
To the Cloud and Back: A Distributed Photo
Processing Pipeline

Nicholas Jaeger and Peter Bui
Department of Computer Science

University of Wisconsin - Eau Claire
Eau Claire, WI 54702

{jaegernh, buipj}@uwec.edu

Abstract
In this project, we constructed a distributed photo processing pipeline that utilized Drop-
box to gather incoming photos, Python-WorkQueue to distribute image processing tasks to
a local Condor cluster, and a fault-tolerant daemon that manages these components to auto-
matically process and archive the large collection of data. This system was made to assist a
team of archaeologists working in Israel, where collaboration is more difficult, and internet
access is very limited. Our paper details the design and implementation of the system and
evaluates its effectiveness in the field test.



1 Introduction
In this paper, we present our distributed photo processing pipeline (DP3). This sysem is
the end result of needing an effective way to collaborate and archive photos for a project
in Israel. The project was an archaeological dig that took place in December of 2012,
involving professors from around the world and working at different locations. Some sites
had Internet access, while other places did not. For the locations that did have Internet
access, the upload speeds were often quite low (as low as 0.5 Mbps). Moreover, some
of the members of the archaelogical project did not use computers often and desired an
easy to use system for collaborating and archiving the photos they took at the dig sites.
Furthermore, the system needed to be automated to take advantage of Internet connections
when they became available (without requiring the user to start a transfer manually).

To address the needs of the archaeological dig, this project developed a hybrid distributed
system consisting of both cloud storage and traditional local clusters to process photos for
the project in Israel. Popular standalone options for tasks like this include Picasa [2] with
online syncing and the Dropbox [1] photo application. Unfortunately, both of these options
have storage limits unless users pay premium fees for increased resources. For this project,
it was important to come up with a solution that could handle upwards of 50gb of photos,
while relying on storage space already provided by a university to minimize project costs
and avoid paying premiums.

To address this challenge, we developed DP3, an elastic and fault-tolerant distributed photo
processing pipeline that utilizes Dropbox for initial storage, Python-WorkQueue [6] for
coordinating distribute computation, and Condor [8] for managing local system resources.
This system collected the photos in a central archive, processed them, and provided access
to them via a web portal. In this paper, we examine the usability and shortcomings of our
system.

2 Design
An overview of the architecture of our distributed photo processing pipeline is provided in
Figure 1.

1. Transfer: The first phase of the system involves users transferring their photos to
personal laptops.

2. Upload: Next, the files are uploaded to Dropbox. Each user has a folder named after
them in the dropbox respository used. This enables the system to tag the pictures
with the photographer’s name.

3. Monitor: A daemon running on a server at the University of Wisconsin - Eau Claire
monitors the Dropbox repository for new files. When incoming photos are detected,
the daemon dispatches the photo processing tasks to the local distributed computing
cluster.

1



1. Transfer photos from 
cameras to laptops

Dropbox

2. Upload photos to 
Dropbox

DP3 Daemon

Condor Cluster

3. Monitor Dropbox for 
incoming photos

Journal

Archive 1

4. Dispatch processing 
tasks to WorkQueue Pool

Archive 2

5. Archive photos and 
generated artifacts

 

Work Queue 
Workers

6. Access processed 
photos via Web browser

Figure 1: Distributed Photo Processing Pipeline

4. Process: Tasks are scheduled and dispatched to remote workers running on the
local Condor cluster. These processing tasks include making thumbnail and web-
optimized (640x480px) versions of the pictures.

5. Archive: When these tasks are completed the original photos and the generated arti-
facts are archived to multiple storage systems for redundancy.

6. Collect: Once the images and artifacts are archived, the originals in Dropbox are
removed, freeing space for more images. This enables us to use a free dropbox
account with limited storage space.

7. Publish: The daemon also serves as a web portal that allowed users to track and
access the source images and the generated outputs. When a job is finished a web-
page is generated using thumbnails and metadata from the source images to give
researchers an organized and visual display of all the project photos.

