
Dark Nebula: Using the Cloud to Build a RESTful
Web Service

Robert Fisher, John Fisher, and Peter Bui
Department of Computer Science

University of Wisconsin - Eau Claire
Eau Claire, WI 54702

{fisherr, fisherjk, buipj}@uwec.edu

Abstract
Today, many web sites are now taking advantage of cloud computing systems to rapidly
build scalable web services. In order to gain experience and to learn about this emerging
development platform, we constructed an application that uses Google App Engine to make
a URL shortener. This web service can be accessed via a traditional web browser, but
its notable feature is its RESTful API which allows for integration with both native and
web applications along with automation and testing. Our paper describes the design and
implementation of our cloud application, discusses the challenges in using Google App
Engine, and evaluates the URL shortening web service.

1 Introduction
With the emerging adoption of cloud computing systems, web sites are no longer just web
pages, but also services that provide programmatic interaction. To explore the use of cloud
computing in developing a RESTful web service [6], we chose to develop a simple URL
shortener. This custom URL shortening service transforms and condenses lengthy URLs
into concise URLs that are ready for distribution. While URL shortening services already
exist, we created a custom application to do the following: explore cloud computing via
Google App Engine [1], manage a RESTful web service, and build libraries for interfacing
our service. The main contributions in this paper are a discussion of our experience in uti-
lizing a cloud computing platform such as Google App Engine in building a programmable
web service and an evaluation of our final system.

2 Design
An overview of the architecture of our URL shortening service, Dark Nebula, is provided
in Figure 1.

Figure 1: Dark Nebula: POSTing Process

The first step is to register a URL with the web service. This is done by the following:

1. Send “long” URL: The first step of the system involves sending a HTTP POST
request containing the long or original URL and the response format. The POST is
sent to the submission form under the domain. This step can be done with entering
data on a web page or executing a POSTing script.

1

2. Check Datastore: Once the POST is made, Dark Nebula performs a query to check
the Google Datastore [5] if the request contains a new or existing URL. If it finds a
new long URL, the web service inserts the new entity into the Datastore. Otherwise,
it retrieves the existing URL.

3. Return “short” URL: After the Datastore check, it returns the result based on the
specified response format. The web service returns a short URL with a short URL
identifier in hexadecimal with a domain prefix.

Figure 2: Dark Nebula: Redirection Process

The second step is to use the short URL obtained from the web service. This is done by the
following:

1. Share: The short URL is distributed with other users that need a condensed URL.

2. Send “short” URL: The short URL is sent to the web service as HTTP GET in a
web browser’s address bar.

3. Check Datastore: Dark Nebula translates the short URL by querying the Datastore
and retrieving the corresponding long URL.

4. HTTP redirect: After the lookup, Dark Nebula uses the retrieved long URL and
automatically redirects the user to the long URL page via HTTP 302.

2

3 Implementation
To implement this project, we registered a domain name go.yld.me for the web service.
We set up a Linux development environment with the Google App Engine SDK [5] and
programmed the web service in Python. With this SDK, we took advantage of Google App
Engine’s schema-less data storage system, also known as the Datastore [4]. The main ob-
stacles and challenges that we encountered primarily dealt with learning how to effectively
program with a RESTful API, managing URL data in the Datastore, and debugging on a
remote platform that we had no control over. To develop our system, we relied heavily on
Google App Engine’s Admin console for monitoring log files, and we performed extensive
testing on our local development environment before deployment to the production cloud
server.

Figure 3: go.yld.me interface

3.1 Conversion Functions
The underlying principle behind URL shortening is the back and forth conversion of lengthy
URLs to short URLs for redirection. Therefore, the first step in developing URL shortening
capabilities required writing two URL path conversion functions. Ultimately, this allows
us to yield a short identifier to maintain a reference among short URLs and their original
lengthy counterparts.

1. identifier to string16: Returns a short identifier string that represents the original
URL’s identifier property in terms of the alphabet passed in. Since we are using
a hexadecimal alphabet, we were simply converting the original long URL into its
hexadecimal counterpart.

3

2. string to identifier16: Returns the original long URL’s identifier property as a string
by reverse engineering the short identifier. This function, which takes in the same
alphabet as its predecessor, essentially converts the hexadecimal identifier into deci-
mal.

Function Name Input Output
identifier to string16 100 64
string to identifier16 3e8 1000

Table 1: Conversion Functions

3.2 NDB Datastore
Next, we wrote a URL class using the NDB Datastore API from Google App Engine [5].
This Datastore employs a schema-less storage system which, unlike a typical relational
database, provides a less constrained and scalable storage platform for our application [4].
Using this approach meant simply defining the entity as a class, similar to defining a table,
and its respective properties: identifier, long url, date, clicks, and clicks date.

