
Using Clusters in Undergraduate Research:
Distributed Animation Rendering, Photo Processing,

and Image Transcoding

Peter Bui, Travis Boettcher, Nicholas Jaeger, Jeffrey Westphal
Department of Computer Science

University of Wisconsin - Eau Claire
Eau Claire, Wisconsin 54702

Email: {buipj,boettcta,jaegernh,westphjm}@uwec.edu

Abstract—With distributed and parallel computing becoming
increasingly important in both industrial and scientific endeavors,
it is imperative that students are introduced to the challenges and
methods of high performance and high throughput computing.
Because these topics are often absent in standard undergraduate
computer science curriculums, it is necessary to encourage and
support independent research and study involving distributed and
parallel computing. In this paper, we present three undergraduate
research projects that utilize distributed computing clusters:
animation rendering, photo processing, and image transcoding.
We describe the challenges faced in each project, examine the
solutions developed by the students, and then evaluate the
performance and behavior of each system. At the end, we reflect
on our experience using distributed clusters in undergraduate
research and offer six general guidelines for mentoring and
pursing distributed computing research projects with undergrad-
uates. Overall, these projects effectively promote skills in high
performance and high throughput computing while enhancing
the undergraduate educational experience.

I. INTRODUCTION

Whether it is the rise of Big Data or the advent of Cloud
Computing, it is clear that modern computer scientists must
learn to harness the abundant amount of computational power
available to them in order to solve large and complex problems.
With the deluge of industrial and scientific data constantly
increasing [1] along with the dramatic shift to multi-core
and heterogeneous architectures [2] and even dynamically
provisioned distributed systems [3], it is imperative that today’s
computer science students become familiar with the concepts
and techniques required to not only utilize current high per-
formance and high throughput systems but also to develop
tomorrow’s solutions for problems not yet imagined.

Unfortunately, traditional undergraduate computer science
curriculums are often insufficient when it comes to exposing
students to distributed and parallel computing [4]. Distributed
computing in particular is regularly absent from most under-
graduate computer science programs. Although topics such as
concurrency and parallelism often appear in operating system
or computer architecture courses, distributed computing is
often alluded to in passing and rarely explored in-depth. This
lack of exposure to distributed systems makes it difficult
for students to appreciate and comprehend the myriad issues

and challenges present in trying to scale applications across
multiple independent computing systems.

Recently, there has been a concerted effort among computer
science educators to introduce parallel and distributed comput-
ing into the undergraduate curriculum [5]. At some colleges,
these topics are integrated directly into existing core courses
such as CS1 or CS2 [6], while at other institutions the topics
may be offered in an upper level elective [7]. The focus of
these efforts is not to teach any one particular technology or
approach, but to instill an understanding of the fundamentals
of parallel and distributed computing.

As such these classroom exposures tend to be broad
and thus shallow, leaving some students wanting more. For
these learners, one effective way to further their interests in
distributed computing is by incorporating the use of clusters
into undergraduate research. By utilizing a computer cluster
in independent study or collaborative research, students gain
a deeper understanding of the challenges and approaches to
harnessing multiple machines to solve complex problems.
Moreover, for institutions that lack an upper level elective
in distributed and parallel computing or who have not yet
integrated these topics into the core classes, using clusters
in undergraduate research provides an effective vehicle for
providing students the opportunity to learn about high per-
formance and high throughput computing.

This paper examines the use of clusters in undergraduate
research at the University of Wisconsin - Eau Claire, which
is a primarily undergraduate university with approximately
220 computer science majors. It presents three undergraduate
research projects conducted this year which utilized clusters
and distributed computing:

1) Animation Rendering: In this project, an input
animation file is processed to generate a series of
rendering tasks that produce a collection of frames
that are stitched together to form an animated video.

2) Photo Processing: This project involves using both
a computer cluster and a cloud storage service to
automatically process and archive digital photos taken
at remote archaeological dig sites.

3) Image Transcoding: This study examined the limi-
tations of scaling an image transcoding workflow on
our local distributed computer cluster.978-1-4799-0898-1/13/$31.00 c© 2013 IEEE

The remainder of the paper is as follows: The next section
provides background information about using clusters in com-
puter science undergraduate research and how UW - Eau Claire
supports such endeavors. This is followed by a description of
the undergraduate research projects mentioned above. Because
the latter two have been recently published at the Midwest
Instruction and Computing Symposium (MICS) [8], [9], we
only briefly describe the technical design and implementation
of all three projects and then focus mainly on examining
the challenges and issues faced in each project. Afterwards,
we evaluate the performance of the systems, and analyze
any issues that surfaced while testing these projects. At the
end, we reflect on the lessons learned from these experiences
and enumerate a set of guiding principles for enhancing
and promoting future undergraduate research experiences with
distributed computing clusters.

II. BACKGROUND

The following describes the nature of undergraduate re-
search in computer science, the availability of clusters at
primarily undergraduate institutions, and how UW - Eau Claire
supports the use of clusters in undergraduate research.

