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Abstract

Discrete event systems (DES) are dynamical systems which evolve in time by the occurrence of events
at possibly irregular time intervals. "Logical” DES are a class of discrete time DES with equations of
motion that are most often non-linear and discontinuous with respect to event occurrences. Recently, there
has been much interest in studying the stability properties of logical DES and several definitions for
stability, and methods for stability analysis have been proposed. Here we introduce a logical DES model
and define sability in the sense of Lyapunov for logical DES. Then we show that a more conventional
analysis of stability which employs appropriate Lyapunov functions can be used for logical DES. This
standard approach has the advantage of not requiring high computational complexity (as some of the others)
but the difficulty lies in specifying the Lyapunov functions. The approach is illustrated on a manufacturing
system that processes balches of N different types of parts according (o a priority scheme, one of Dijkstra's
"self-stabilizing” distributed systems, and a load balancing problem in computer networks.

1.0 Introduction

Discrete event systems (DES) are dynamical systems which evolve in time by the
occurrence of events at possibly irregular time intervals. Some examples include flexible
manufacturing systems, computer networks, logic circuits, and traffic systems. "Logical"
DES are a class of discrete time DES with equations of motion that are most often non-
linear and discontinuous in the occurrence of the events. Recently, there has been much
interest in studying the stability properties of logical DES and several definitions for
stability, and methods for stability analysis have been proposed. Here we introduce a
logical DES model and define stability in the sense of Lyapunov for logical DES. Then we
show that the metric space formulation in [30] can be adapted so that a conventional
analysis of stability which employs appropriate Lyapunov functions can be used for logical
DES. An important advantage of the Lyapunov approach is that it does not require high
computational complexity (as some of the other new approaches) but the difficulty lies in
specifying the Lyapunov function. The approach is illustrated on a manufacturing system
that processes batches of N different types of parts according to a priority scheme, one of
Dijkstra's "self stabilizing" distributed systems [7], and a "load balancing problem" in
computer networks. The full version of this paper which includes the proofs in given in
[31].
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The foundations for the study of stability properties of logical DES lie in the areas of
general stability theory (the approach used herein) and theoretical Computer Science (recent
DES-theoretic research). The two (related) main areas in theoretical Computer Science that
form the foundation for logical DES-theoretic stability studies are temporal logic and
automata. Intvitively speaking, in a temporal logic or automata-theoretic framework a
system is considered in some sense stable if (i) for some set of initial states the system's
state is guaranteed to enter a given set and stay there forever, or (ii) for some set of initial
states the system's state is guaranteed to visit a given set of states infinitely often.

In temporal logic, stability characteristics are most often represented with temporal
formulas from a linear or branching time language (modal logics) and either a proof system
or effective procedure is used to verify that the temporal formula is satisfied
[9,15,28,11,12,18,5,22]. Stability concepts for logical DES such as finite automata have
foundations in the study of, for instance, Buchi and Muller avtomata [4,17], and how
infinite strings are accepted by such automata. This automata theoretic work in Computer
Science has also been adapted for the study of stability of DES. In [20] the authors
introduce a special DES mode! (finite automaton) and use a state-space approach to develop
efficient algorithms for the study of the two types of stability described above. They also
provide approaches to synthesize stabilizing controllers for DES and to study several other
characteristics of logical DES (for more details see [19]). Related studies are given in
[3,26,13]. Certainly, results in the Ramadge-Wonham framework [27] can be utilized for
the study of types of stability of logical DES.

Certain general formulations for the study of stability are relevant to the study of
stability properties of logical DES. For instance, there have been studies of stability of
asynchronous iterative processes in [29]. For an introduction to general stability theory
and an overview of such research see [16]. Finally, in other DES studies, there have
recently been significant advances in the study of stability properties of manufacturing
systems in [24,14].

In Section 2 we introduce a logical DES model and compare it to several other models
to help characterize the class of systems that we can represent and study. In Section 3 we
define stability in the sense of Lyapunov for DES and give necessary and sufficient
conditions for stability of invariant sets of DES in a metric space. The applications are
given in Section 4 and Conclusions in Section 5.