Once the DP3 monitor daemon and Dropbox client are started on a machine in the Univer-
sity of Wisconsin - Eau Claire Condor cluster, the system is completely automated. Users
simply upload files to the appropriate Dropbox folder and the system will detect the data,
process it and archive it.

2



3 Methodology
To implement DP3, we started by provisioning one of the machines in the local University
of Wisconsin - Eau Claire Condor cluster. With the help of the system administrator, we
installed the Dropbox client and had it synchronize with the appropriate folder. We then
established particular naming conventions on where and how to store upload photos in the
shared Dropbox folder.

3.1 Monitor
Next, we wrote a Python daemon that monitored the mounted Dropbox folder for new
photos to process. To do this, it periodically walked the Dropbox folder and checked for
any files. Because photos would be collected or removed from the Dropbox folder after
they were archived, we simply had to check if the file was an image file (i.e. had a .jpg
extension) and was not one of the artifacts we generated as part of the pipeline (i.e. did
not contain the strings “WEB” or “THUMBNAIL”). If the file met these criteria, it was
scheduled to be processed on the local distributed computing cluster

3.2 Pipeline
Once the DP3 daemon detected a new file, it would progress through the distributed pro-
cessing pipeline, which consisted of the following stages:

1. Submit: Once the file is detected, a processing task is scheduled to run on the local
University of Wisconsin - Eau Claire Condor [8].

2. Process: When a worker on the cluster becomes available a task is sent to it, and the
file is processed to generate a thumbnail sized image of the original photo (120x90px)
and a web-optimized version of the photo (640x480px).

3. Archive: Once the processing task is complete, the original photo and the generated
artifacts are archived to the user-specified locations.

4. Collect: If the archival process is successful, then the original photos are removed
from Dropbox to free up space for incoming photos.

Each state depends on the previous one, so if the processing failed, then the photo would
not progress to the “Archive” state. Likewise, if a photo was processed but not successfully
archived, then it would not be collected or removed from Dropbox. This careful use of
states was to ensure that only remove files from Dropbox when we were absolutely certain
that the photos had been processed and archived.

3.3 Journal
To ensure consistency, the DP3 daemon used a transaction journal to keep track of the state
of the system. Whenever a file appeared, the daemon would record its presence in the
journal with a JSON entry that looked like this:

3



{"status": "Processed",
"datetime": 1355517208,
"archives": ["/data/scratch/dp3/Archive/2012-12-14"],
"owner": "JAEGER-NICHOLAS",
"path": "/Dropbox/Photos/Israel/JAEGER-NICHOLAS/DSC00372.JPG",
"id": "JAEGER-NICHOLAS_1355517208_DSC00372.JPG"}

As seen, each journal entry was simply a set of key-value pairs containing the following
information:

1. status: This stored the current state of the file. As it progressed through the various
stages of the pipeline, this field would be updated and recorded in a new journal
entry.

2. datetime: This stored the timestamp of the file (that is, it’s creation time). This
information would be used later to organize the files into time-based folders.

3. archives: This recorded where the file was archived or stored. Our system allowed
for any number of archival destinations, but we only used two when in production.

4. owner: This indicated the user who uploaded the file. To enable straightforward
identification of the user, we setup a convention where users would always upload to
a Dropbox sub-folder named FIRST NAME-LAST NAME.

5. path: This was the original location of the file on the mounted Dropbox filesystem.

6. id: This field was generated based on the owner, datetime, and basename of the file
and was used as the key to the internal dictionary used by the DP3 daemon to cache
the contents of the journal in memory.

Whenever a file transitions from one stage of the pipeline to the next, it is recorded in the
transaction journal. This is vital for maintaining consistency and determining what to do
when say the daemon crashes. Since it has a journal that only contains entries that are
added after they have been completed, then it knows which tasks it can avoid. Therefore
if the daemon crashes in the middle of processing a set of files, it knows that once it has
recovered, it can skip the already processed files. Moreover if the user accidently re-uploads
a previously archived file, then it knows to skip it since it is already processed.