A. Undergraduate Research

Undergraduate research in computer science is a com-
mon practice at both research and teaching institutions where
undergraduate students are introduced to the labor-intensive
process of scientific research [10], [11]. Although some stu-
dents simply volunteer their time, most students participate in
research for pay (hourly or stipend) or for credit (independent
study, in-class projects, or capstone projects) [10]. Because
undergraduates, particularly lower-division students, tend to
lack the theoretical background and technical skills for more
sophisticated projects, undergraduate research tends to involve
either implementation-oriented projects where students pro-
gram tangible software artifacts, or experimentation projects
where students collect and analyze experimental data [11].

Regardless of the reasons why students choose to par-
ticipate in undergraduate research or the exact nature of
the projects, the primary goal for the faculty mentor is to
provide opportunities for the students to develop new skills
and to explore their interests. Furthermore, recent studies have
found that undergraduate research opportunities increase stu-
dent understanding, confidence, and awareness while clarifying
student interests in STEM careers [12].

B. Clusters

While it is common for research institutions to have
the ability to provide undergraduates access to distributed
computing clusters, it is less common at smaller primarily
undergraduate institutions. Due to high costs, access to such
systems can be problematic and limited. Fortunately, there have
been efforts to increase access to distributed systems at all
levels of higher education. One example of this is XSEDE (The
Extreme Science and Engineering Discovery Environment),
which is a virtual system that allows scientists from around the
world to share computer resources [13]. Another example is
the Open Science Grid (OSG), which is a federated consortium
of open distributed computing clusters available to various

research and academic communities. At a smaller scale, there
are efforts such as the LittleFe [14], which is a portable six
node Beowulf style computational cluster for teaching parallel
and distributed computing. All of these efforts emphasize
the fact that while high performance and high throughput
computing is growing in importance, access to computing
clusters is still limited, especially for smaller institutions such
as primarily undergraduate colleges and universities.

C. University of Wisconsin - Eau Claire

Despite the challenges in providing students access to
a distributed computing cluster at a primarily undergraduate
institution, the computer science faculty at UW - Eau Claire
believe it is imperative that students be exposed to distributed
and parallel computing [6]. Because of this, the primary
author1 of this paper used his startup funds to purchase
a Dell D820 16-core rack server to serve as the basis of
a new HTCondor cluster [15]. Virtualization was used to
partition the single rack server into 3 independent nodes to
form a small cluster, which is a technique employed at other
teaching institutions [16]. Over time, additional nodes were
added to the cluster by scavenging surplus equipment and by
connecting faculty workstations to the cluster. Additionally,
the primary author was fortunate enough to participate in the
LittleFe buildout session during the HPC Educators program
at Supercomputing 2012 and was able to add the LittleFe to
the UW - Eau Claire HTCondor cluster.

To further increase access to computational resources, the
primary author also contacted the HTCondor team at UW -
Madison, who responded by enabling flocking (i.e. migrating)
of jobs from the UW - Eau Claire HTCondor cluster to
the machines in the Center for High Throughput Computing
(CHTC). Additionally, a collaboration was negotiated with the
chemistry department at UW - Eau Claire to enable access
to their computational science cluster via HTCondor. With all
these arrangements, undergraduates at UW - Eau Claire now
have access to 140 cores across two local HTCondor clusters
and over 1000 more cores via flocking to the CHTC.

III. PROJECTS

Given the availability of a distributed computing cluster on
campus, it was only a matter of time before undergraduates
soon became interested in utilizing it. The first project de-
scribed below is a distributed animation rendering system that
was the result of a collaboration between the computer science
and art departments. The students involved were funded by the
Office of Research and Sponsored Programs (ORSP) at UW
- Eau Claire and given a small stipend. The second project
involves an automated photo processing pipeline that was part
of an independent study by a computer science major and
a member of the geology department. The final project is a
study performed by a computer science undergraduate who was
simply interested in distributed computing and wanted to learn
more about the topic. Because the latter two projects have been
published recently [8], [9], this section only briefly describes
the design and implementation of each system and then focuses
on discussing the underlying distributed computing challenges
faced in developing each project.

1The first author is the faculty mentor, while the rest of the authors are the
undergraduates who collaborated in the research projects.

A. Animation Rendering

The goal of the first project is to make it possible for art
students to produce longer and more detailed 3D animated
movies, which generally require large amounts of compute
time to render. To solve this problem, we built DSABR
(Distributed System for Automated Blender Rendering), which
uses Python [17], Work Queue [18] and Blender [19] to
produce computer-animated movies.

Fig. 1. Animation Rendering Architecture.

As shown in Figure 1, DSABR renders animations by
submitting tasks to many computers using the Work Queue
framework. Distributing the rendering is possible because
Blender is capable of rendering single frames; each task
submitted to Work Queue corresponds to a single movie frame.