2.0 A Discrete Event System Model
We will consider stability properties of discrete event systems that can be accurately
modelled with
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where X% is the set of states, G is the set of events,
£ % m% @)
for ee & are operators,
g:%-P(%)-{2) 3)

is the enable function, and EyC &N is the set of valid event trajectories. Here, for an
arbitrary set Z, [P(Z) denotes the power set of Z. We only require that fe(x) be defined
when ee g(x). We associate "time” indices with the states and events so that xx€ %
represents the state at time ke N and exe  represents an enabled event at time ke N if
exe g(xp). If at state xpe %, event exe & occurs at time ke N (randomly, not necessarily
according to any particular statistics) then the next state x4 is given by application of the
operator fe,, i.€., Xk+1=fe, (XK). Events can only occur if they lie on valid event trajectories
as we now discuss.

Any sequence {xx)e %N such that for all k, Xk+ 1=fe, (xx) Where exe g(xy), is a state
trajectory. The set of all event trajectories denoted with E is composed of those sequences
{ex}e BN such that there exists a state trajectory {xx}e %N where for all k, exe g(xx).
Hence, to each event trajectory, which specifies the order of the application of the operators
fe, there corresponds a unique state trajectory (but, in general, not vice versa). The set of
valid event trajectories EyvCE represents the event trajectories that are physically possible in
G. Hence, even if xie % and exe g(xy) it is not the case that ex can occur unless it lies on a
valid event trajectory that ends at Xi.1, where xi+1=fe, (x). In Section 4 we shall see that
the use of Ey can facilitate the modelling of many DES and provide flexibility in the study
of stability properties. Let Ey(xp)<Ey denote the set of all possible valid event trajectories
that begin from state xge %. Below, we shall also utilize a special set of allowed event
trajectories denoted with E,, where E,CEy, and allowed event trajectories that begin at
state xge % denoted by E;(xq).

Let Ey, for fixed ke N, denote an event sequence of k events that have occurred (by
definition Eg=0). If Ex=eg,e1, k-1 We let ExEe Ey(xo) denote the concatenation of Ex
and (the infinite sequence) E=eg,ex+1,-, i.e. ExE=eq,e1,,€k-1,€k,€k+1,*. The function
X(x0,Ex.k) will be used to denote the state reached from xpe % by application of event
sequence Ey such that ExEe Ey(xp). (By definition, X(x0,8,0)=x¢ for all xoe %.) For
fixed xq and Ey, X(xg,Ex.k) shall be called a morion. We assume that for all xpe %, if
ExExEe Ev(xp)

X (X(x0,Ex.k),Ex.k)=X(x0,Ex+k',k+k') )
for all k,k'e N, such that k'2k where Ep,=ExEx. This is the standard semi-group
property for dynamical systems.
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Notice that any system that can be represented with the Genera! and Extended Petri nets
[25] can also be represented with our DES model (1). (To see this, choose %=N", where n
is the number of places, let the transitions be events, g defines how transitions are enabled,
and f. defines what happens when transitions are fired). There are many models that have
been compared to the General and Extended Petri net so this helps to characterize the
generality of our model in relation to other logical DES models [25,21] and it shows that
our logical DES model is quite general and hence our results will apply to a wide class of
DES.

3.0 Necessary and Sufficient Conditions for the Stability
of Invariant Sets of DESs in a Metric Space

The following adapts the formulation developed in [30] to the study of stability
properties of systems represented by the logical DES model introduced above. Let
p:%x%—R denote a metric on %, and {%:p} a metric space. Let %% and p(x, %)=
inf{p(x,x"):x'e %z} denote the distance from point X to the set %,. By a functional we

shall mean a mapping from an arbitrary set to R.

Definition 1: The r-neighborhood of an arbitrary set %,c% is denoted by the set
S(%,:r)={xe %:0<p(x,%)<r} where r>0.

Definition 2: The set %% is called invariant with respect to (w.r.t) G if from xp€ Ly it
follows that X(xg.Ex.k)€ %m for all Ey such that ExE Ey(xo) and ke N.

Definition 3: A closed invariant set %mC % of G is called stable in the sense of Lyapunov
w.r.t. E, if for any €>0 it is possible to find a quantity 5>0 such that when p(x0, B m)<d
we have p(X(x0,Ex.k), % m)<e for all Ek such that EEe Ea(xq) and ke N. If furthermore
p(X(x0.Ex.k), % m)—0 for all E such that EyxEe E,(xp) as k—eo, then the closed invariant

set %y of G is called asymptotically stable w.r.t. Eq.

Definition 4: A closed invariant set X< % of G is called unstable in the sense of
Lyapunov w.r.t. E4 if it is not stable in the sense of Lyapunov w.r.t E,.