Property Name Return Type Property Description
identifier integer A unique row in the Datastore. Arbitrarily set to start

at incrementing at 0.
long url string The original URL record submitted in a transaction.
date date/time A timestamp automatically recorded for each submit-

ted URL.
clicks integer A count of the total number of clicks or redirects us-

ing the respective short URL.
clicks date date/time A timestamp holding the last time the respective URL

was redirected with the short URL.

Table 2: URL Model Properties

3.3 Handlers
In order to shorten submitted lengthy URLs on our website we needed to write two classes
to handle HTTP GET and POST. These classes utilize the conversion functions discussed
earlier, URL entity class, and webapp2 functions to display the contents of the Datastore
and to ensure proper redirection of shortened URLs [7].

HomeRequestHandler: Performs the two following HTTP functions.

1. GET:

4

(a) URL path with short identifier: The moment this function runs, it deletes any
expired URL entities, as specified by the clicks date property, to clean the Data-
store. Next the short identifier is isolated and passed into the string to identifier16
conversion function to yield a respective long url identifier. Next, the Datastore
uses the aforementioned long url identifier and queries its records to select the
matching identifier property associated with an original URL. Before the final
redirection occurs, it updates the clicks time and increments the clicks proper-
ties. Lastly, Dark Nebula redirects to the original website with the long URL.

(b) URL path without short identifier: The 10 most recently submitted URLs
are queried to retrieve a short identifier. With this information it can combine
the prefix web address with the short identifier as its path. At this point, the
most recent URLs are displayed in a table with their respective properties on
the home page.

2. POST:

(a) Web Page: Dark Nebula processes the input to validate whether or not the sub-
mitted URL is a well-formed, functional URL. Also, there is a query executed
to check and prevent duplicate entries. If a new URL is POSTed then a new
URL entity is created with an identifier and the long URL. After this, it returns
the home page after storing the new entity in the Datastore.

(b) POSTing Script: When making a POST through a Web browser, the default
response is returned as HTML. In other words, the home page is redisplayed
with the most recent URLs. If the POST was sent with a “response format”
attribute in the form field set as “text,” by using a programmatic request, then
only the new short URL will be returned by the GET function. This allows for a
programmatic interaction for the performance tests that only return short URL
strings.

3.4 Dark Nebula Shortener Module
Listing 1 shows the Python functions which describe how one can shorten a URL through
a programmatic execution. By tracing the algorithm for both Dark Nebula and TinyURL,
they follow the same steps: define the domain, encode a URL, make a POST request,
and retrieve the shortened URL. But there is two minor differences which make these two
functions unique. In step 2 and 3 of darknebula shorten, it encodes and POSTs both a
long url and “response format” set as “text.” Then in the step 5, the short url is returned
using the response data. However, in step 2 and 3 of tinyurl shorten, it only encodes and
POSTs a long url. In addition, the response from this POST retrieves the entire web page
in HTML. In order to obtain the short URL from TinyURL [8], the function uses a regular
expression at step 5 and 6. By providing the extra “response format” data, the web service
determines that it needs to only respond with a short URL. Otherwise, the default “html”
would respond to the POST request with the entire web page in HTML.

5

def darknebula_shorten(long_url):
1 . S p e c i f y the domain
domain=’http://go.yld.me’
2 . Def ine and encode the l o n g u r l and response format
values = {’long_url’: long_url, ’response_format’: ’text’}
data = urllib.urlencode(values)
3 . POST data
req = urllib2.Request(domain,data)
4 . Open Dark Nebula (go . y ld . me)
response = urllib2.urlopen(req)
5 . R e t r i e v e the s h o r t u r l
short_url = response.read()
return short_url

def tinyurl_shorten(long_url):
1 . S p e c i f y the domain and r e g u l a r e x p r e s s i o n
domain_regex = ’(?<=text=\")(http:\/\/tinyurl.com\/.*)(?=\">)’
domain=’http://tinyurl.com/create.php’
2 . Def ine and encod the l o n g u r l
values = {’url’: long_url}
data = urllib.urlencode(values)
3 . POST data
req = urllib2.Request(domain,data)
4 . Open TinyURL
response = urllib2.urlopen(req)
the_page = response.read()
5 . Use r e g u l a r e x p r e s s i o n to match the s h o r t u r l on page
match = re.search(r’’+domain_regex,str(the_page))
short_url = ’’
6 . R e t r i e v e the s h o r t u r l i f match i s found
if match:

short_url = match.group(0)
return short_url

Listing 1: Dark Nebula Python Module.