The initial step in rendering a movie with DSABR is to
submit workers to a distributed computing cluster. In this case,
we would start workers on our HTCondor cluster. The number
of workers submitted depends on the file to be rendered and
the desired animation length, but generally the more the better
as we will discuss in the next section. Because Work Queue
is designed to handle dynamic worker pools, we can scale the
number of machines working on the project at run-time.

The next step is to use DSABR to submit the Blender
project to be rendered. All DSABR needs to know is the
location of the project and the number of frames to be
rendered. Optionally, the user may supply arguments that allow
for debugging and logging, specify the output file’s name and
type, or set the intermediate image type. Upon submission,
DSABR divides the project up into a series of frames. Each
frame constitutes a Work Queue task which is sent off to the
workers started in the previous step. Those workers render the
frame, send the resulting image back to DSABR, and receive
another task. When all images have been rendered, DSABR
stitches them together into a movie using FFmpeg.

Although this system appears straightforward, several is-
sues and challenges arose during the development of DSABR.
One initial problem encountered was not being able to use
every cluster node to render the Blender file. This was because
not every machine had Blender or one of its library dependen-
cies installed. The solution to this problem involves telling each
task to download the Blender archive from a central server to
the local worker machine, extract it, and create an executable

wrapper to the Blender program. This extracted archive and
wrapper is then cached so that the current worker can jump
right to rendering the next frame on subsequent tasks.

Another challenge faced was straggling workers. If a
worker takes too long to complete its task, it can hold up the
entire rendering process. For example, if a file would under
”normal” conditions render in one minute, straggling workers
could cause that rendering run-time to exceed ten minutes.
This was solved by using a feature of Work Queue called fast-
abort. This feature allows DSABR to remove a worker taking
longer than the average rendering time multiplied by some
given multiplier, and resubmit the task to another machine.
Finding the ideal multiplier was tricky - if it is too small,
DSABR culls almost all the workers because the average never
has time to grow; on the other hand, if the multiplier is too
large, the program behaves as though fast-abort was off.

The final set of problems involved stitching the frames
together to form the final movie. The first issue dealt with
how DSABR saves the intermediate image files. Initially, all
the frames were saved in one directory. Once we began to
render longer movies, however, it became apparent that this
was not going to work - as the number of frames grew into
the thousands and tens of thousands, the file system would
either dramatically slow down or fail altogether. The solution
involves sharding the image files in subdirectories such that
each subdirectory contains only a limited number of files. This
alleviates the stress on the filesystem and eliminates the issue.

The second final challenge was telling FFmpeg the files
to stitch together. Our first attempt used Python’s subprocess
module and shell commands to pipe the files as command
line arguments to FFmpeg. While at first this seemed like it
was going to work, when DSABR was used to render longer
movies (10,000+ frames or 7+ minutes), DSABR would fail.
This is because the total size of command line arguments on
Linux is limited. The final solution still makes use of Python’s
subprocess module, but uses an additional Python script to
stream the contents of each image file directly to FFmpeg.

B. Photo Processing

The second project involves creating a system for automat-
ically processing and archiving archaeological photographs at
remote archaeological dig sites. To support a team of field
scientists, we developed DP3 (Distributed Photo Processing
Pipeline), which utilizes Dropbox for initial storage, Work
Queue to coordinate the distributed computation, and HT-
Condor as the cluster environment. Once again, the whole
application was written in the Python programming language.

An overview of DP3 is provided in Figure 2. The first phase
of the system requires users to transfer their photos to personal
laptops and then upload them to Dropbox [20]. A daemon
running at UW - Eau Claire monitors the Dropbox repository
for incoming files. When new photos are detected, the daemon
dispatches a series of photo processing tasks to the local
HTCondor cluster using the Work Queue framework. These
processing tasks typically involved extracting meta-data and
reformatting the images for different uses. When these tasks
are completed the original photos and the generated artifacts
are archived to multiple storage systems for redundancy. The
daemon also serves web portal that allows users to track and

 1. Transfer photos from
cameras to laptops

Dropbox

2. Upload photos
to Dropbox

DP3 Daemon

Condor Cluster

3. Monitor Dropbox for
incoming photos

Journal

Archive 1

4. Dispatch processing tasks
to Work Queue Pool

Archive 2

5. Archive photos
and generated

artifacts

Work Queue
Workers

6. Access processed
photos via Web

browser

Fig. 2. Photo Processing Architecture.

access the source images and the generated outputs from any
web-capable device.

In developing and using this system, we came across a
couple of challenges. As with the previous project, DP3 ran
into the problem of different machines in the cluster not having
the appropriate software for processing the photos. To solve
this, we used Starch [21] to create self-extracting application
archives (SAAs) which contained all the necessary dependen-
cies of the photo processing tools. When we needed to perform
a photo processing task, we simply shipped the SAAs to the
remote workers instead of the original executables.