Definition 5: If the closed invariant set XmC% of G is asymptotically stable in the sense of
Lyapunov w.r.t. Ej, then the set X%, of all states xo€ % and xgg %y having the property
p(X(x0,Ek.K), % m)—0 for all Ex such that ExEe E,(xp) as k== is called the region of

asymptotic stability of mw.r.t. Eq.
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Definition 6: The closed invariant set %, <% of G with region of asymptotic stability %4
w.r.t. E; is called asymptotically stable in the large w.r.t. Eq if %,=%.

The following Theorem provides necessary and sufficient conditions for stability of the
DES defined in (1).

Theorem 1: In order for a closed invariant set %6 <% of G to be stable in the sense of

Lyapunov w.r.t E, it is necessary and sufficient that in a sufficiently small neighborhood

S(%mir) of the set %y, there exists a specified functional V with the following properties:

(i) For sufficiently small ¢1>0, it is possible to find a c2>0 such that V(x)>c2 for

x€ S(Hm:r) and p(x,Bm)>c)-

(ii) For any c4>0 as small as desired, it is possible to find a ¢3>0 so small that when
p(x, % m)<cs for xe S(Xm:r) we have V(x)<scq.

(iii) V(X(xg,Ex.k)) is a non-increasing function for ke N, for xge S(%m:1), for all ke N, as
long as X(xg,Ex.k)e S(Xm:r) for all Ey such that ExEe E (xq).

Corollary 1: If the closed invariant set X, €% of G is stable in the sense of Lyapunov
w.r.t E; then it is stable in the sense of Lyapunov w.r.t all E such that FaCE,.

Theorem 2: In order for a closed invariant set 6<% of G to be asymptotically stable in
the sense of Lyapunov w.r.t. E; it is necessary and sufficient that in a sufficiently small
neighborhood S(%m:r), of the set Xy there exists a specified functional V having
properties (i), (ii), and (iii) of Theorem 1 and furthermore V(X(x0,Ek,k))—0 as k—eo for
all Ex such that ExEe Ey(xp) and for all ke N as long as X(x0,Ex.k)e S(%mir).

Corollary 2: If the closed invariant set %R % of G is asymptotically stable w.r.t E, then it
is asymptotically stable w.r.t all Eg such that E;CE,.

4.0 Discrete Event System Applications

In this Section we show how to perform conventional Lyapunov stability analysis for
three types of DES applications: (i) 2 manufacturing system that processes batches of N
different types of parts according to a priority scheme, (ii) one of Dijkstra's "self
stabilizing" distributed systems, and (iii) a load balancing problem in computer networks.

In each case we specify the logical DES model (1) and the invariant set %, pick the metric
p. choose the Lyapunov function V(x), then show that V(x) satisfies the appropriate
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properties. Detailed comparisons to similar applications found in the literature are given
throughout.

4.1 Manufacturing System

The first example that we shall consider is the manufacturing system shown in Figure 1
that processes batches of N different types of parts according to a priority scheme. There
are N producers P;, where 1<i<N, of parts of different types. The producers P; place
batches of their parts in their respective buffers B;, where 1<isN. These buffers B; have
safe capacity limits of b; where bj>0, 1<i<N. Let x;, 1<i<N, denote the number of parts in
buffer B;. Let x; for N+1<i<2N denote the number of P;.N type parts in the machine. The
machine can safely process less than or equal to M (where M>0) parts of any type, at any
time. As the machine finishes processing batches of Pj type parts they are placed in their
respective output bins (Pi-bins). The producers P;j can only place batches of parts in their
buffers B; if xj<bj. Also, there is a priority scheme whereby batches of P; type parts are
only allowed to enter the machine if xj=0 for all j such that j<i<N, i.e. only if there are no
parts in any buffers to the left of the B; buffer. Next, we specify the DES model G for the
manufacturing system.

9%

P;-Bin P>-Bin Pn-Bin
Figure 1. Manufacturing System with Priority Batch Processing

Let %=N2N and xye %, where xx=[x] X2 - XN XN+1 XN+2 - X2N]! (t denotes
transpose) denote the state at time k. Let the set of events T be composed of events ep; for
1<i<N (representing the case where producer P; places a batch of op; parts in buffer Bj),
events e,; for 1<i<N (representing the case where a batch of 0y Pj parts, from buffer B;,
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arrive at the machine), and events egj for N+1<i<2N (representing the case where a batch
of og; P; parts depart from the machine and are placed in their respective output bins).
According to the above specifications the enable function g and event operators fe for
e€ g(xy) are defined as follows:
(i) If x;<bj for any i, 1si<N, then epie g(xk) and

fepi(Xk)=[X1 X2 = X{+0pj - XN XN+1 XN+2  X2N]',

where aipie N-{0}, opi<ixi-bjl.