3.4 WorkQueue
To coordinate and organize the processing tasks on the Condor cluster, we utilized the
Python-WorkQueue [6] master-worker distributed computing framework. Using this li-
brary simplified our photo processing pipeline because WorkQueue manages task schedul-
ing, data transfers, and fault-tolerance with respect to worker failure. This means that
we only need to specify the processing executables and data files to WorkQueue and the
framework would manage the details of coordinating the execution of tasks and transfering

4



of input and output data. With WorkQueue it is possible add and remove workers during
execution, which means we can scale up or down depending on our processing require-
ments. This allows us to increase the overall throughput of our workflow by distributing
work across multiple machines.

Along with the ability to dynamically add and remove workers, WorkQueue also transpar-
ently handles situations where workers may fail or disconnect by rescheduling tasks to run
on other workers. Because of this, we did not need to manually handle fault-tolerance with
respect to worker failure within our application. Note, a completed task is not the same
as a successfully processed task; WorkQueue may return a task that has executed but did
not generate the appriopriate artifacts for whatever reason (say it ran out of space on the
remote node). To WorkQueue, the task is complete because it executed and returned, but
to DP3 this is a failed processing task. This is another reason why the transaction is useful:
it allows us to carefully monitor the status of the pipeline.

3.5 Web Portal
Once photos have been processed on the distributed system, archived to various storage
locations, and removed from Dropbox, the original photo along with the generated artifacts
are made available via a web portal. This was an important component of the system as
it provided users easy access to their data and the generated artifacts, and it served as a
way of monitoring the overall system. Figure 2 provides an example of the image gallery
provided by the web portal.

Figure 2: DP3 Web Portal

5



4 Evaluation
We evaluated the distributed photo processing pipeline based on its utilization in a live field
test in Israel. Working with collaborators in geography and archaeology, we configured the
system to process images from archaeological excursions in Israel. This included setting up
the system to detect file and folder names, as well as metadata and to process those photos.
In this experiment, researchers at archaeological sites in Israel transferred their photos to
Dropbox at different times to folders named after the photographers. As explained previ-
ously, our DP3 monitor daemon detected these files and processed them by generating a
set of thumbnails and web-optimized images. These artifacts, along with the source im-
ages, were then archived to the researchers’ local storage accounts and made access via a
password-protected website as shown in Figure 2.

Number of Batches 448
Maximum Size 1385
Minimum Size 1

Average Size 16.4

Table 1: Batch Statistics.

Table 1 provides a summary of the batches of photo processing tasks our system performed.
In total, DP3 executed 448 batches or groups of task. The largest such group consisted of
1385 photos, while the smallest consisted of just 1. The average number of tasks in each
batch was 16. The reason for these batches was that our monitor only checked the Dropbox
directory every 5 minutes in order to collect as many photos as possible and prevent us
from polling the Dropbox filesystem too often.

Number of Tasks Submitted 7372
Number of Tasks Failed 104

Table 2: Task Statistics.

Table 2 shows a summary of the number of tasks executed as part of the distributed photo
processing pipeline. In total 7372 task were submitted. Of those, 104 resulted in failures
(about 1.4%). Some of these failures were due to bad file naming on the part of the users
(e.g. ’REEDER-PHILIP 1355825903 (2)2009.YAVNE.AREA.PROPOSED.INSERT.JPG’).
Other failures were because we hit machines without the necessary libraries for our pro-
cessing tasks. Because of our transaction journal we able to either ignore these errors as in
the first case, or temporarily suspend the application, fix the problem, and restart it without
duplicating work or losing data.

6



Using a pool of 2-16 workers which we managed manually (i.e. we added or removed
workers based on our observations of the system load), the system processed 5397 files
over the course of two months. This equated to 31GB of data archived in two storage sys-
tems: one in the local Condor cluster and a second one on the University of Wisconsin -
Eau Claire shared network drive. We were able to use a dropbox account with only 7.9GB
of available space by removing original images from the repository after they were pro-
cessed and archived.