Because of the complexity of the system, we often had to
stop and restart the application to fix and debug problems.
Since we were doing this during a live field test, it was
necessary that we ensured that system functioned properly
at all times and maintained a consistent state. To increase
reliability and to guard against incorrect behavior due to
system stops and restarts, we implemented a transaction log
that tracked the state of each photo as it progressed though our
pipeline. The details of this transaction journal are explained
in our MICS paper [8]. With the transaction log in place, we
were able to confidently stop and restart our daemon, knowing
the system would function properly on restart.

Finally, because this was a long running project, we did not
want to unnecessarily tie up the cluster resources. Since Work
Queue supports dynamic allocation of workers, we employed
the work_queue_pool utility to automatically maintain a
set of workers. With this tool, users set limits on the minimum
and maximum amount of workers to allocate to a project.
The pool manager then monitors the statistics of the workflow
and automatically scales the number of workers up and down
depending on the current need. In the context of this project,
this meant that if there were no photos to be processed, the
worker pool manager would remove workers until it reached
the minimum number. When more photo processing tasks
were scheduled, the manager would detect a backlog of tasks
and would dispatch more workers until the either the limit is
reached or there were no more tasks to be executed. As such,
we were able to avoid unnecessarily using cluster resources by
taking advantage of Work Queue’s elastic capabilities.

C. Image Transcoding

The third research project is an empirical study of the limits
of scaling an image transcoding workflow. In this project,
we used Python and Work Queue to implement an image
transcoding application that utilized the HTCondor cluster to
transcode images in parallel. The focus of the project was to
determine the effects of input file sizes and number of workers
on the performance of the application.

Condor Cluster
Images

WQ Master

Transcoding
Mapper

Convert

Work Queue
Workers

1. Process input images

2. Distribute tasks and inputs to
remote workers

3. Perform transcoding
and return outputs

Fig. 3. Image Transcoding Architecture.

Figure 3 provides an overview of the transcoding applica-
tion. First our application reads in the set of images and the
specified conversion utility from the user. Next, the program
maps each image to a corresponding transcoding task and
uses Work Queue to dispatch these tasks to workers running
in the HTCondor cluster. The remote workers perform the
transcoding and return the generated output files back to the
application. Further description of the system can be found in
our MICS paper [9].

Once again, this project, although rather straightforward,
ran into a few challenges. First, as with the other projects,
the problem of software dependencies popped up again. As
with DP3, this project utilized Starch to create self-contained
executables. Another major problem that arose in this project
is the fact that Work Queue automatically caches the input files
on the remote workers. This means that transcoding the same
input image N times would not be the same as transcoding N
files since in the former case the image file is only transferred
once. To workaround this problem in our benchmarking, we
had to create directories of N input files. Finally, the last
problem our study encountered was ensuring that our workers
connected to our master in a timely fashion. Because Work
Queue workers will slowly back off when disconnected from
the master, it proved difficult to re-use workers across multiple
runs of the benchmarking and get consistent timings. To work
around this problem, we simply killed off each set of workers
after each benchmark run and started a fresh batch before the
next test. Doing so ensured that the new set of workers would
connect to the master immediately and reduced the amount of
variability in our timing results.

IV. EVALUATION

In this section, we evaluate each of the described projects
and discuss any challenges faced in testing the applications on
distributed computing clusters.

A. Animation Rendering

To evaluate our animation rendering application, we mea-
sured the execution time for an increasing number of frames
and Work Queue workers. Although DSABR vastly improves
the rendering time of the user’s Blender project, the exact
speedup depends on the complexity of the animation and num-
ber of frames being rendered. The first Blender project used
to test DSABR, dolphin.blend, is intentionally simple so
that render times would be short, but the improvement over
rendering on a single machine is shown in Figure 4.

0 20 40 60 80 100
Number of Workers Submitted

10

100

1000

10000

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f

S
e
co

n
d

s
to

 C
o
m

p
le

te

Frames
100
500
1000
2000
3000
10000

Fig. 4. Average Render Time of dolphin.blend With Respect to the Number
of Submitted Workers.

As can be seen, rendering times are generally reduced with
an increasing number of submitted workers until we reach a
certain limit: 40 workers. After this point, the workers must
come from the CHTC rather than the local HTCondor cluster.
Because of the variability in the startup times for those workers
and the increased network distance, workers in the CHTC are
often volatile and exhibit mixed performance.

0 10 20 30 40 50 60 70 80 90 100 110
Number of Submitted Workers

0

20

40

60

80

100

120

A
v
e
ra

g
e
 M

a
x
im

u
m

 N
u
m

b
e
r

o
f

C
o
n
n
e
ct

e
d

 W
o
rk

e
rs

Fig. 5. Average Maximum Number of Connected Workers With Respect to
the Number of Submitted Workers.

Moreover, the maximum number of workers that would
connect to the master was one of the problems faced in testing
DSABR. In testing a simple project, even if 100 workers are
submitted for a given project, there is no guarantee that all 100
will connect. Because of this, even if there is an improvement
to the render time with more workers, there was a greater

observable variation in the render time when using flocking
compared to only using the local campus cluster.