2N
@) If )h%x-<M, and for some 1, 1<i<N, x;>0, and x p=0 for all 2,
j=N+

2<i<N, then egie g(xg) and
feui(XKI=[X1 *** Xi-Caj * XN XN+1 XN4+2 =+ XN+i+Qai -+ X2NJ',
where ogie N-{0}, 0,i<xi, and

05i<

2N
3x;- Mj.
j=N+lJ |
(iii) If x;>0 for any i, N+1<i<2N, then egie g(xx) and

feqi(X1)=[X1 X2 = XN XN4+1 XN+2 ** XN+i-0igi * X2N]*

where agie N-{0) and ogi<xn+i.

We let Ey=E, i.e. the set of all event trajectories is defined by g and f, for ee g(xi). The
system operates in a standard asynchronous fashion.

This manufacturing system is a generalization of computer systems often used in the
study of a simple "mutual exclusion problem” in Computer Science [25,15}, and similar to
several applications studied in the DES literature. For instance, if 0tpi=0tai=0gi=1 then our
manufacturing system is similar to the "Two Class Parts Processing” example in [28]
(except they allow an arbitrary finite number of parts to enter their machine and consider
only two producers), and the manufacturing system example in [11,12] (they also consider
only two producers). For M=1, N=2, apj=0,5j=0gi=1, and the same priority scheme, the
system is also similar to the one used in the study of the "buffered producer/consumer
problem with a shared channel” described in [25]. '

Let

2N
%m1={xke % :xj<b; Vi, 1<i<N, and Y xj <€ M}. (5)

F=N+1
It is easy to see that % is invariant by letting xxe %m1 and showing that no matter which
event occurs it is the case that the next state Xg+1€ % m1. The invariance of Xy is the
property of the manufacturing system that has been studied extensively in similar
manufacturing system examples [28,11,12]. Also, if M=1, N=2, opj=0tai=09i=1, and the
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priority scheme is removed, then the proof of the invariance of %) is equivalent to
proving the mutual exclusion property often studied in Computer Science mentioned above.

Here, we provide a new study of the stability properties of the above manufacturing
system. Intuitively this will, for instance, show that under certain conditions if the
manufacturing system starts in an unsafe operating mode (too many parts in a buffer or in
the machine, or both) it will eventually return to a safe operating condition. This is more
carefully quantified in the following propositions.

Proposition 1: For the manufacturing system, the closed invariant set %) is stable in the
sense of Lyapunov w.r.t E;, where Ez=Ey, for any neighborhood of %1 (i.e., any r>0).

Proof: Let xk=[x] - x2N}!, Xk+1=[x"1 -~ x"2N], X=[X] - X2N]!, and X'=[X'1 - X"2N]"
Choose

2N
p(xk,tx;m1)=inf{2|xj-ij|:xe xml} 6)
j=1

and Vi(xg)=p(xk,%5m1) and then it is easy to show that this V satisfies the conditions of
Theorem 1 for all r>0. The details of the proof for this Theorem are contained in [23]. 8

Proposition 2: For the manufacturing system, the closed invariant set %1 is not
asymptotically stable in the large w.r.t. E,, where E=Ey.

Let EaCE; denote the set of event trajectories such that each event ee © occurs
infinitely often on each event trajectory Ee E;. If we assume for the manufacturing system
that only events which lie on event trajectories in E; occur, then it is always the case that
eventually each type of event (epj, €ai, 1<G<N, and egi, N+1<i<2N) will occur.

Proposition 3: For the manufacturing system, the closed invariant set X1 is
asymptotically stable in the large w.r.t Eg.

