
A Web Portal For An Animation Render Farm

John Rankin, Travis Boettcher, and Peter Bui
Department of Computer Science

University of Wisconsin - Eau Claire
Eau Claire, WI 54702

{rankinjn, boettcta, buipj}@uwec.edu

Abstract
Last year, we developed a collaborative animation rendering system called DSABR (Dis-
tributed System for Automated Blender Rendering) [2]. Due to the growing demand for
increasingly complex digital 3D modeling and animation, our software application har-
nesses the computing resources of multiple networked machines to speed up the rendering
of digital animated videos. Although we have working system, we wanted deliver DSABR
this year as a Software as a Service platform. By creating a web portal, we have hope to
provide an easy user interface where users can sign in, upload their blender file, set a few
parameters, and be able to render their videos from the comfort of any web browser.

1 Introduction
The primary goal of our collaborative animation rendering system, DSABR [2], was to
make it possible for art students to produce longer, and more detailed 3D animated movies,
which generally require large amounts of compute time to render. Because Blender [1], an
open source modeling tool, is capable of rendering single frames independently, we were
able to distribute the rendering workload across multiple machines using Python [9] and
Work Queue [3]. To actually execute the work, we utilized computing resources at both
UW-Eau Claire and the Center for High Throughput Computing at UW-Madison, we were
able to reduce the rendering time for a video that took 72 minutes on a single machine
down to 5 minutes using our system. Despite the success of our initial system, however, it
is still not widely used by the target art students because it requires knowledge of cluster
computing and Linux terminal commands.

To address this lack of usability and remove this barrier, this research project focuses on
building and testing a web portal that serves as a front-end to DSABR and thus allows users
to easily schedule, render, and view animated videos from their web browser. This paper
describes the design and implementation of our web portal, discusses the challenges we
faced in building our system, and evaluates the new web portal’s functions in the context
of enabling novice users to utilize distributed computing to generate animation videos.

2 Design
An overall view of the DSABR web portal is shown in Figure 1. As can be seen, the design
of the DSABR web application is relatively straightforward: a web portal hosted in a virtual
machine that receives user requests such as scheduling an animation rendering job. Behind
the scenes, the system utilizes our existing DSABR command line tool to coordinate Work
Queue workers which perform the task of rendering the videos the users specified.

Figure 1: Web Portal Overview

1

2.1 User Accounts
Before users can utilize the system, they must first register or signup for an account. In the
web portal, user accounts hold information such as which source Blender files did a user
upload, which jobs have they submitted, and what videos have they produced.

Figure 2: Registration For DSABR

To facilitate signing up for the portal, we created a simple and efficient registration and
login page. All a user needs to do is supply a few fields to register and then he or she will
be able to login as shown in Figure 2.

Once they have registered for an account, users can then login to the website and access
their own profile page. From this page, they can easily navigate to all of the information
that is required or needed from using the DSABR application. The page is divided into two
columns:

1. The left column is a tabbed navigation which allows a user to click on the tabs that
show information regarding their Uploads, History, and Completed videos.

2. The right column of the page shows the status of their most recently launched DSABR
executions.

2.2 Uploads Tab
When a user is focused on the Uploads tab, an Upload File link is displayed. Clicking on
this link brings the user to a page where he or she can quickly upload a Blender file that can
be used with DSABR. When the file is added successfully, the user will see the file listed in
the table. The user is also given an option to delete the file from the Web Portal if needed
as shown in Figure 3.

2

Figure 3: Uploads Tab For DSABR

2.3 History Tab
When focused on the History tab, the user is able to take a brief overview of all the sub-
missions to DSABR that has been executed. This table shows a few statistics on what
parameters were used in the DSABR programs such as the date when DSABR was exe-
cuted, the Blender file that was used, how long it took to complete the rendering, and how
many frames were executed. This table also shows the current status of the executed task
such as “Completed”, “Failed”, or “Pending” as shown in Figure 4.