This phenomenon is evident in Figure 5, which plots the
average maximum number of connected workers against the
number of submitted workers. The minimum and maximum
amount of workers connected for that number of submitted
workers are shown with the whiskers. This clearly shows the
soft limit of between 32 and 36 maximum connected workers
(i.e. the number of local HTCondor cores).

0 10 20 30 40 50 60 70 80 90 100 110
Number of Submitted Workers

10

100

1000

10000

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f

S
e
co

n
d
s

to
 C

o
m

p
le

te
CarPark.blend (100 frames) dolphin.blend (1000 frames)
CarPark.blend (1000 frames) dolphin.blend (10000 frames)

Fig. 6. Average Render Time of Two Different Files With Respect to the
Number of Submitted Workers.

Figure 6 illustrates how complexity can impact the ren-
der time of a project. The Blender project used for testing,
dolphin.blend, had no light sources and so all that needed
to be rendered was the silhouette of the dolphin. On the other
hand, CarPark.blend made use of many light sources and
reflective surfaces. As a result, similar render times were seen
between DSABR projects where frame totals were a magnitude
different (i.e. 1000 frames of dolphin.blend rendered in rela-
tively the same time as 100 frames of CarPark.blend). This may
also imply that more workers may be of more use for projects
where it takes proportionally longer to render one frame.

B. Photo Processing

For our second project, we evaluated DP3 by utilizing
the system in a live field test. Working with collaborators
in geography and archeology, we configured the system to
process images from archaeological dig sites in Israel.

Number of Batches 448
Maximum Batch Size 1385
Minimum Batch Size 1

Average Batch Size 16.4
Number of Tasks Submitted 7372

Number of Tasks Failed 104

TABLE I. DP3 STATISTICS

Table I provides a summary of the results from this live
field test. In total, DP3 executed 448 batches of tasks where
the largest such group consisted of 1385 photos, while the
smallest consisted of just a single image. The average number
of tasks in each batch was 16. Overall, 7372 photo processing
tasks were submitted. Of those, 104 resulted in failures (1.4%).
Some of these failures were due to user error while other

failures were because our tasks executed on machines without
the necessary libraries for our processing tasks. Because of our
transaction journal, however, we able to ignore these errors
or temporarily suspend the application, fix the problem, and
restart it without duplicating work or losing data.

The biggest performance limitation turned out to be the
upload speeds available to the researchers in the field. Because
the digital images were quite large and the researchers only
had access to slow Internet connections, getting the images to
Dropbox proved to be a serious bottleneck. Moreover, not all of
the users understood how to configure the Dropbox settings,
so the upload speeds were further throttled by the Dropbox
software, which only took advantage of 75 percent of the
available upload speeds. Because of this, the system remained
largely under-utilized due to the lack of data to process. More
details about the performance of DP3 can be found in our
MICS paper [8].

C. Image Transcoding

For the final project, we benchmarked our image transcod-
ing application to test for scalability and performance. To do
this, we used three sets of three images with different sizes:
15 KB, 1 MB, and 10 MB. These images were organized
into sets of 10, 100, and 1,000 files of each size. For each
combination of image size and group size, we utilized our
application to transcode the images and measured the execution
time necessary to convert each set of images using a given
number of Work Queue workers, which we varied according
to the following increments: 1, 2, 4, 8, 16, 24, and 30.

File Size Set Size # of Workers
1 2 4 8 16 24 30

15KB
10 1x 1.47x 1.56x 2.13x 1.85x 2.00x 2.40x

100 1x 1.60x 2.80x 4.43x 5.96x 6.42x 6.44x
1000 1x 1.65x 3.12x 5.02x 7.97x 9.27x 9.31x

1MB
10 1x 1.65x 2.40x 2.78x 3.05x 3.73x 3.87x

100 1x 2.10x 3.87x 6.55x 9.56x 7.65x 8.27x
1000 1x 2.17x 4.28x 7.75x 11.2x 10.5x 12.12x

10MB
10 1x 1.84x 2.46x 2.88x 4.48x 3.43x 3.27x

100 1x 1.98x 3.90x 4.95x 7.34x 4.61x 4.76x
1000 1x 1.74x 3.97x 5.63x 6.26x 4.75x 4.93x

TABLE II. TRANSCODING BENCHMARK SPEEDUPS RESULTS

Table 3, which comes from our MICS paper [9], sum-
marizes the results of our benchmarking experiments. Based
on our benchmarking, it is clear that the time required to
transcoding a set of images files is generally reduced as the
number of Work Queue workers is increased, although not
linearly. For moderate amounts of files and medium sized
files, we see a good amount of speedup as the number of
workers increases. For small file sizes and small number of
files we see only slight improvements. Large file sizes and
large number of files, however, display erratic behavior most
likely due to network transfer bottlenecks. That is, because
Work Queue is based on the master-worker paradigm, all data
must be transferred to and from the master. For larger files
the master quickly becomes a bottleneck and thus limits the
overall system throughput.

