate
the drawbacks of the back-propagation algorithm:

1

1
U= 1]e R5x4
1
1

OO -
bt (T () et
Qe =D

and
d=[111-1-17e R™*L
If the input vectors are plotted on the vertices of a cube, it is clear that there exists a hyperplane that
separates the two sets of input vectors. Solving Theorem 3.2 using (27) with ¢ € IR5 *1 thosen arbitrarily
asavectorof units, =1, andt=1,a v>0is found, and the training set is linear separable. Using v =
Ev,
v=(1 51 -1 -1]. (36)
Using (18), the weight vector is
w=[2 24 3], 37
and U'w = v. The training set and the separating planc described by w are shown in Figure 1. With the
signum as the nonlinearity, the output of the neuron is
y=[111-1-1=d,
If the hyperbolic tangent is used instead of the signum function as the neuron's nonlinearity, then the
output of the neuron is
y = [0.7616 0.9999 0.7616 -0.7616 -0.7616] =d, (38)
but signum{y(j)) = signum(d(j)} for 1 < j < p; that is, the neuron classified correctly, as expected.
If (27) is solved with ¢ « R>*! as the unit vector, ¢ = 10, and = 10,
v=[10 50 10 -10 -1071,
w=[20 20 40 -30},
and U'w = v; this is equivalent to scaling v and w of (36) and (37) by ¥ = 10 as predicted in Lemma 4.2,
With this weight vector, the same separating plane as in Figure 1 results. With the hyperbolic tangent
function as the neuwron's nonlinearity, the output of the neuron is
y = {09999 1.0000 0.9999 -0.9999 -0.9999]' =d,

and the robustness of the result is increased compared to (38).
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xampl
A 4x4 reling, as described in [12), is used in this example, Twenty-four different pattemns are used
in the classification training sct as shown in Figure 2. Six different letters are used, and each is translated
four times over the retina. The input patterns generated for these patterns consist of either a 1 (black) or a

-1 (white) and are formed by copying the clements of the retina matrix row-wise into a vector such that U €

17 . . . . .
R is the input matrix. It is desired to map the letters X, T, and C to one class and the letters L, J,

and H 1o another. With the signum used as the neuron's nonlinearity, the desired scalars associated with the

input patterns for X, T, and C are assigned a 1, and those associated with the input patterns for L, J, and H

24x1

are assigned a -1 such thatde R is the vector of desired outputs. The input space is of high

dimension, and it is unclear if the training set is lincarly separable. Applying Theorem 3.2 and (27) with ¢

24 . ~ , . . .. .
eR ! as the unit vector, 6 = 1,and T = 1,av > 0 is found, which implies that the training set is

linearly separable. Using v=Ev,

1.3333
1.0000
1.0000
1.0000
8.8333
8.0000
1.5000
1.0000
1.0000
1.0000
1.0000
1.0000

v = -1.3333
-1.0000
-1.0000
-1.0000
-14.8333
-1.0000
-3.5000
-1.3333
-1.0000
-1.0000
-1.0000
-2.5000

Using (18), the weight vector is

5.6667
T.6667
1.7500
-0.7500
2.2500
-2.5000
-0.5000
1.5000

w = -(0.5600
-5.0000
0.2500
3.0833
-1.2500
3.9167
5.7500
1.3333
-3.3333
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Furthermore,
1.0000
1.0000
1.0000
1.0000
8.8333
7.6667
1.8333
1.0000
1.0000
1.6667
1.0000
1.0000
U'w = -1.0000 39

-1.3333
-1.0000
-1.0000
-14.8333
-1.3333
-3.5000
-1.0000
-1.0000
-1.0000
-1.0000
-2.8333

and the output of the neuron is
y=111111111111-1-1-1-1-1-1-1-1-1-1-1-1)=4d.

As explained in Section 4.1, by changing ¢, the choice of the feasible solution can be changed. As
an example, suppose it is desired that the magnitudes of the neuron's outputs for the T input patierns are as
small as possible compared to the magnitudes of the outputs for the remaining input patterns. Further,
assume that the magnitudes of the outputs should be at lcast one. To satisfy these requirements, choose ¢ =
{111111111111111110001000100010001111) andc =1=1. Solving Theorem 3.2

using (27), a v > 0 is found. Using v = Ev,
1.0000
1.0000
1.0000
1.0000
8.7500
12.5000
10.5000
13.0000
1.0000
1.0000
6.5000
1.0000
v = -2.7500 (40)
-1.0000
-1.0000
-1.0000
-1.0000
-1.0000
-1.0000
-1.0000
-1.0000
-1.0000
-1.0000
-2.7500
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Using (18), the weight vector is

-1.8750
3.6250
0.2500
1.6250
-0.6250
-3.8750
-1.8750
2.8750

w = 0.8750
-5.0000
1.7500
3.1250
-2.7500
-0.5000
8.6250
1.2500
-3.2500

To examine the magnitude of the ncuron's output, U'w = v here, and the constraints are clearly satisfied.
Comparing elements 17 thru 20 of (39) and (40), a feasible solution with the desired properties has been
selected by the choice of ¢.