4 Evaluation
We evaluated our system’s translation and redirection mechanism by utilizing real URLs
that we inserted into the Datastore [5]. We created test cases that checked for duplicates
and shortened various sized URLs. After this step, we shared the shortened URLs with
others to use. Once we shortened a URL, we could send the hyperlink to students for
them to utilize. During our testing, redirection was immediate and reliable within different
Web browsers. At the moment the system’s Datastore has not been tested for competing
transactions and performance with lots of data.

6

4.1 Performance Testing
To test the performance of Dark Nebula, we ran automated speed tests to compare with
TinyURL.com, another URL shortening service [8]. These scripts imported the Dark Neb-
ula module we developed and called the shortening functions from section 3.4 for each
service. In doing so, we could examine whether our cloud-based URL shortener could
even compete with a commercial website. Because the Dark Nebula web service provides
a “response format” as a hidden input in the POST form, a short URL can be directly
returned to the user through the GET request. To retrieve the short URL from TinyURL
we developed a regular expression to parse the page after the GET request. We also ran
timing tests for Dark Nebula to observe the differences when a new URL is stored into the
Datastore and when it already exists.

4.1.1 Transaction Statistics

URLs Validation Dark Nebula Avg.
Time (s)

TinyURL Avg.
Time (s)

Avg. Ratio (Dark Neb-
ula/TinyURL)

100 No 0.2371 0.4552 0.5209
100 Yes 0.5814 0.4552 1.2774

Table 3: Average Execution Times for URL Transactions

URLs Validation Dark Nebula Std. Dev.
(s)

TinyURL Std. Dev. (s)

100 No 0.1575 0.5531
100 Yes 0.3625 0.5531

Table 4: Standard Deviation Times for URL Transactions

4.1.2 URL Validation for Web Services

To have validation in our system means that short URLs will only be generated based on
a successful HTTP or HTTPS request. This means that long URLs must have a http:// or
https:// prefix. Any attempt to input a long URL without such prefixes, will be rejected by
Dark Nebula. Furthermore, these long URLs must link to actual functioning web page that
return a HTTP 200 status code. Any other status code will reject the long URL. As far as
we know TinyURL appends a http:// prefix to the long URL, but it accepts fake or non-
functioning long URLs and a short URL would still be generated. This is what it means to
have no validation.

7

4.1.3 Transactions Without Validation

Figure 4: Performance comparison with 100 URL transactions without validation

Analysis: In this test case we wanted to determine the consistency of making URL shorten-
ing requests for Dark Nebula and TinyURL. Figure 4 displays the times for 100 individual
URL Transactions without validation. This graph shows the consistency of Dark Nebula
compared to TinyURL. For example, there was 80 transactions that completed in the 0.20-
0.29 seconds interval. Table 3 shows that the total time ratio of Dark Nebula to TinyURL
was 0.5209, or approximately a 50% reduction in time. In Table 4, the standard deviation
for Dark Nebula was 0.1575, which was approximately a 30% of TinyURL’s standard de-
viation. The graph’s distribution is skewed right (meaning the right tail end of the graph
is longer in comparison) for both web services, since there were some outliers for a few
transactions. This behavior was more apparent when making requests for TinyURL and
were less dramatic in Dark Nebula.

Explanation: The most notable observation from Figure 4 is the trade-off that occurs with
validation processing. When no validation was done to check for well-formed,functional
URLs, Dark Nebula processing time was frequently quicker than TinyURL. Under this test,
Dark Nebula is more like TinyURL in the sense of no validation, and our web service still
performed better. There is much we do not know about the technology TinyURL imple-
ments, but our test data just displays that this web service was slower in comparison. for
each URL.

8

4.1.4 Transactions With Validation

Figure 5: Performance comparison with 100 URL transactions with validation

Analysis: This test compares the times for 100 URL Transactions with validation compo-
nents in Dark Nebula’s web service. In Figure 5, it shows that the times for Dark Nebula’s
shortening requests took longer than TinyURL. Table 3 displays that the total time ratio
was 1.277, or about a 25% increase in time. In Table 4, the standard deviation for Dark
Nebula was 0.3625, which is about two-thirds of the standard deviation for TinyURL. To
put it differently, Dark Nebula experienced more deviation when validation occurred so its
performance resulted in a slower and less consistent processing.