The use of the set Ky for the manufacturing system imposes what is called a "fairness”
constraint in Computer Science (in our example we require that each producer P; get fair
use of the machine) [8]. Such constraints are used in the study of temporal logic [5,15],
the mutual exclusion problem in Computer Science, and in [29] when the author studies
conditions under which the Lyapunov function can be constructed mechanically for a class
of logical DES.
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4.1 Dijkstra's Self-Stabilizing Distributed System

In [7] Dijkstra proposed three candidate systems as being "self-stabilizing” but
provided no proof of this property. Using a linear temporal logic approach (a sound proof
system) Thistle and Wonham [28] showed that with minor corrections the first of Dijkstra’s
systems was in fact self-stabilizing. Dijkstra's second system is studied with a branching-
time temporal logic approach in [22]. Here, we use the approach of Section 3 to study the
stability properties of the invariant set given by Thistle and Wonham for Dijkstra’s first
system.

The distributed system that Dijkstra proposes is a network of N+1 machines arranged
in a "ring". He denotes machine n with mp and each mp has as neighbors machines
m(n-1)mod(N+1) and M(n+1)mod(N+1}- The distributed system is shown in Figure 2. The
state of the machine my, is represented with € N, where x,<K for some K, K2N. We
must define when there can be communication in the ring and what will be transferred from
machine to machine. This is done by specifying G for the distributed system.

£
" '

Figure 2. Distributed System

Let %={xe NN+Ll:x=[xp x3 - xN]', each x;<K, where K2N} be the set of states. The
set of events is given by B={e;:0<i<N} and the occurrence of e; will indicate that a
communication between machines occurs. Next we define g and fe for all ee g(x).
Assume xx=[xg X} - xN]' and Xk+1=[x'0 X't - x'N]! and let "x:=y" denote the
assignment of x to the value of y, then
(i) If xN=X0, then ege g(xy) and feq(Xid=Xk+1 where for i, 1<i<N,

x'j:=xj and x'0:=(xg+1)modK, and
(ii) If xj=x;-1 for any i, 1<i<N, then eje g(xk) and fei(xk)=xk+1

where x'i:=x;.1 and Xx'j:=X; for all j=i.
With a minor correction to Dijkstra’s example Thistle and Wonham provide the following

invariant set %m2,
%m2={xke€ %:xj=x0 Vi, 0<i<N, or if 3 n,0<n<N xi=xg Vi, 0<isn
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and xj=(xg-1)modK, Vj, n<j<N) )]
and explain how this is an invariant set. We choose Ey=E, and note that each event ¢j€ [
will occur infinitely often on each event trajectory in Ey (since for no event to be enabled it
must be the case that xgexy and x;=x;.1 for all i, 1<i<N which can never be true).
The following Proposition and its proof provide a more conventional characterization
and analysis of the stability properties of Dijkstra's first system than in [28].

Proposition 1: For Dijkstra's distributed system the closed invariant set Lm2 is
asymptotically stable in the large w.r.t. E5, where Ea=Ey.

Proof: Let k=[x - XN]!, X'=[X"1 -+ X'N]%,

P (xk, S ma)=inf { max { ixg-xobbx %1l lxn-kn1 } : %€ %ma }, ®)
and Va(xp)=p(xx.%m2). This choice results in the satisfaction of conditions (i) and (ii) of
Theorem 1. For condition (iii) of Theorem 1 it is shown in [31] that for all xy& %2 and
all ee g(xx) when e occurs and xy4+1=fe(Xx), then Va(xp)2Va(Xk+1)- Asymptotic stability
follows from the fact that the state will never return to a previous value as long as it is
outside the invariant set. 8

4.3 Computer Network Load Balancing Problem

Consider a network of computers described by an undirected graph (C,A) where
C=(1,2,...,N} represents a set of computers that are numbered with ieC, and AcCxCis
the set of connections between the computers. We require that if ie C then there exists
(,j)e A (or (j,i)e A) for some je C (i.e., every computer is connected to the network).
Also, if (i,j)€ A then (j,i)e A. Each computer has a buffer which holds tasks (load) each of
which can be executed by any computer in the network. Let the load of computer i€ C be
given by x;; hence, xj20. Each connection in the network (i,j)e A allows for computeri to
pass a portion of its load to computer j and vice-versa. It also allows computer i and
computer j to sense the size of the load of one another (an} two computers i and j such that
(i,j)e A may not pass portions of their loads or sense the values of each others loads).