Figure 4: History Tab For DSABR

3

2.4 Videos Tab
When the Videos tab is active, the user is able to view all of the completed videos that
DSABR has successfully rendered. The user is given two links to either Preview the video
in the web browser or Download the video to the local machine as shown in Figure 5.

Figure 5: Videos Tab For DSABR

When the user clicks the Preview button, a modal dialog opens on the current page and the
user is able to watch the video through their browser as demonstrated in Figure 6.

Figure 6: Video Preview For DSABR

2.5 Status Updates
As mentioned previously, right column of the user’s profile page shows the status of their
most recently launched DSABR jobs. During the execution of a job, the user can see live
status updates (updated every 3 seconds) of DSABR’s progress as shown in Figure 7. A

4

user can watch the total time elapsed, how many tasks are currently running, how many
workers are connected, and how many frames have been actually been completed. A user
can wait patiently until the status is changed from “Pending” to “Completed” and then go
to the Video tab in the left column to see their video as described above.

Figure 7: Status Updates For DSABR

2.6 Job Submission
In order to begin a job, a user must go to their profile page and click on the button that says
“Go to DSABR”. When this button is clicked, the user is directed to another page where
the DSABR Application form is displayed. The user many select various options and then
simply presses, “Run dSabr” as shown in Figure 8.

Figure 8: Job Submission For DSABR

This page provides the user a graphical interface to DSABR. In the form, the first option al-
lows a user to select a Blender file. A dropdown menu is populated from the database from
a list of all the Blender files the user has uploaded to the server. The next option the user
is given is the “Intermediate File” format. Currently, DSABR only supports PNG, BMP,
and JPG. Next, the user is given an option to specify an output file name and an output
format for which the video will be rendered as. If no output name is specified, it defaults

5

to “out.avi”. Last, the user is given two input fields to specify the range of frame numbers
to generate. The user only has to input their start frame, and their end frame, and DSABR
will handle the rest.

The behind the scenes details on how the parameters in the job submission form are utilized
to execute a distributed animation rendering task is described in the next section, which fo-
cuses on the back-end implementation details of our system.

3 Implementation
Behind the scenes of our web portal, the system utilizes our original DSABR command line
tool to create an animated video using the options specified and while taking advantage of
different distributed computing resources. This section describes the tools and techniques
we used to implement our web portal, discusses any challenges we encountered while de-
veloping the system, and examines our solutions to these obstacles.

3.1 Software Stack
Last year, we created the DSABR command line application that utilizes the Python-
WorkQueue framework to harness distributed computing resources in order to expedite
the rendering of Blender animation files. Essentially, what DSABR does is opens request
to receive workers on a specified port from WorkQueue. When these workers are accepted
by the DSABR program, DSABR extracts each frame from the Blender file and sends it to
the specified worker. After the worker receives the frame, it renders it into an image file,
and sends it back to DSABR. When DSABR collects all of these rendered frames, and uses
FFMPEG to encode all of the images into a final video file.

The goal of our project is to use a build a web portal to allow users to easily upload files,
schedule DSABR jobs, and view the generated videos. To accomplish this goal, we decided
on the following software stack:

1. LAMP: To implement our web portal, we utilized a pretty standard LAMP (Linux,
Apache, MySQL, PHP) stack. First, we setup an Ubuntu 12.04 LTS virtual machine
dedicated to running DSABR and our web site. Next, we configured a MySQL server
to easily and quickly store information pertaining to our web portal. Afterwards, we
setup the Apache webserver and configure it to allow for dynamic websites using
PHP.

2. CodeIgniter: To ensure that the web portal would be maintainable and flexible
enough to meet our requirements, we decided to use CodeIgniter [5], a PHP MVC
(Model-View-Controller) Framework. We chose this system because it was rela-
tively straightforward setup and the students had some familiarity with it prior to

6

starting this project (from an internship and job experience). We believe that this
MVC Framework would not only enable us to rapidly build our system, but also al-
low other students in the future to easily modify and make enhancements to the web
portal in the future.