The weakness in the system that ultimately limited performance was the upload speeds
available to the system users. Based on Internet speed tests, upload speeds ranged from
0.46 to 3.74 Mbps [3]. Not all of the users understood how to change the Dropbox programs
settings, so the upload speeds were further throttled by the Dropbox software, which only
took advantage of 75 percent of the available upload speeds [1]. Because of this, the Condor
cluster remained largely under-utilized due to the lack of data to process. That said, the
overall system design was a success as it provided an automated and easy-to-use distributed
photo processing pipeline with robust and fault-tolerant features.

5 Related Work
This system is very comparable to the Dropbox photo application, but utilizes a distributed
computing cluster to increase the throughput of the photo processing workflow. Addition-
ally, our system is designed to carefully archive the photos to multiple locations and utilizes
a transaction journal to maintain consistency.

In some ways, DP3 is comparable to a system like Biocompute [7], which is a web-based
resource that uses grid computing for processing bioinformatics problems. Similar to DP3,
Biocompute farms tasks out to a Condor computing grid and presents an easy-to-use web
portal for accessing and managing data.

Another comparable management and repository system is BXGrid [5]. BXGrid is a web
portal that displays galleries of thumbnails of different types of biometric data. It also
utilizes a distributed data processing pipeline in the back-end to generate artifacts. DP3 is
different from BXGrid in that it archives data directory to the filesystem rather than through
a meta-filesystem such as ROARS [4] and it only focuses on photos rather than a variety of
biometric data.

6 Conclusion
The DP3 system satisfied the needs of the archaeological team by carefully archiving pho-
tos in a robust manner and providing Internet access to them. The archaeologists also found
it very easy on their end, which was important. Rather than having users worry about trying
to resize and add their photos to the archaeological dig’s collection, the researchers simply
drag-and-dropped their photos into the correct Dropbox directory, and DP3 handled the en-

7



tire photo processing pipeline. The main obstacle proved to be the Internet upload speeds
in Israel were too slow and thus could not take full advantage of the system. Unfortnately,
there was no way around that for the archaeologists utilizing the system. For archaeological
work at sites with better internet speeds, this system would not be limited in this way, and
would be noticeably more effective.

Overall, the distributed photo processing pipeline was shown to be an effective approach of
allowing users to take advantage of both cloud computing resources and local distributed
cluster systems. By combining the two, we developed an effective and useful system for
collaborating and processing large amounts of digital images in an automated and easy-to-
use manner.

References
[1] Dropbox. http://www.dropbox.com/, 2013.

[2] Picasa. http://picasa.google.com/, 2013.

[3] SpeedTest.Net. http://speedtest.net/, 2013.

[4] H. Bui, P. Bui, P. Flynn, and D. Thain. ROARS: A Scalable Repository for Data
Intensive Scientific Computing. In The Third International Workshop on Data Intensive
Distributed Computing at ACM HPDC 2010, 2010.

[5] H. Bui, M. Kelly, C. Lyon, M. Pasquier, D. Thomas, P. Flynn, and D. Thain. Experi-
ence with BXGrid: A Data Repository and Computing Grid for Biometrics Research.
Journal of Cluster Computing, 12(4):373, 2009.

[6] P. Bui, D. Rajan, B. Abdul-Wahid, J. Izaguirre, and D. Thain. Work Queue + Python:
A Framework For Scalable Scientific Ensemble Applications. In Workshop on Python
for High Performance and Scientific Computing at SC11, 2011.

[7] R. Carmichael, P. Braga-Henebry, D. Thain, and S. Emrich. Biocompute 2.0: An
Improved Collaborative Workspace for Data Intensive Bio-Science. Concurrency and
Computation: Practice and Experience, 23(17):2305–2314, 2011.

[8] D. Thain, T. Tannenbaum, and M. Livny. Condor and the Grid. In F. Berman, A. Hey,
and G. Fox, editors, Grid Computing: Making the Global Infrastructure a Reality. John
Wiley, 2003.

8