We assume that initially the distribution of the load across the computers is uneven and
seek to prove properties relating to the system achieving a more even distribution of tasks
so that the computers in the network are more fully utilized. For convenience we assume
that the computers will not begin working on any of the tasks or receive any more to
process until the load has been balanced (This assumption is easily lifted and our analysis
still applies as we discuss below.). Next we specify the model G for the computer network
load balancing problem.
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Let %5=NN denote the set of states and xg=[x] x2 - xN1! and Xg+1=[x"1 X2 - X'N]!
denote the state at time k and k+1 respectively. Let S={ell: (ij)e A,ae N-{0}}U{eo} be
the set of events for G where el represents the case where o amount of load of computer i
is transferred to computer j and ep represents an null event (i.c., that no load is transfered).
Let Me N-{0} be the amount of load imbalance tolerated between any two computers i and
j where (i,j)e A. (The case where M=0 is discussed below.) Next we specify g and f for
ee g(xy):

(i) If for any (i,j)e A, Ixj-x;i>M then
(a) if xj>x;, then ei&e g(xp) and fe(x)=Xk+1 where e=ci&, X'i=Xj-0, X'ji=Xj+Q,
x'k:=x for all k=i, and O<a<(1/2)Ix;-xjl for ae N.
(b) if x;>x;, then ej&e g(xy) and fe(xg)=xXk+1 where e=e»‘g, X'ji=xj-0, X'i:=Xj+Q,
x'k:=xj for all k=i,j, and O<a<(1/2)Ix;-x;l for e N.
(i) If Ixj-x;l<M for all (i,j)€ A then ege g(xy) and fe (X=X
Let Ey=E and %m3={xxe %:ix;-xjl<M for all (i,j)e A} which is clearly invariant.

This load balancing problem is similar to the one in [1] except they require the load of
the computers to be represented by a continuous variable, seck a perfect balance of tasks,
allow a computer to simultaneously pass load to several neighboring computers, and allow
for the possibility that a computer's information about the load of adjacent computers is
outdated. They also require that the system is "partially asynchronous” so that they can
achieve load balancing when the computers only have possibly outdated information about
neighboring loads. Various forms of the load balancing problem have also been studied in
the DES literature [2] and extensively studied in the Computer Science literature (See
[1,2,6] and the references therein).

The following Proposition provides a new characterization and analysis of the
Lyapunov stability of the computer network load balancing problem described above.

Proposition 5: For the computer network load balancing problem, the closed invariant set
%m3 is asymptotically stable in the large w.r.t. E, where E;=Ey.

Proof: Let Xx=[X] - N]!, X'=[X'1 -+ X'N]!, and choose

p(xk, %m3)=inf{ max { k1-x1l - xN-knt }: XeXm3} ©)
and V3(xk)=p(xk, 6 m3) so that conditions (i) and (ii) of Theorem 1 are satisfied. For
condition (iii) of Theorem 1 it is shown in [31] that for all xxe %m3 and all ei&e g(xx) when
cﬂ occurs V3(xk)2V3(xk+1) and that the invariant set is asymptotically stable in the large
wrt Eg. B
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H tasks enter the computer network or get processed by one of the computers ie C we
let a new initial state xq reflect the increased or decreased load and the above stability
analysis shows that the load will still eventually balance. (This characteristic was also
discussed in [1}.)

Suppose that we had allowed M=0 and assumed that (C,A) was also strongly

connected. The region of asymptotic stability of the subsequent invariant set
% m3={xk:xj=x; for all (i,j)e A} is given by

N
%a={xk: ( lxi}nostﬂ}.

That is, the region of asymptotic stability is given by the set of all initial states such that the
total load can be divided evenly among the N computers ie C.

5.0 Conclusions

It has been shown that it is possible to define and study Lyapunov stability of a wide
class of logical DES (e.g., DES modelled with Extended Petri nets, finite automata, and
others) by adapting the metric space formulation in [30]). Hence, logical DES, which have
recently received much attention in the literature are amenable to conventional stability
analysis via the choosing of appropriate Lyapunov functions. Other notions of stability and
more recent stability analysis techniques based on methods from theoretical Computer
Science (surveyed in the Introduction) are often prohibitive due to problems with
computational complexity. Here, we completely avoid problems with computational
complexity but instead rely on the specification of Lyapunov functions that satisfy certain
properties. We have shown that it is not difficult to specify such Lyapunov functions for
three types of DES applications: a manufacturing system that processes batches of N
different types of parts according to a priority scheme, one of Dijkstra's self stabilizing
distributed systems, and a load balancing problem in computer networks. Our
characterization of stability of DES in a traditional stability-theoretic framework will, in the
future, allow researchers to use the vast body of concepts from the field of Lyapunov
stability theory to study properties of DES.
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