Although all of the undergraduate research projects in this
paper experienced challenges in evaluating and testing their
performance, each system reached high-levels of functionality
and demonstrated some amount of performance improvements.

The animation rendering system was able to demonstrate
greatly reduced rendering times, while the photo processing
application proved reliable and effective in a live field test.
Finally, the transcoding study was able to demonstrate the
limitations of scaling a naturally parallel application.

V. REFLECTION

Based on our experience in utilizing distributed comput-
ing clusters in undergraduate research projects, we offer the
following guiding principles for promoting and encouraging
future endeavors:

1) Develop applications not infrastructure: As mentioned
in the introduction, most computer science undergraduates are
unfamiliar with distributed computing. Because of this lack of
familiarity, we find it easier to attract students by focusing
on developing distributed applications rather than low-level
systems. This means that rather than constructing distributed
systems infrastructure, students instead build applications that
utilize distributed computing to take advantage of clusters.
Since students may not initially be interested in the low-
level aspects of distributed systems, aiming for high-level
applications such as the animation rendering system or the
digital photo processing pipeline described in this paper helps
keep the students engaged and motivated. In this context,
distributed systems is not the end, but the means for solving
sophisticated problems. This is reasonable since the purpose of
undergraduate research is not necessarily to develop new dis-
tributed systems, but instead to expose students to distributed
computing and support the exploration of their interests.

2) Utilize high-level frameworks: Building off the pre-
vious principle, we recommend that students develop their
applications by using high-level frameworks that abstract some
of the low-level details of distributed computing from them.
Because the focus is for students to become familiar with
the challenges involved in coordinating multiple autonomous
machines to achieve a common goal, it is not necessary that
students to delve into low-level details. Instead, students should
be introduced to frameworks such as MapReduce [22] or Work
Queue [18], which allow them to take advantage of distributed
systems without all the complications of distributed computing.
This is important because once students can get over the
initial challenges of getting their application to run on multiple
machines, they can focus on more interesting problems.

As described previously, all of the projects in this paper
utilized Work Queue as the underlying distributed computing
framework and yet the students still had to overcome many
of the common problems found in distributed applications:
dependency management, local system limitations, data trans-
fer bottlenecks, and imperfect scaling, etc.. Our reasoning is
that high-level frameworks provide scaffolding that enables
students to quickly get started with distributed computing,
while not completely removing all of the interesting problems.
The students will still have to solve complex problems; it is
just that these problems will be issues that appear when there
is a somewhat functional distributed application rather than
merely trying to get the application to execute on a cluster.

3) Recognize that nothing is straightforward: With the
focus on developing applications rather infrastructure and the
use of high-level frameworks, it may seem that the research

projects should be relatively straightforward. This, however,
has not been our experience. When constructing distributed
applications a multitude of issues can appear even when you
have a functional program. For instance, in all three projects we
had to deal with the issue of dependency management. Because
the machines used in our cluster had different configurations,
simply transporting our executable from the local machine to
the remote node was insufficient since the remote site may not
have the appropriate libraries required for execution. This was
particularly the case in the animation rendering project which
used machines in two different clusters and thus had to deal
with a large heterogeneous mix of machines.

Scaling applications to tackle large problems will also
lead students into the limits of local systems. For instance,
the animation rendering project had to overcome Linux’s
limitations on the number of files that can be effectively stored
in a single directory and on the number of arguments that can
be passed through the command line. Likewise, the transcoding
project eventually encountered the problem of the master node
reaching the limits of its network bandwidth capacity.

Even though the students were focused on developing
applications and utilized high-level frameworks, they were not
completely alleviated from the challenges of effectively uti-
lizing clusters. Despite appearing straightforward, the projects
encountered non-trivial problems that surfaced in implement-
ing and testing the programs. This is because even with the aim
of constructing high-level programs and the use of scaffold-
ing abstractions, developing reliable and effective distributed
applications is challenging due to a wide range of issues that
surface when scaling beyond a single machine.

4) Practice incremental development: Because of these
challenges, we recommend the practice of incremental devel-
opment during the course of the research collaboration. For
us, this research process means the following:

• Iterative Development: Rather than try to build the
whole system at once, students work on a single
focused task at a time with the goal of always having
a functional application. This means that the first task
for the students is to simply to write an application
that dispatches jobs to the cluster. Once this program
is working, the students move on to other tasks such
as collecting and processing the results of the remote
tasks. After each iteration, the students identify the
challenges they currently face and brainstorm differ-
ent approaches for solving their problems. Such an
approach naturally decomposes a larger project into
smaller tasks which prevents students from becoming
overwhelmed and helps them stay on track.