3. Bootstrap: To allow for a responsive experience, we used a themed version of Boot-
strap to help give us a quick and decent looking design. After extracting the template
and making our base template for CodeIgniter, we created a few pages to fill out most
of the application.

3.2 Job Execution
We initially designed the site first by focusing on what types of data we wanted to display
to the user, and how we wanted the user to interact with DSABR. Once we had a way for
users register and login, and our testing data in place, all we needed to do is connect the
web portal to DSABR.

Before we started on getting DSABR to run, we had to figure out how we can fork off a
process in PHP, store its PID, and let the user know whether a process was running, com-
pleted, or failed. This ability is required since DSABR was a command line application and
did not provide any programmatic interfaces. To implement this mechanism, we created
what was essentially a shell wrapper for executing a Unix process This mechanism allowed
us flexibility to do other tasks such as calling the curl command on when a process failed
as we will explain later. Luckily for us, we learned that PHP is very nice about forking off
processes and the PHP code for executing our wrapper is shown in Listing 1.

$command = "nohup /var/www/codeigniter/dsabr.sh \
$blender_file $blender_name $intermediate_format \
$output_file $starting_frame $ending_frame >> \
/var/www/codeigniter/scripts.txt \
2>/var/www/codeigniter/err.txt & echo $!";

exec($command, $output);
$pid = (int)$output[0];

Listing 1: PHP Execution Wrapper

Unfortunately, before we could test running DSABR within the PHP environment, we first
had to get it to run in our Ubuntu development machine, which proved problematic. First,
DSABR was created and tested on CentOS and RHEL 6 machines and had strict dependen-
cies for tools and libraries that it required. Getting DSABR to execute on the Ubuntu virtual
machine required figuring out these dependencies and installing them. Some libraries such
as Work Queue had to be installed manually since no package existed for it in the Ubuntu
repositories. Other applications, such as FFMPEG had to also be built from source because
the Ubuntu version was not built with multimedia codecs we needed.

7

! / bin / bash

Parameters f o r t h i s s c r i p t .
BLENDER_FILE=$1
BLENDER_NAME=$2
INTERMEDIATE_FORMAT=$3
OUTPUT_FILE=$4
START_FRAME=$5
ENDING_FRAME=$6

set -e

BASE=/var/www/codeigniter/dsabr
CATALOG_HOST=dpl.cs.uwec.edu
TCP_LOW_PORT=9000
TCP_HIGH_PORT=10000
SANDBOX=/var/www/codeigniter/runs/dsabr.$$

export CATALOG_HOST TCP_LOW_PORT TCP_HIGH_PORT
export BLENDER_FILE BLENDER_NAME INTERMEDIATE_FORMAT
export OUTPUT_FILE STARTING_FRAME ENDING_FRAME

mkdir ${SANDBOX}

cp -fr ${BASE}/{dsabr.py,pipefiles.py,setup_blender.sh} ${SANDBOX}
cp -fr ${BLENDER_FILE} ${SANDBOX}

Execute DSABR
(cd ${SANDBOX};

./dsabr.py -b -d -o ${OUTPUT_FILE} \
${BLENDER_NAME} ${START_FRAME} ${ENDING_FRAME} > log 2>error.log;

ffmpeg -i ${OUTPUT_FILE} -f flv -b 1024 -s 640x375 flashvid.flv;
ffmpeg -i ${OUTPUT_FILE} -ss 0 -vframes 1 preview.jpg;

)

if ["$?" = "0"]; then
echo "Done"

else
Something went wrong , so Update the f a i l u r e to the DB
curl http://localhost/run/failure/$$
exit 1

fi

Listing 2: DSABR Shell Script

When we were to able to run DSABR from the command line, we then focused on getting
DSABR to be executed from the website. To do accomplish this task, we created a wrapper
script for the DSABR program as shown in Listing 2.