Explanation: In contrast to Figure 4’s result, when validation was implemented as dis-
played in Figure 5, Dark Nebula’s transactions yielded more fluctuations with longer run
times. However, TinyURL accepts invalid URL strings to shorten (i.e. http://dn random.edu),
while Dark Nebula does not. So with the additional overhead of validation in Dark Neb-
ula, it demonstrates how performance can be significantly affected by choosing to handle
erroneous input. Both web services are skewed to the right, but Dark Nebula was simply
shifted while maintaining a slightly smaller standard deviation with a higher average time.
Overall, it was expected that validation would add noticeable performance changes in Dark
Nebula in some samples.

9

4.1.5 Influence of Regular Expressions

Dark Nebula
Time (s)

Dark Nebula Vali-
dation Time (s)

TinyURL Time
(s)

TinyURL Regex
Time (s)

0.2545 0.3941 0.2983 0.0004

Table 5: Single Transaction Times

Analysis: Even though we used a regular expression to check for the matching short URL
only for TinyURL, the amount of time to match is negligible and therefore can be dis-
counted as a potential factor in the time increase in TinyURL. The quicker Dark Nebula
times without validation could be attributed to our service’s simplicity in a variety of ways.
Perhaps Google App Engine’s schema-less Datastore performs faster storage and queries
[4]. Though, we don’t know how TinyURL stores, queries, and processes short URLs. But
regardless of this unknown, there appears to be less work when opening up Dark Nebula
(without validation) versus TinyURL after making the POST with the long URL.

Explanation: Regular expressions in themselves are not intensive operations for our web
service to perform. It doesn’t have the overhead of validating a string of text but rather just
the matching of it. Likewise, the time needed for our Datastore to insert or query data is
more expensive with form fields to pass through. Therefore, the time delay for TinyURL
gained from regular expressions is negligible.

4.1.6 New and Old Transactions

Figure 6: Performance comparison with 100 new URLs and old URLs

10

Analysis: In Figure 6, we compare the amount of time it takes to process a new URL and a
preexisting one in Google App Engine’s Datastore [5]. When a new URL is POSTed, it is
stored in the Datastore, and then the web service returns the short URL. If the URL already
exists, then the short URL is returned. From the trial, it shows that there is more variation
and inconsistency with new URLs while older URLs are returned quicker most of time.

Explanation: The relative disparity between the new and old times makes sense because
the amount of processing needed. If the URL already exists in the Datastore then less work
should is needed for processing since it has already happened once before. Conversely,
when a new URL is inserted the service has to jump through all the steps of shortening the
URL. Simply, Dark Nebula does not need to do more work than necessary.

4.2 Input
In order for our system to correctly process incoming URLs it expects them to be well-
formed and error-free. We had mentioned that Dark Nebula validates long URLs in section
3.3, but we will need to explain how and why we implemented this functionality. Below
are the following scenarios which may occur.

1. Character Length: URL strings must not be greater than or equal to 500 charac-
ters in length. Google App Engine’s Datastore [5] imposes this limit, and thus these
strings will not be processed and result in an internal server error. So our valida-
tion function prevents long URLs that exceed this length. However, TinyURL [8]
is able to process URL’s with string lengths greater than or equal to this limit. This
demonstrates an example of where the system falls short.

2. URL Format: The system expects well-formed URL strings. So under the hood of
validation, Dark Nebula tries to fetch the long URL, and if a HTTP status code is
200, then the long URL was valid. Otherwise, an exception occurs and thus the long
URL is not stored since it does not yield a functional URL.

3. Predicting Short URLs: Due to the nature of how we generate short identifier
properties, one can notice some potential risks. Unfortunately, it could be possi-
ble for input to abuse this design mechanic when the submitted URL contains the
https://go.yld.me/ prefix. These URLs would be valid under normal circumstances,
but if a long URL contained a short URL that was previously entered or had not been
generated yet, then an indirect reference would occur. This would either return a
redirect loop or a maximum recursion depth error. To address this issue, we do not
allow long URLs to contain this prefix with an short identifier by using a regular
expression validator.