• Version Control: Because applications are developed
incrementally, the students use a version control sys-
tem (VCS) to manage their source code. For the
projects described in this paper, we used Mercurial as
the underlying VCS and Bitbucket to host our repos-
itories. Using a VCS fits naturally with the iterative
development process since it encourages developers to
periodically commit changes. Additionally, since the
projects involve multiple people collaborating on the
same codebase, the VCS also facilitates distributed de-
velopment. Finally, the VCS commit log also provides

faculty mentors a way of tracking the progress of the
students without directly inquiring them.

• Blogging: Since research involves not only developing
interesting systems, but also communicating the re-
sults and discoveries, students are required to maintain
a blog that serves as an online journal of the students’
progress. Each week, students describe the progress
they have made and any issues they have faced. This
serves as a record of their work and helps them
elucidate their problems and clarify their thoughts.

The three practices above all come together during the
weekly meetings we have with our undergraduate researchers.
Before this meeting, faculty mentors review the students’ blog
posts and check out the latest version of their project code.
This allows mentors to review the students’ progress and to
anticipate any questions that may come up during the meeting.
At the meeting, students recount their progress and current
issues and the faculty mentors try to guide the students towards
different solutions and possible resources.

Overall, this incremental development process has been
effective for us in terms achieving successful research projects
and keeping the students motivated and engaged. Encouraging
our students to use a hosted version control system such as
Bitbucket and to keep track of their progress on a blog has the
side benefit of developing an online digital portfolio that they
can use in applying to internships, jobs, and graduate schools.

5) Seek interdisciplinary collaboration: Another crucial
aspect of a successful undergraduate research experience is to
expand the horizons of our students. Beyond fostering their
interests in distributed computing, we also strive to show how
their computer science knowledge and skills can be applied
in other disciplines to solve interesting and relevant problems.
As Fred Brooks noted [23]:

If the computer scientist is a toolsmith, and if our
delight is to fashion power tools and amplifiers for
minds, we must partner with those who will use our
tools, those whose intelligences we hope to amplify.

Therefore, we seek collaborators in different disciplines
whenever possible. The animation rendering project, for in-
stance, is a collaboration with between computer science and
art; a computer science student is developing the system
described in this paper while an art student is constructing an
animated film that will take advantage of increased rendering
capabilities. Likewise, the digital photo processing project is a
collaboration between computer science and members of the
geography department. Such interdisciplinary collaborations
allow our students to learn how to work with people beyond
their major and to see how the knowledge and skills they are
learning can be applied to solve real world problems.

6) Take advantage of internal and external resources:
Our final recommendation is to harness both internal and
external resources. For us, this means taking advantage of the
funding opportunities provided our school’s Office of Research
and Sponsored Programs (ORSP). With ORSP’s support, we
were able to provide a small stipend to some of our students
and pay for their travel and registration fees at conferences
such as the Midwest Instruction and Computing Symposium.
Additionally, ORSP hosts an annual research symposium

called CERCA (Celebration of Excellence in Research and
Creative Activity), which provides a platform for students to
present their work to the local campus community.

An example of harnessing external resources is how we
connected our local HTCondor cluster to the Center for High
Throughput Computing (CHTC). Because our local cluster
only consists of around 40 CPU cores, we reached out to the
HTCondor team at the University of Wisconsin - Madison who
agreed to let us migrate some of our jobs to the machines in
the CHTC via HTCondor’s flocking mechanism. Access to the
CHTC enables us to do sophisticated and large scale projects.
For instance, the animation rendering system took advantage
of hundreds of CPU cores and has demonstrated significant
reductions in rendering times by utilizing machines in both
the UW - Eau Claire cluster and those at the CHTC.

It is important to remember that primary purpose of the
undergraduate research experience is to develop the students’
knowledge in a specific field and allow them to constructively
explore their interests. While some of the guiding principles
above apply to undergraduate research collaborations in gen-
eral, we offer these six guidelines based on our experience
in promoting and supporting the use of distributed computing
clusters in undergraduate research projects.

VI. CONCLUSION

Due to the growing importance of distributed and parallel
computing in both industry and academia, it is imperative
that computer science educators expose their students to high
performance and high throughput computing. Although there
is a concerted effort to integrate some of the concepts of dis-
tributed and parallel computing into the core computer science
curriculum, distributed computing is still lacking in coverage.
This paper presents undergraduate research and independent
study as a viable alternative or supplement to course-based
instruction for introducing students to cluster computing.

As demonstrated by the projects examined in this paper,
utilizing a cluster in undergraduate research provides students
an opportunity to tackle issues prevalent in distributed com-
puting and to further their understanding of computer science.
Practicing incremental development, focusing on developing
applications, and utilizing a high-level framework to abstract
some of the complexity of distributed systems helps keeps
the students motivated and engaged in their research project.
Furthermore, taking advantage of local and external resources
provide students with increased opportunities and while seek-
ing interdisciplinary collaborations helps students realize the
role computer science can play in solving real world problems.