This wrapper script takes in 6 parameters, essentially all of the values the user specified on
the website. We tried to initially run DSABR with the Blender files from another directory

8

but that seemed to cause problems with Work Queue. Our solution to this problem to cre-
ate a sandbox directory where we essentially copied all of the files that were going to be
used for the execution of the DSABR program, including the user’s Blender file. In this
directory we also log any errors and save the JSON status log. This latter file is used for the
Status column on the Profile page and is read asynchronously by the web client using
AJAX. The bash script also quickly renders a Flash version of the video to allow a user to
use the Preview functionality of the website, and also creates a preview GIF for the flash
video when DSABR finishes. Finally, the bash script also checks to see if DSABR exited
without failure. If something happened along the way, we let the user know by POSTing
a URL using curl that sets that process status as failed.

4 Evaluation
As we built our web portal, we performed continuous testing and integration to ensure we
always had a working website. This meant developing a small feature and then immedi-
ately testing it to determine whether or not it worked and to see how it fit into the rest of the
application. Since the web portal was meant to be used by a variety of users will different
levels of computing knowledge, we had to do extensive testing on multiple factors.

1. User registration: We have database calls in place so only one person can register
with a distinct email address and a distinct username. For flexibility we allow users
login with either using their username or their email address as long as the password
was correct. Since we didn’t want to exactly know everyone’s password, we hashed
each password in the database. Once the registration system was in place, we tested
for various error messages when registering and logging into the system by creating
multiple accounts.

One future possibility is to avoid the registration process by integrating with UW-Eau
Claire’s central LDAP system. This, however, would require coordinating with the
campus IT group and receiving permission from them.

2. File uploads: We tested the system by uploading different Blender animation files
to the system. When a new user uploads a file, we have made sure that the system
creates a folder with their user identification number inside the uploads directory and
places the file inside of the appropriate user directory. We tested the ability to upload
a file with the same name, and will give an error message to the user that notifying
them that user either needs to delete the file from first, or simply rename their file
before they upload.

One issue we have not yet resolved is what to do when storage space is completely
used up. While we can detect this situation, it is not clear or obvious to use how to
react to the problem.

3. Concurrent Jobs: We tested the ability to run multiple DSABR rendering jobs at
once. Unfortunately, if there is an instance of DSABR currently running, the user

9

will have to wait for that DSABR job to completely end before a new DSABR appli-
cation can make progress. This is because while it is possible for multiple DSABR
masters to execute simultaneously, our current Work Queue worker pool implemen-
tation is not very intelligent.

As noted previously, in Work Queue, workers locate a master process and requests
work to do. In our current implementation, we use Work Queue’s default service dis-
covery mechanism which is to simply flock to the first available master. Because of
this, workers tend to clump towards one DSABR master, starving any other DSABR
jobs. Once the current master finished, however, the workers will migrate to another
master, allowing the next job to progress and complete.

In our next iteration of our web portal, we hope to address this load balancing prob-
lem with a more intelligent flocking mechanism.

4. Status Updates: We tested our Status update mechanism by simply submitting
DSABR jobs from the web portal, and watching the live status updates from within
the Profile page. When it showed “Complete” we knew we could then click on the
Preview tab, and our video should play in the new modal dialog box.

We also manually killed some running jobs to ensure that our wrapper scripts we
able to detect and report failed or incomplete jobs. In our testing, we were able to
successfully handle all of these interruptions. Moreover, the use of a sandbox for
each job proved quite useful for not only sharing the final video file, but also viewing
any of the logs generated during the job execution.

5. Video Playback: Finally, we tested the generated video by using a variety of web
browsers and video players on different operating systems. Because our web preview
was encoded as a FLV Flash video, it was generally available to any system that had
Adobe Flash installed. Viewing the generated AVI or MP4 file, however, turned out
to be more problematic as some systems lacked the appropriate codecs to view the
generated video.