6 SINGLE LAYER NEURAL NETWORK
In this section, the results for a single ncuron arc extended to a single layer neural network. First,
the single layer and its corresponding training problem arc described. The linear separability for the single
layer neural network is presented in Theorem 6.1; the single neuron's test is performed on each neuron in
the layer.
The single layer neural network is comprised of n parallel neurons each described by
y; = f{u'w;) 41)
for 1 <i<n. For the i’ neuron, the function f:IR — R is the nonlinearity of the neuron, u = [uy, ...,
up,]' € R™! is the input vector, W= Wy, o Wil e R™" is the weight vector, and Uy, = 1 is the bias
input for the neuron. Once again, the type of nonlincar function considered here for the neuron must satisfy
the three conditions stated in Section 3.
Assume that a training set consisting of p pairs of input vectors and desired output vectors {u(j),
d(j)) for 1 <j < p is given, where u(j) € R™', u,() = 1, and d@) = [d; (), ..., d,()) e R™' for 1<j<
p. The output of the single layer neural nctwork is described by
Y = &(U'W) (42)
where Y = (yy, ..., yo]' € RP*" is the matrix of the single layer's outputs, yi = [y(1), ..., y;(p))'e R™" for
1 £i < nis the vector of a particular ncuron's output, U = [u(1), ..., u(p)]' € R™7T is the matrix of input
vectors, W= [wy, ..., wp] € R™" is the matrix of weight vectors, and ®(Z) = [¢(z1), ..., ¢(z,)] € RE™
with Z = [z, ..., z,] € R"". The notation &(Z) represents a map which takes a matrix Z with elements

zj; and returns another matrix of the same size with elements f(zji), where f is the neuron's nonlinearity.

The Single Layer Neural Network Training Problem (L) is defined as follows:
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min i’-\"(W)
L)
E‘(W) =tr((D - $(U'W)) (D - &(U'W)))
where “tr" is the trace of a square matrix, D = [dy, ..., d,)} ¢ RP" is the matrix of desired outputs, dj =
[d;(1), ..., di(p)I'e R** for 1 <i < n are the desired output vectors. Note that with n = 1, (L) reduccs to

A
(N). In equation (L), F(W) is actually a sum of the squares of the error between the individual desired

output elements and the outputs of the ncurons:
A np
FW)= 3 3 (d0) - (@Y wi)2. @3)
k=1j=1

Given the classification training set (U, D), definc E; = E(d;) for 1 i <nand let IT![' =EU' for 1

£i1<n, Letrank[U'] = m. Define
M= (BUY(U*E) = GU; (44)
for 1 <i<nwhere Ut = (UU‘)'IU is the pseudo-inverse of U'. The test for linear separability is presented

in the next thcorem.

Theorem 6.1:
The classification training set (U, D) is lincarly separable if and only if there exists a ;i e RPX!

for 1 £i < n which satisfies

M;v;> 0 and v; > 0. @5)
Furthermore, if the set is linearly separable, the vectors of the weight matrix W of the single layer can be
computed by
w;=Uj vy, (46)
Proof:

The proof is based on applying Lemma 3.3 to each ncuron in the layer and following the proof of Theorem

3.2 for each neuron in the layer. +

For a particular solution :, and w; = ﬁi+;i for 1 €1 < n, the output of the i neuron is given by:
¥i = 0(U'G; V) = 0EM v )

for1<i<n,
The test for linear separability for the single layer ncural network can be implemented with linear
programming by using the method discussed in Section 4 for the single neuron. Using the linear

programming formulation

minimize c';i
subject to Myv,zga (48)

vVizL
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for each neuron in the single layer (which is the same formulation for the single neuron given by (27) in
Section 4), the existence of a v such that (45) is satisficd for 1 i < n can be determined.

7 CONCLUDING REMARKS

A new solution to the linear scparability problem is presented here for both a single neuron and a
single layer neural network. When there are at lcast as many m weights as there are p patterns, that is m 2
p. and rank{U'] = p, a training sct is always implementable by cither a single neuron or a single layer neural
network and is always linearly separable. For the case where there are more patterns than weights, that is p
>m, a new test is provided to determing if a given classification training set is linearly scparable; the test is
necessary and sufficient. If the training sct is lincarly separable, the weights for a ncuron or a single layer
that correctly classifies the training sct arc a by-product of the test. The test can be implemented using
linear programming. This, in addition to numerical advantages, reduces the problem to a very well studied
mathematical problem, and the variety of results developed for linear programming, such as postoptimality
analysis, can be used to study the lincar scparability problem, Furthermore, through the use of the linear
optimization function, different feasible solutions arc possible, and hence different separating hyperplanes
are possible. Note that some of the results in this paper have first appeared in [13] and [14].

It is suggested here that if a classification training set is given, the test in Theorem 3.2, or in
Theorem 6.1, should first be conducted. The lincar separability of the training set can thus be immediately
determined. This simple procedure could save a large amount of time. For a training set that is linearly
separable, instead of training a multi-layer neural network with the back-propagation algorithm, the test
described in this paper can first be performed, and the weights which implement this training set via a

single neuron or a single layer ncural network can be derived.
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Figure 1 Training set and scparating hyperplane found witho=1and t= 1.
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Figurc 2 Retina paticrns for the letters X, T, C, L, J, and H.