ACKNOWLEDGMENT

This work was supported in part by the Office of Research
and Sponsored Programs (ORSP) at the UW - Eau Claire.
Portions of this research was performed using resources and
the computing assistance of the UW-Madison Center For
High Throughput Computing (CHTC) in the Department of
Computer Sciences.

REFERENCES

[1] A. J. Hey, S. Tansley, and K. M. Tolle, The fourth paradigm: data-
intensive scientific discovery. Microsoft Research Redmond, WA, 2009.

[2] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and
K. A. Yelick, “The landscape of parallel computing research: A view
from berkeley,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2006-183, Dec 2006. [Online]. Available: http:
//www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

[3] A. Weiss, “Computing in the clouds,” netWorker, vol. 11, no. 4, pp.
16–25, Dec. 2007.

[4] D. A. Patterson, “Computer science education in the 21st century,”
Commun. ACM, vol. 49, no. 3, pp. 27–30, Mar. 2006.

[5] S. K. Prasad, A. Chtchelkanova, S. Das, F. Dehne, M. Gouda, A. Gupta,
J. Jaja, K. Kant, A. La Salle, R. LeBlanc, M. Lumsdaine, D. Padua,
M. Parashar, V. Prasanna, Y. Robert, A. Rosenberg, S. Sahni, B. Shirazi,
A. Sussman, C. Weems, and J. Wu, “Nsf/ieee-tcpp curriculum initiative
on parallel and distributed computing: core topics for undergraduates,”
in Proceedings of the 42nd ACM technical symposium on Computer
science education, ser. SIGCSE ’11. New York, NY, USA: ACM,
2011, pp. 617–618.

[6] D. J. Ernst and D. E. Stevenson, “Concurrent cs: preparing students for
a multicore world,” in Proceedings of the 13th annual conference on
Innovation and technology in computer science education, ser. ITiCSE
’08. New York, NY, USA: ACM, 2008, pp. 230–234.

[7] S. Rivoire, “A breadth-first course in multicore and manycore pro-
gramming,” in Proceedings of the 41st ACM technical symposium on
Computer science education, ser. SIGCSE ’10. New York, NY, USA:
ACM, 2010, pp. 214–218.

[8] N. Jaeger and P. Bui, “To the Cloud and Back: A Distributed Photo Pro-
cessing Pipeline,” in Midwest Instruction and Computing Symposium,
2013.

[9] J. Westphal and P. Bui, “Scalable Distributed Image Transcoding using
Python-WorkQueue,” in Midwest Instruction and Computing Sympo-
sium, 2013.

[10] K. Ward, “Research with undergraduates: a survey of best practices,”
J. Comput. Sci. Coll., vol. 21, no. 1, pp. 169–176, Oct. 2005.

[11] A. Koeller, “Experiences with student research at a primarily under-
graduate institution,” J. Comput. Sci. Coll., vol. 20, no. 3, pp. 181–187,
Feb. 2005.

[12] S. H. Russell, M. P. Hancock, and J. McCullough, “Benefits of un-
dergraduate research experiences,” Science(Washington), vol. 316, no.
5824, pp. 548–549, 2007.

[13] S. Gordon, “Advancing computational science education through
xsede,” Computing in Science Engineering, vol. 15, no. 1, pp. 90–92,
2013.

[14] C. Peck, “Littlefe: parallel and distributed computing education on the
move,” J. Comput. Sci. Coll., vol. 26, no. 1, pp. 16–22, Oct. 2010.

[15] D. Thain, T. Tannenbaum, and M. Livny, “Condor and the Grid,” in Grid
Computing: Making the Global Infrastructure a Reality, F. Berman,
A. Hey, and G. Fox, Eds. John Wiley, 2003.

[16] R. A. Brown, “Hadoop at home: large-scale computing at a small
college,” SIGCSE Bull., vol. 41, no. 1, pp. 106–110, Mar. 2009.

[17] Python Programming Language, http://www.python.org/, 2010.
[Online]. Available: {http://www.python.org/}

[18] P. Bui, D. Rajan, B. Abdul-Wahid, J. Izaguirre, and D. Thain, “Work
Queue + Python: A Framework For Scalable Scientific Ensemble Ap-
plications,” in Workshop on Python for High Performance and Scientific
Computing at SC11, 2011.

[19] Blender, http://www.blender.org/, 2013. [Online]. Available: {http:
//www.blender.org/}

[20] “Dropbox,” http://www.dropbox.com/, 2013. [Online]. Available: {http:
//www.dropbox.com/}

[21] A. Thrasher, R. Carmichael, P. Bui, L. Yu, D. Thain, and S. Emrich,
“Taming complex bioinformatics workflows with Weaver, Makeflow,
and Starch,” in Workflows in Support of Large-Scale Science (WORKS),
2010 5th Workshop on, 2010, pp. 1 –6.

[22] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” in Operating Systems Design and Implementation, 2004.

[23] F. P. Brooks, Jr., “The computer scientist as toolsmith ii,” Commun.
ACM, vol. 39, no. 3, pp. 61–68, Mar. 1996.