We are currently working with an Art faculty member on what are the best options
for encoding videos and hope to provide users will a list of high level options that
they can select. This will ensure that all the hard work of distributing and rendering
the Blender file is not lost simply because the produced video file is not playable on
the desired machines.

Despite some rough edges, our web portal is overall quite functional and is ready for public
testing. We are currently in discussion with an Art faculty member about using our web
portal for some animation classes and hope to receive feedback and comments from the art
students and other novice users.

10

5 Related Work
As noted previously, our web portal is a front-end to our distributed collaborative render-
ing system, DSABR [2], which utilizes Blender [1], Python [9], and Work Queue [3] to
distribute the rendering workload across multiple machines. The system is inspired by pre-
vious research which also used Blender to develop an open source render farm [8], but
differs in implementation details. For instance, by using Work Queue, our system is both
scalable (i.e. the performance generally increases with additional workers) and elastic (i.e.
the system tolerates workers leaving and joining the pool of resources during run-time).
More details about the implementation of DSABR can be found in our previous paper [2].
The addition of a web portal front-end to DSABR is similar to ongoing efforts in build-
ing easy-to-use interfaces to sophisticated scientific applications. As noted by Ian Foster,
scientific tools tend to be difficult to deploy, configure, and utilize effectively. An alter-
native to forcing users to become distributed system experts is to provide different service
abstractions and in particular web service applications [6]. One prominent example of this
is the Nanohub portal [7], which is a web site that allows users to access sophisticated
scientific applications related to researching nanoscale materials and devices. Similarly,
Biocompute is a web portal that allows bioinformaticians to perform research using differ-
ent bioinformatics tools in an easy-to-use web interface [4]. Our research project in this
paper, then, follows the lead provided by these projects and continues the efforts in provid-
ing novice users convenient access to complex tools via comfortable and straightforward
web applications.

6 Conclusion
Because a tool is only useful when it can be used, we built a web portal for our animation
rendering system. With this new web interface to DSABR, we hope to finally enable art
students to explore their imaginations by building high quality and sophisticated animations
that were once impractical or infeasible due to local computing constraints. As shown in
this paper, the new web portal is functional and relatively straightforward to use. We look
forward to larger scale testing and more user feedback to further improve our system.

References
[1] Blender. http://www.blender.org/, 2013.

[2] P. Bui, T. Boettcher, N. Jaeger, and J. Westphal. Using Clusters in Undergraduate Re-
search: Distributed Animation Rendering, Photo Processing, and Image Transcoding.
In IEEE CLUSTER, 2013.

[3] P. Bui, D. Rajan, B. Abdul-Wahid, J. Izaguirre, and D. Thain. Work Queue + Python:
A Framework For Scalable Scientific Ensemble Applications. In Workshop on Python
for High Performance and Scientific Computing at SC11, 2011.

11

[4] R. Carmichael, P. Braga-Henebry, D. Thain, and S. Emrich. Biocompute 2.0: An
Improved Collaborative Workspace for Data Intensive Bio-Science. Concurrency and
Computation: Practice and Experience, 23(17):2305–2314, 2011.

[5] EllisLab. CodeIgniter. http://ellislab.com/codeigniter, 2014.

[6] I. Foster. Service-oriented science. Science, 308(5723):814–817, May 2005.

[7] K. Madhavan, L. Zentner, V. Farnsworth, S. Shivarajapura, M. Zentner, N. Denny, and
G. Klimeck. Nanohub. org: Cloud-based services for nanoscale modeling, simulation,
and education. Nanotechnology Reviews, 2(1):107–117, 2013.

[8] M. Patoli, M. Gkion, A. Al-Barakati, W. Zhang, P. Newbury, and M. White. An open
source grid based render farm for blender 3d. In Power Systems Conference and Expo-
sition, 2009. PSCE’09. IEEE/PES, pages 1–6. IEEE, 2009.

[9] Python Programming Language. http://www.python.org/, 2010.

12