4. Memcache and Quota: The Google Datastore permits 50,000 small, write, and
read operations. Small operations are neither Datastore reads nor writes, but instead
are key allocations, returning keys from a query, or counts. To reduce the cost of
small operations, like finding the count of the total URLs present, we attempted to

11

use Google App Engine’s memcache [5] to keep track of a counter . This mem-
cache stores a key-value pair of the total number of URLs in the Datastore. When
a URL was inserted, it incremented the counter. This made assigning the long URL
identifier less costly than querying the count. However, using memcache to store
permanent data leads to duplicate URL “identifiers” and thus incorrect short URL
redirections. Apparently, the memcache’s eviction policy deletes its contents in un-
predictable ways [3]. For instance, the memcache.incr(”key”) could change the key,
but then the key but could be different for another machine due to Google App En-
gine distributive nature [3]. This unpredictable behavior was unacceptable for the
URL’s identifier, so we decided to use a more costly count function call.

5. Maximum Transactions and Quota: The maximum number of transactions we
found was not consistent for every daily instance. Since the quota resets every 24
hours and we used free version of Google App Engine. This is a drawback with cloud
based services since the Dark Nebula web service is restricted by this quota. This was
a setback to testing since we could only run expensive tests once a day. Despite this,
a free Google App Engine application can use up to 1 GB of non-billable data.

5 Related Work
Web services are increasingly employing a variety of technologies and applications trend-
ing in the field of Computer Science. Below are the core concepts that our web service,
Dark Nebula, utilizes.

1. The Cloud: A cloud is a data center which offers distributed computational power
and resources [9]. Specifically, cloud computing can be partitioned into service types
based on the architectural organization [2]. Specifically, our system utilizes the Plat-
form as a Service (PaaS), Google App Engine, which offers a robust and reliable
programming and execution environment [1].

2. RESTful Web Services: Originally introduced as an architectural style for dis-
tributed systems, Representational State Transfer (REST) is a method of creating
applications to work with HTTP protocols and operations [6]. Four RESTful archi-
tectural principles include resource identification through URI (Uniform Resource
Identifier), uniform interfaces (as in GET and POST operations), self-descriptive
messages (as in HTML or text), and stateful interactions through hyperlinks (as in
form fields and response messages) [6]. This widespread leveraging of common web
standards makes RESTful web services a lightweight development tool for program-
mers.

3. URL Shorteners: URL shorteners are services that transform URLs and condense
them into more manageable counterparts. TinyURL is an example of this service
with a much more sophisticated interface and short identifier algorithm [8] than Dark
Nebula. As such, this service was used a baseline competitor.

12

6 Conclusion
The motivation of this project is to understand how systems like Google App Engine can be
combined with a programmable interface to interact with web services. Writing a library
to interact with a RESTful web service reveals the potential of programmatic interfaces.
However, based on our performance tests, our system demonstrates a balancing act of speed
and correctness. We can design a system to be faster, but then we must tolerate errors.
Or, we can design a system to be correct while accepting slower performance. Using the
cloud to make a URL shortener presented these benefits and costs. Google App Engine
makes it easy to take advantage of evolving cloud technology, but there are still barriers
to entry. Data processing is still limited by quotas and billing, which is a reality that most
developers must accommodate for in their systems. However, keeping the cloud low to
the ground still allows small scale systems, such as Dark Nebula, to allocate resources
efficiently. Resource management is often an afterthought for cloud services, but it must
be taken into more consideration for smaller applications. Despite the potential of cloud
technology, Dark Nebula proves that the sky is not always the limit.

References
[1] Alexander Lenk, Markus Klems, Jens Nimis, Stefan Tai, Thomas Sandholm. What’s

Inside the Cloud? An Architectural Map of the Cloud Landscape, 2009.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of cloud computing.
Commun. ACM, 53(4):50–58, Apr. 2010.

[3] Ben Kamens. Dangers of Using Memcache Counters for A/B Tests.
http://bjk5.com/post/36567537399/dangers-of-using-memcache-counters-for-a-b-
tests,
2012.

[4] Fay Chang, Jeffery Dean, Sanjay Ghemawat, Wilson C. Hsieh,Deborah A. Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A
Distributed Storage System for Structured Data. ACM Transactions on Computer
Systems, 26(2):4–26, 2008.

[5] Google, Inc. Google App Engine: Platform as a Service.
https://developers.google.com/appengine/, 2014.

[6] C. Pautasso, O. Zimmermann, and F. Leymann. Restful web services vs. “big” web
services: Making the right architectural decision. In Proceedings of the 17th
International Conference on World Wide Web, WWW ’08, pages 805–814, New York,
NY, USA, 2008. ACM.

[7] Rodridgo Moraes. WebApp2. http://webapp-improved.appspot.com/, 2011.

[8] TinyURL, LLC. TinyURL. http://tinyurl.com/, 2014.

13

[9] A. Weiss. Computing in the clouds. netWorker, 11(4):16–25, Dec. 2007.

14

